


Ivor Horton’s
Beginning

Visual C++®2008

Ivor Horton

25905ffirs.qxd:WroxPro  2/21/08  8:27 AM  Page iii



Ivor Horton’s
Beginning

Visual C++®2008

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
Chapter 1: Programming with Visual C++ 2008 . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2: Data, Variables, and Calculations. . . . . . . . . . . . . . . . . . . . . . . . . 35
Chapter 3: Decisions and Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Chapter 4: Arrays, Strings, and Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Chapter 5: Introducing Structure into Your Programs . . . . . . . . . . . . . . . . . 239
Chapter 6: More about Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . 279
Chapter 7: Defining Your Own Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Chapter 8: More on Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Chapter 9: Class Inheritance and Virtual Functions. . . . . . . . . . . . . . . . . . . 507
Chapter 10: The Standard Template Library . . . . . . . . . . . . . . . . . . . . . . . . 601
Chapter 11: Debugging Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
Chapter 12: Windows Programming Concepts . . . . . . . . . . . . . . . . . . . . . . 743
Chapter 13: Windows Programming with the Microsoft Foundation Classes . . 779
Chapter 14: Working with Menus and Toolbars . . . . . . . . . . . . . . . . . . . . . . 805
Chapter 15: Drawing in a Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
Chapter 16: Creating the Document and Improving the View. . . . . . . . . . . . 909
Chapter 17: Working with Dialogs and Controls . . . . . . . . . . . . . . . . . . . . . 985
Chapter 18: Storing and Printing Documents . . . . . . . . . . . . . . . . . . . . . . 1047
Chapter 19: Writing Your Own DLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
Chapter 20: Connecting to Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . 1113
Chapter 21: Updating Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
Chapter 22: More on Windows Forms Applications . . . . . . . . . . . . . . . . . . 1217
Chapter 23: Accessing Data Sources in a Windows Forms Application . . . 1265
Appendix A: C++ Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307
Appendix B: ASCII Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
Appendix C: Windows Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319

25905ffirs.qxd:WroxPro  2/21/08  8:27 AM  Page i



25905ffirs.qxd:WroxPro  2/21/08  8:27 AM  Page ii



Ivor Horton’s
Beginning

Visual C++®2008

Ivor Horton

25905ffirs.qxd:WroxPro  2/21/08  8:27 AM  Page iii



Ivor Horton’s Beginning Visual C++®2008
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Ivor Horton

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-22590-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional serv-
ices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Website may provide or recommendations it may make. Further,
readers should be aware that Internet Websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Visual C++ is a registered trademark of Microsoft Corporation
in the United States and/or other countries. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic books.

25905ffirs.qxd:WroxPro  2/21/08  8:27 AM  Page iv

www.wiley.com


This book is dedicated to Isabella Williams, who joined the 
growing band of beautiful girls in my life in January 2007.

About the Author
Ivor Horton graduated as a mathematician and was lured into information technology by promises of
great rewards for very little work. In spite of the reality being usually a great deal of work for relatively
modest rewards, he has continued to work with computers to the present day. He has been engaged at
various times in programming, systems design, consultancy, and the management of the implementa-
tion of projects of considerable complexity. 

Horton has many years of experience in the design and implementation of computer systems applied 
to engineering design and to manufacturing operations in a variety of industries. He has considerable
experience developing occasionally useful applications in a wide variety of programming languages,
and teaching primarily scientists and engineers to do likewise. He has been writing books on program-
ming for more than 10 years now, and his currently published works include tutorials on C, C++, and
Java. At the present time, when he is not writing programming books or providing advice to others, he
spends his time fishing, traveling, and trying to speak better French.

Acknowledgments
I’d like to acknowledge the efforts and support of the John Wiley & Sons and Wrox Press editorial and
production team in the production of this book, especially my development editor, Ed Connor, who has
been there from way back at the beginning and has stayed through to the end. I’d also like to thank my
technical editor, John Mueller, once again for doing such an outstanding job of reviewing the text and
checking out all the examples in the book; his many constructive comments undoubtedly helped make
the book a much better tutorial.

As always, the love and support of my wife, Eve, have been fundamental to making it possible for me to
write this book. She has pandered to my every need throughout and has remained patient and cheerful
in spite of the hours I spend locked away in my office and my intermittent grumblings about the work-
load I imposed upon myself.

25905ffirs.qxd:WroxPro  2/21/08  8:27 AM  Page v



Credits
Executive Editor
Robert Elliott

Development Editor
Ed Connor

Technical Editor
John Mueller

Copy Editor
Mildred Sanchez

Editorial Manager
Mary Beth Wakefield 

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Compositor
Laurie Stewart, Happenstance Type-O-Rama

Proofreaders
Jeremy Bagai
Sheilah Ledwidge
Carrie Hunter
Lee Ewert
Will DeRooy

Indexer
Jack Lewis

25905ffirs.qxd:WroxPro  2/21/08  8:27 AM  Page vi



Contents

Acknowledgments v
Introduction xxv

Chapter 1: Programming with Visual C++ 2008 1

The .NET Framework 2
The Common Language Runtime (CLR) 2
Writing C++ Applications 3
Learning Windows Programming 4

Learning C++ 5
The C++ Standards 5
Attributes 6
Console Applications 6
Windows Programming Concepts 7

What Is the Integrated Development Environment? 9
Components of the System 9

Using the IDE 10
Toolbar Options 11
Dockable Toolbars 12
Documentation 13
Projects and Solutions 13
Setting Options in Visual C++ 2008 26
Creating and Executing Windows Applications 27
Creating a Windows Forms Application 30

Summary 33

Chapter 2: Data, Variables, and Calculations 35

The Structure of a C++ Program 36
The main() Function 44
Program Statements 44
Whitespace 46
Statement Blocks 47
Automatically Generated Console Programs 47

Defining Variables 48
Naming Variables 49

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page vii



viii

Contents

Declaring Variables 50
Initial Values for Variables 51

Fundamental Data Types 51
Integer Variables 52
Character Data Types 53
Integer Type Modifiers 54
The Boolean Type 55
Floating-Point Types 55
Literals 57
Defining Synonyms for Data Types 58
Variables with Specific Sets of Values 58

Basic Input/Output Operations 60
Input from the Keyboard 60
Output to the Command Line 60
Formatting the Output 61
Escape Sequences 63

Calculating in C++ 65
The Assignment Statement 65
Arithmetic Operations 65
Calculating a Remainder 70
Modifying a Variable 71
The Increment and Decrement Operators 72
The Sequence of Calculation 74

Variable Types and Casting 76
Rules for Casting Operands 76
Casts in Assignment Statements 77
Explicit Casts 78
Old-Style Casts 79

The Bitwise Operators 79
The Bitwise AND 80
The Bitwise OR 82
The Bitwise Exclusive OR 83
The Bitwise NOT 84
The Bitwise Shift Operators 84

Understanding Storage Duration and Scope 86
Automatic Variables 86
Positioning Variable Declarations 89
Global Variables 89
Static Variables 93

Namespaces 93
Declaring a Namespace 94
Multiple Namespaces 96

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page viii



ix

Contents

C++/CLI Programming 97
C++/CLI Specific: Fundamental Data Types 98
C++/CLI Output to the Command Line 102
C++/CLI Specific — Formatting the Output 103
C++/CLI Input from the Keyboard 106
Using safe_cast 107
C++/CLI Enumerations 107

Summary 112
Exercises 114

Chapter 3: Decisions and Loops 117

Comparing Values 117
The if Statement 119
Nested if Statements 120
Nested if-else Statements 124
Logical Operators and Expressions 126
The Conditional Operator 130
The switch Statement 131
Unconditional Branching 134

Repeating a Block of Statements 135
What Is a Loop? 135
Variations on the for Loop 138
The while Loop 146
The do-while Loop 148
Nested Loops 149

C++/CLI Programming 153
The for each Loop 156

Summary 159
Exercises 159

Chapter 4: Arrays, Strings, and Pointers 161

Handling Multiple Data Values of the Same Type 162
Arrays 162
Declaring Arrays 163
Initializing Arrays 166
Character Arrays and String Handling 168
Multidimensional Arrays 171

Indirect Data Access 174
What Is a Pointer? 174
Declaring Pointers 175

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page ix



x

Contents

Using Pointers 176
Initializing Pointers 178
The sizeof Operator 183
Constant Pointers and Pointers to Constants 185
Pointers and Arrays 187

Dynamic Memory Allocation 194
The Free Store, Alias the Heap 194
The new and delete Operators 195
Allocating Memory Dynamically for Arrays 195
Dynamic Allocation of Multidimensional Arrays 198

Using References 199
What Is a Reference? 199
Declaring and Initializing References 199

Native C++ Library Functions for Strings 200
Finding the Length of a Null-Terminated String 200
Joining Null-Terminated Strings 201
Copying Null-Terminated Strings 203
Comparing Null-Terminated Strings 204
Searching Null-Terminated Strings 204

C++/CLI Programming 206
Tracking Handles 207
CLR Arrays 209
Strings 224
Tracking References 233
Interior Pointers 233

Summary 236
Exercises 238

Chapter 5: Introducing Structure into Your Programs 239

Understanding Functions 239
Why Do You Need Functions? 241
Structure of a Function 241
Using a Function 243

Passing Arguments to a Function 247
The Pass-by-value Mechanism 247
Pointers as Arguments to a Function 249
Passing Arrays to a Function 251
References as Arguments to a Function 255
Use of the const Modifier 257

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page x



xi

Contents

Arguments to main() 258
Accepting a Variable Number of Function Arguments 260

Returning Values from a Function 263
Returning a Pointer 263
Returning a Reference 266
Static Variables in a Function 269

Recursive Function Calls 271
Using Recursion 273

C++/CLI Programming 274
Functions Accepting a Variable Number of Arguments 274
Arguments to main() 275

Summary 277
Exercises 277

Chapter 6: More about Program Structure 279

Pointers to Functions 279
Declaring Pointers to Functions 280
A Pointer to a Function as an Argument 283
Arrays of Pointers to Functions 285

Initializing Function Parameters 285
Exceptions 287

Throwing Exceptions 289
Catching Exceptions 290
Exception Handling in the MFC 291

Handling Memory Allocation Errors 292
Function Overloading 293

What Is Function Overloading? 294
When to Overload Functions 296

Function Templates 296
Using a Function Template 297

An Example Using Functions 299
Implementing a Calculator 299
Eliminating Blanks from a String 302
Evaluating an Expression 303
Getting the Value of a Term 305
Analyzing a Number 306
Putting the Program Together 309
Extending the Program 311
Extracting a Substring 312
Running the Modified Program 314

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xi



xii

Contents

C++/CLI Programming 315
Understanding Generic Functions 316
A Calculator Program for the CLR 322

Summary 328
Exercises 329

Chapter 7: Defining Your Own Data Types 331

The struct in C++ 332
What Is a struct? 332
Defining a struct 332
Initializing a struct 333
Accessing the Members of a struct 333
IntelliSense Assistance with Structures 337
The struct RECT 338
Using Pointers with a struct 338

Data Types, Objects, Classes, and Instances 340
First Class 342
Operations on Classes 342
Terminology 343

Understanding Classes 343
Defining a Class 344
Declaring Objects of a Class 344
Accessing the Data Members of a Class 345
Member Functions of a Class 347
Positioning a Member Function Definition 349
Inline Functions 350

Class Constructors 351
What Is a Constructor? 351
The Default Constructor 353
Assigning Default Parameter Values in a Class 355
Using an Initialization List in a Constructor 358

Private Members of a Class 358
Accessing private Class Members 361
The friend Functions of a Class 362
The Default Copy Constructor 364

The Pointer this 366
const Objects of a Class 368

const Member Functions of a Class 369
Member Function Definitions Outside the Class 370

Arrays of Objects of a Class 371

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xii



xiii

Contents

Static Members of a Class 373
Static Data Members of a Class 373
Static Function Members of a Class 376

Pointers and References to Class Objects 376
Pointers to Class Objects 376
References to Class Objects 379

C++/CLI Programming 381
Defining Value Class Types 381
Defining Reference Class Types 386
Defining a Copy Constructor for a Reference Class Type 389
Class Properties 390
initonly Fields 403
Static Constructors 405

Summary 405
Exercises 406

Chapter 8: More on Classes 409

Class Destructors 409
What Is a Destructor? 409
The Default Destructor 410
Destructors and Dynamic Memory Allocation 412

Implementing a Copy Constructor 415
Sharing Memory Between Variables 417

Defining Unions 417
Anonymous Unions 419
Unions in Classes and Structures 419

Operator Overloading 420
Implementing an Overloaded Operator 420
Implementing Full Support for a Comparison Operator 424
Overloading the Assignment Operator 427
Overloading the Addition Operator 432
Overloading the Increment and Decrement Operators 436

Class Templates 438
Defining a Class Template 438
Creating Objects from a Class Template 441
Class Templates with Multiple Parameters 444

Using Classes 446
The Idea of a Class Interface 446
Defining the Problem 446
Implementing the CBox Class 447

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xiii



xiv

Contents

Organizing Your Program Code 468
Naming Program Files 470

Native C++ Library Classes for Strings 471
Creating String Objects 471
Concatenating Strings 473
Accessing and Modifying Strings 476
Comparing Strings 480
Searching Strings 484

C++/CLI Programming 494
Overloading Operators in Value Classes 494
Overloading the Increment and Decrement Operators 499
Overloading Operators in Reference Classes 500
Implementing the Assignment Operator for Reference Types 503

Summary 503
Exercises 504

Chapter 9: Class Inheritance and Virtual Functions 507

Basic Ideas of OOP 507
Inheritance in Classes 509

What Is a Base Class? 509
Deriving Classes from a Base Class 510

Access Control Under Inheritance 513
Constructor Operation in a Derived Class 516
Declaring Class Members to Be Protected 519
The Access Level of Inherited Class Members 522

The Copy Constructor in a Derived Class 524
Class Members as Friends 528

Friend Classes 530
Limitations on Class Friendship 530

Virtual Functions 530
What Is a Virtual Function? 532
Using Pointers to Class Objects 535
Using References with Virtual Functions 537
Pure Virtual Functions 538
Abstract Classes 539
Indirect Base Classes 542
Virtual Destructors 544

Casting Between Class Types 550
Nested Classes 550
C++/CLI Programming 553

Boxing and Unboxing 554

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xiv



xv

Contents

Inheritance in C++/CLI Classes 555
Interface Classes 561
Defining Interface Classes 561
Classes and Assemblies 565
Functions Specified as new 570
Delegates and Events 571
Destructors and Finalizers in Reference Classes 583
Generic Classes 585

Summary 596
Exercises 597

Chapter 10: The Standard Template Library 601

What Is the Standard Template Library? 601
Containers 602
Container Adapters 603
Iterators 604
Algorithms 605
Function Objects 605
Function Adapters 606

The Range of STL Containers 606
Sequence Containers 607

Creating Vector Containers 608
The Capacity and Size of a Vector Container 611
Accessing the Elements in a Vector 615
Inserting and Deleting Elements in a Vector 616
Storing Class Objects in a Vector 618
Sorting Vector Elements 623
Storing Pointers in a Vector 624
Double-Ended Queue Containers 626
Using List Containers 630
Using Other Sequence Containers 640

Associative Containers 651
Using Map Containers 652
Using a Multimap Container 664

More on Iterators 665
Using Input Stream Iterators 665
Using Inserter Iterators 669
Using Output Stream Iterators 670

More on Function Objects 672
More on Algorithms 674

fill() 674

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xv



xvi

Contents

replace() 674
find() 675
transform() 675

The STL for C++/CLI Programs 676
STL/CLR Containers 677
Using Sequence Containers 677
Using Associative Containers 685

Summary 692
Exercises 693

Chapter 11: Debugging Techniques 695

Understanding Debugging 695
Program Bugs 696
Common Bugs 697

Basic Debugging Operations 698
Setting Breakpoints 700
Setting Tracepoints 702
Starting Debugging 703
Changing the Value of a Variable 707

Adding Debugging Code 708
Using Assertions 708
Adding Your Own Debugging Code 709

Debugging a Program 715
The Call Stack 715
Step Over to the Error 716

Testing the Extended Class 720
Finding the Next Bug 722

Debugging Dynamic Memory 723
Functions Checking the Free Store 723
Controlling Free Store Debug Operations 725
Free Store Debugging Output 726

Debugging C++/CLI Programs 731
Using the Debug and Trace Classes 732
Getting Trace Output in Windows Forms Applications 741

Summary 741

Chapter 12: Windows Programming Concepts 743

Windows Programming Basics 744
Elements of a Window 744
Windows Programs and the Operating System 746

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xvi



xvii

Contents

Event-Driven Programs 746
Windows Messages 747
The Windows API 747
Windows Data Types 748
Notation in Windows Programs 749

The Structure of a Windows Program 750
The WinMain() Function 751
Message Processing Functions 763
A Simple Windows Program 768

Windows Program Organization 769
The Microsoft Foundation Classes 770

MFC Notation 771
How an MFC Program Is Structured 771

Using Windows Forms 775
Summary 778

Chapter 13: Windows Programming with the Microsoft Foundation Classes 779

The Document/View Concept in MFC 780
What Is a Document? 780
Document Interfaces 780
What Is a View? 780
Linking a Document and Its Views 781
Your Application and MFC 783

Creating MFC Applications 784
Creating an SDI Application 786
The Output from the MFC Application Wizard 790
Creating an MDI Application 801

Summary 803
Exercises 803

Chapter 14: Working with Menus and Toolbars 805

Communicating with Windows 805
Understanding Message Maps 806
Message Categories 809
Handling Messages in Your Program 810

Extending the Sketcher Program 811
Elements of a Menu 812

Creating and Editing Menu Resources 812
Adding Handlers for Menu Messages 816

Choosing a Class to Handle Menu Messages 817
Creating Menu Message Functions 817

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xvii



xviii

Contents

Coding Menu Message Functions 820
Adding Message Handlers to Update the User Interface 824

Adding Toolbar Buttons 827
Editing Toolbar Button Properties 829
Exercising the Toolbar Buttons 830
Adding Tooltips 831

Menu and Toolbars in a C++/CLI Program 831
Understanding Windows Forms 831
Understanding Windows Forms Applications 832
Adding a Menu to CLR Sketcher 836
Adding Event Handlers for Menu Items 838
Implementing Event Handlers 839
Setting Menu Item Checks 840
Adding a Toolbar 842

Summary 845
Exercises 846

Chapter 15: Drawing in a Window 847

Basics of Drawing in a Window 847
The Window Client Area 848
The Windows Graphical Device Interface 848

The Drawing Mechanism in Visual C++ 851
The View Class in Your Application 851
The CDC Class 852

Drawing Graphics in Practice 861
Programming the Mouse 863

Messages from the Mouse 864
Mouse Message Handlers 865
Drawing Using the Mouse 867

Exercising Sketcher 892
Running the Example 892
Capturing Mouse Messages 893

Drawing with the CLR 895
Drawing on a Form 895
Adding Mouse Event Handlers 895
Defining C++/CLI Element Classes 897
Implementing the MouseMove Event Handler 904
Implementing the MouseUp Event Handler 905
Implementing the Paint Event Handler for the Form 905

Summary 906
Exercises 907

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xviii



xix

Contents

Chapter 16: Creating the Document and Improving the View 909

The MFC Collection Classes 909
Types of Collection 910
The Type-Safe Collection Classes 911
Collections of Objects 911
The Typed Pointer Collections 920

Using the CList Template Class 923
Drawing a Curve 924
Defining the CCurve Class 925
Implementing the CCurve Class 927
Exercising the CCurve Class 929

Creating the Sketch Document 929
Using a CTypedPtrList Template 929

Improving the View 935
Updating Multiple Views 935
Scrolling Views 937
Using MM_LOENGLISH Mapping Mode 941

Deleting and Moving Shapes 943
Implementing a Context Menu 943

Associating a Menu with a Class 945
Choosing a Context Menu 946
Highlighting Elements 952
Servicing the Menu Messages 956

Dealing with Masked Elements 964
Extending CLRSketcher 965

Coordinate System Transformations 965
Defining a Curve 967
Defining a Sketch Class 969
Drawing the Sketch in the Paint Event Handler 971
Implementing Element Highlighting 972
Creating Context Menus 976

Summary 981
Exercises 983

Chapter 17: Working with Dialogs and Controls 985

Understanding Dialogs 985
Understanding Controls 986

Common Controls 988
Creating a Dialog Resource 988

Adding Controls to a Dialog Box 988

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xix



xx

Contents

Programming for a Dialog 990
Adding a Dialog Class 990
Modal and Modeless Dialogs 992
Displaying a Dialog 992

Supporting the Dialog Controls 995
Initializing the Controls 996
Handling Radio Button Messages 997

Completing Dialog Operations 998
Adding Pen Widths to the Document 998
Adding Pen Widths to the Elements 999
Creating Elements in the View 1000
Exercising the Dialog 1001

Using a Spin Button Control 1001
Adding the Scale Menu Item and Toolbar Button 1002
Creating the Spin Button 1003
Generating the Scale Dialog Class 1004
Displaying the Spin Button 1007

Using the Scale Factor 1008
Scaleable Mapping Modes 1008
Setting the Document Size 1009
Setting the Mapping Mode 1010
Implementing Scrolling with Scaling 1012

Working with Status Bars 1013
Adding a Status Bar to a Frame 1014

Using a List Box 1018
Removing the Scale Dialog 1018
Creating a List Box Control 1019

Using an Edit Box Control 1021
Creating an Edit Box Resource 1022
Creating the Dialog Class 1023
Adding the Text Menu Item 1025
Defining a Text Element 1026
Implementing the CText Class 1027
Creating a Text Element 1028

Dialogs and Controls in CLR Sketcher 1030
Adding a Dialog 1031
Creating Text Elements 1037

Summary 1044
Exercises 1045

25905ftoc.qxd:WroxPro  2/21/08  8:29 AM  Page xx



xxi

Contents

Chapter 18: Storing and Printing Documents 1047

Understanding Serialization 1047
Serializing a Document 1048

Serialization in the Document Class Definition 1048
Serialization in the Document Class Implementation 1049
Functionality of CObject-Based Classes 1052
How Serialization Works 1053
How to Implement Serialization for a Class 1054

Applying Serialization 1055
Recording Document Changes 1055
Serializing the Document 1056
Serializing the Element Classes 1058

Exercising Serialization 1061
Moving Text 1062
Printing a Document 1064

The Printing Process 1065
Implementing Multipage Printing 1068

Getting the Overall Document Size 1068
Storing Print Data 1069
Preparing to Print 1070
Cleaning Up After Printing 1072
Preparing the Device Context 1072
Printing the Document 1073
Getting a Printout of the Document 1077

Serialization and Printing in CLR Sketcher 1078
Understanding Binary Serialization 1078
Serializing a Sketch 1083
Printing a Sketch 1089

Summary 1090
Exercises 1091

Chapter 19: Writing Your Own DLLs 1093

Understanding DLLs 1093
How DLLs Work 1095
Contents of a DLL 1098
DLL Varieties 1098

Deciding What to Put in a DLL 1099

25905ftoc.qxd:WroxPro  2/21/08  8:30 AM  Page xxi



xxii

Contents

Writing DLLs 1100
Writing and Using an Extension DLL 1100
Exporting Variables and Functions from a DLL 1108
Importing Symbols into a Program 1109
Implementing the Export of Symbols from a DLL 1109

Summary 1112
Exercises 1112

Chapter 20: Connecting to Data Sources 1113

Database Basics 1113
A Little SQL 1116

Retrieving Data Using SQL 1116
Joining Tables Using SQL 1118
Sorting Records 1120

Database Support in MFC 1120
MFC Classes Supporting ODBC 1121

Creating a Database Application 1122
Registering an ODBC Database 1122
Generating an MFC ODBC Program 1124
Understanding the Program Structure 1127
Exercising the Example 1138

Sorting a Recordset 1138
Modifying the Window Caption 1139

Using a Second Recordset Object 1140
Adding a Recordset Class 1141
Adding a View Class for the Recordset 1143
Customizing the Recordset 1147
Accessing Multiple Table Views 1150
Viewing Orders for a Product 1156

Viewing Customer Details 1156
Adding the Customer Recordset 1156
Creating the Customer Dialog Resource 1157
Creating the Customer View Class 1158
Adding a Filter 1160
Implementing the Filter Parameter 1162
Linking the Order Dialog to the Customer Dialog 1163
Exercising the Database Viewer 1165

Summary 1166
Exercises 1166

25905ftoc.qxd:WroxPro  2/21/08  8:30 AM  Page xxii



xxiii

Contents

Chapter 21: Updating Data Sources 1167

Update Operations 1167
CRecordset Update Operations 1168
Transactions 1170

A Simple Update Example 1172
Customizing the Application 1173

Managing the Update Process 1175
Implementing Update Mode 1177

Adding Rows to a Table 1186
The Order Entry Process 1187
Creating the Resources 1187
Creating the Recordsets 1188
Creating the Recordset Views 1188
Adding Controls to the Dialog Resources 1193
Implementing Dialog Switching 1197
Creating an Order ID 1200
Storing the Order Data 1205
Selecting Products for an Order 1207
Adding a New Order 1209

Summary 1214
Exercises 1215

Chapter 22: More on Windows Forms Applications 1217

Creating the Application GUI 1217
Adding a Tab Control 1220
Using GroupBox Controls 1222
Using Button Controls 1224
Using the WebBrowser Control 1226
Operation of the Winning Application 1227
Adding a Context Menu 1228
Creating Event Handlers 1228
Handling Events for the Limits Menu 1235
Creating a Dialog Box 1235
Using the Dialog Box 1240
Adding the Second Dialog 1245
Implementing the Help > About Menu Item 1253
Handling a Button Click 1253
Responding to the Context Menu 1256

Summary 1263
Exercises 1264

25905ftoc.qxd:WroxPro  2/21/08  8:30 AM  Page xxiii



xxiv

Contents

Chapter 23: Accessing Data Sources in a Windows Forms Application 1265

Working with Data Sources 1266
Accessing and Displaying Data 1267
Using a DataGridView Control 1267
Using a DataGridView Control in Unbound Mode 1269
Customizing a DataGridView Control 1275

Customizing Header Cells 1276
Customizing Non-Header Cells 1277
Dynamically Setting Cell Styles 1284

Using Bound Mode 1290
The BindingSource Component 1290
Using the BindingNavigator Control 1296
Binding to Individual Controls 1299
Working with Multiple Tables 1302
Summary 1304
Exercises 1305

Appendix A: C++ Keywords 1307

Appendix B: ASCII Codes 1309

Appendix C: Windows Message Types 1317

Index 1319

25905ftoc.qxd:WroxPro  2/21/08  8:30 AM  Page xxiv



Introduction

Welcome to Beginning Visual C++® 2008. With this book you can become an effective C++ programmer. The
latest development system from Microsoft, Visual Studio 2008, supports two distinct but closely related fla-
vors of the C++ language; it fully supports the original ISO/ANSI standard C++, and you also get support
for a new version of C++ called C++/CLI that was developed by Microsoft and is now an ECMA standard.
These two versions of C++ are complementary and fulfill different roles. ISO/ANSI C++ is there for the
development of high-performance applications that run natively on your computer whereas C++/CLI has
been developed specifically for writing applications that target the .NET Framework. This book will teach
you how to write applications in both versions of C++.

You get quite a lot of assistance from automatically generated code when writing ISO/ANSI C++ pro-
grams, but you still need to write a lot of C++ yourself. You need a solid understanding of object-oriented
programming techniques, as well as a good appreciation of what’s involved in programming for Windows.
Although C++/CLI targets the .NET Framework, it also is the vehicle for the development of Windows
Forms applications that you can develop with little or in some cases no explicit code writing. Of course,
when you do have to add code to a Windows Forms application, even though it may be a very small 
proportion of the total, you still need an in-depth knowledge of the C++/CLI language. ISO/ANSI C++
remains the language of choice for many professionals, but the speed of development that C++/CLI and
Windows Forms applications bring to the table make that essential, too. For this reason I cover both flavors
of C++ in this book.

Whom This Book Is For
This book is aimed at teaching you how to write C++ applications for the Microsoft Windows operating
system using Visual C++ 2008 or any edition of Visual Studio 2008. I make no assumptions about prior
knowledge of any particular programming language. This tutorial is for you if:

❑ You have a little experience programming in some other language, such as BASIC for example,
and you are keen to learn C++ and develop practical Microsoft Windows programming skills.

❑ You have some experience in C or C++, but not in a Microsoft Windows context and want 
to extend your skills to program for the Windows environment using the latest tools and 
technologies.

❑ You have some knowledge of C++ and you want to extend your C++ skills to include C++/CLI.

❑ You are a newcomer to programming and sufficiently keen to jump in the deep end with C++.
To be successful you need to have at least a rough idea of how your computer works, including
the way in which the memory is organized and how data and instructions are stored.

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxv



What This Book Covers
My objective with this book is to teach you the essentials of C++ programming using both of the tech-
nologies supported by Visual C++ 2008. The book provides a detailed tutorial on both flavors of the C++
language, on native ISO/ANSI C++ Windows application development using the Microsoft Foundation
Classes (MFC), and on the development of C++/CLI Windows applications using Windows Forms. 

Because of the importance and pervasiveness of database technology today, the book also includes intro-
ductions to the techniques you can use for accessing data sources in both MFC and Windows Forms appli-
cations. MFC applications are relatively coding-intensive compared to Windows Forms applications. This
is because you create the latter using a highly developed design capability in Visual C++ 2008 that enables
you to assemble the entire graphical user interface (GUI) for an application graphically and have all the
code that creates it generated automatically. For this reason, there are more pages in the book devoted to
MFC programming than to Windows Forms programming.

How This Book Is Structured
The contents of this book are structured as follows:

❑ Chapter 1 introduces you to the basic concepts you need to understand for programming in
C++ for native applications and for .NET Framework applications, together with the main
ideas embodied in the Visual C++ 2008 development environment. It describes how you use
the capabilities of Visual C++ 2008 for creating the various kinds of C++ applications you learn
about in the rest of the book.

❑ Chapters 2 to 9 are dedicated to teaching you both versions of the C++ language. The content 
of each of the Chapters 2 through 9 is structured in a similar way; the first half of each chapter
deals with ISO/ANSI C++ topics, and the second half deals with C++/CLI.

❑ Chapter 10 teaches you how you use the Standard Template Library (STL), which is a powerful
and extensive set of tools for organizing and manipulating data in your native C++ programs. The
STL is application-neutral so you will be able to apply it in a wide range of contexts. Chapter 10
also teaches you the STL/CLR, which is new in Visual C++ 2008. This is a version of the STL for
C++/CLI applications.

❑ Chapter 11 introduces you to techniques for finding errors in your C++ programs.

❑ Chapter 12 discusses how Microsoft Windows applications are structured and describes and
demonstrates the essential elements that are present in every Windows application. The chapter
explains elementary examples of Windows applications using ISO/ANSI C++ and the Windows
API and the MFC, as well as an example of a basic Windows Forms application in C++/CLI.

❑ Chapters 13 to 18 describe in detail the capabilities provided by the MFC for building a GUI and
how you use the equivalent facilities in a program for the .NET Framework. You learn how you
create and use common controls to build the graphical user interface for your application and
how you handle the events that result from user interactions with your program. In the process,
you create a substantial working application in native C++, and a program with essentially the
same functionality in C++/CLI. In addition to the techniques you learn for building a GUI, the
applications that you develop also show you how you print documents and how you save them
on disk.  

Introduction

xxvi

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxvi



Introduction

xxvii

❑ Chapter 19 teaches you the essentials you need to know for creating your own libraries using
MFC. You learn about the different kinds of libraries you can create, and you develop working
examples of these that work with the application that you have evolved over the preceding six
chapters.

❑ In Chapters 20 and 21, you learn about accessing data sources in an MFC application. You gain
experience in accessing a database in read-only mode; then you learn the fundamental program-
ming techniques for updating a database using MFC. The examples use the Northwind database
that can be downloaded from the Web, but you can also apply the techniques described to your
own data source.

❑ In Chapter 22 you work with Windows Forms and C++/CLI to build an example that teaches
you how to create, customize, and use more Windows Forms controls in an application. You
gain practical experience by building a second C++/CLI application incrementally throughout
the chapter.

❑ Chapter 23 builds on the knowledge you gain in Chapter 22 and shows how the controls avail-
able for accessing data sources work, and how you customize them. You also learn how you can
create an application for accessing a database with virtually no coding at all on your part. 

All chapters include numerous working examples that demonstrate the programming techniques that are
discussed. Every chapter concludes with a summary of the key points that were covered, and most chap-
ters include a set of exercises at the end that you can attempt to apply what you have learned. Solutions to
the exercises, together with all the code from the book, are available for download from the publisher’s
Web site (see the “Source Code” section later in this Introduction for more details). 

The tutorial on the C++ language uses examples that are console programs with simple command-line
input and output. This approach enables you to learn the various capabilities of C++ without getting
bogged down in the complexities of Windows GUI programming. Programming for Windows is really
only practicable after you have a thorough understanding of the programming language. 

If you want to keep things as simple as possible, you can just learn ISO/ANSI C++ programming in the
first instance. Each of the chapters that cover the C++ language (Chapters 2 to 9) first discusses particu-
lar aspects of the capabilities of ISO/ANSI C++, followed by the new features introduced by C++/CLI 
in the same context. The reason for organizing things this way is that C++/CLI is defined as an exten-
sion to the ISO/ANSI standard language, so an understanding of C++/CLI is predicated on knowledge
of ISO/ANSI C++. Thus, you can just read the ISO/ANSI topics in each of Chapters 2 to 21 and ignore the
C++/CLI sections that follow. You then can progress to Windows application development with ISO/ANSI
C++ without having to keep the two versions of the language in mind. You can return to C++/CLI when
you are comfortable with ISO/ANSI C++. Of course, you can also work straight through and add to your
knowledge of both versions of the C++ language incrementally.

What You Need to Use This Book
To use this book you need any of Visual Studio 2008 Standard Edition, Visual Studio 2008 Professional
Edition, or Visual Studio 2008 Team System. Note that Visual C++ Express 2008 is not sufficient because
the MFC is not included. 

Visual Studio 2008 requires Windows XP (x86 or x64) with Service Pack 2 or later, Windows Server 2003
with Service Pack 1 or later, or any edition of Windows Vista except Starter Edition. To install any of the

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxvii



Introduction

xxviii

three Visual Studio 2008 editions identified you need to have a 1.6 GHz processor with at least 384MB of
memory (at least 768MB for Windows Vista) and at least 2.2GB of hard-disk space available. To install the
full MSDN documentation that comes with the product you’ll need an additional 1.8GB available on the
installation drive. 

The database examples in the book use the Northwind Traders database. You can find the download for
this database by searching for “Northwind Traders” on http://msdn.microsoft.com. Of course, you
can also adapt the examples to work with a database of your choice.

Most importantly, to get the most out of this book you need a willingness to learn, and a determination
to master the most powerful programming tool for Windows applications presently available. You need
the dedication to type in and work through all the examples and try out the exercises in the book. This
sounds more difficult than it is, and I think you’ll be surprised how much you can achieve in a relatively
short period of time. Keep in mind that everybody who learns programming gets bogged down from time
to time, but if you keep at it, things become clearer and you’ll get there eventually. This book helps you to
start experimenting on your own and, from there, to become a successful C++ programmer.

Using the Windows Classic Theme
If you’re working in Windows Vista with Visual Studio 2008, you may have noticed that the view looks
amazing. The transparency offered by the Aero Glass interface is quite breathtaking at first glance (and
even many glances afterward). When you add in all of the visual effects that Vista has to offer, you
might wonder why anyone would object to such a nice work environment. However, after a few hours
of watching windows bursting forth and seeing the display dazzle your vision, you may prefer a set-
ting that is less likely to cause eye fatigue. More importantly, you may notice a significant drop in your
productivity because all of this eye candy robs your system of important processing cycles.

Eye candy is nice, but isn’t it nicer to get home on time after a long day writing code? That’s one reason
why this book uses the Windows Classic theme to show Visual Studio 2008 windows. Another reason is
that if you are still using Windows XP, the fancy Vista windows would not mean very much to you. The
Windows Classic theme is common to both operating systems so it will fit with whatever operating sys-
tem you are using, and it’s definitely friendlier to your eyes than the Aero Glass interface. 

If you are using Vista, I encourage you to try the various themes that Vista offers to see if they work for
you. However, if you’d like to use the same theme in Vista as I have used for this book, then you can fol-
low these steps to obtain it.

1. Right-click the Desktop and choose Personalize from the context menu. The Personalize window
is shown in Figure I-1. This window provides access to all of the display settings you need to
obtain the Windows Classic view.

2. Click Theme to display the Theme Settings dialog box shown in Figure I-2.

3. Choose Windows Classic in the Theme field and click OK. At this point, your display will begin
looking very much like mine. Of course, you still have all of those special effects to consider.
The next set of steps will get rid of the special effects.

4. Close the Personalize window.

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxviii



Figure I-1

Figure I-2

5. Open the System applet in the Control Panel to display the System window shown in Figure I-3.

Introduction

xxix

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxix



Figure I-3

6. Click Advanced System Settings to display the Advanced tab of the System Properties dialog
box shown in Figure I-4.

Figure I-4

Introduction

xxx

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxx



7. Click Settings in the Performance area to display the Performance Options dialog box shown in
Figure I-5.

Figure I-5

8. Choose the Adjust for Best Performance option as shown in Figure I-5. Click OK twice to close
both dialog boxes. At this point, your system is adjusted to provide the same view that I’m using
and also for best graphic performance.

You may also want to use the Classic Start menu to make it easier to locate applications and to per-
form other tasks. To set your system up for the Classic Start menu, right-click the taskbar and choose
Properties. Select the Start menu tab. Choose the Classic Start menu option, make any required cus-
tomizations by clicking Customize, and click OK. You now have an optimal environment for working
with Visual Studio.

Of course, if you are using Windows XP and you want your screen images to look like those in the book,
you can use the Classic theme here, too. Just right-click on the Windows desktop, and select Properties
from the pop-up menu to display the dialog shown in Figure I-6. 

On the Themes tab in the Display Properties dialog, select Windows Classic from the drop-down list of
themes. Click the OK button and you are in business.

Introduction

xxxi

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxxi



Figure I-6

Conventions
To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout the book.

Try It Out
The Try It Out is an exercise involving a working example you should create, compile, and execute, fol-
lowing the text in the book. Output from a working example is shown in a monospaced font like this:

Here is output from the example.
Here is more output!

How It Works
After each Try It Out, the code you’ve typed is explained in detail in a How It Works section.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ New terms and important words appear in bold when first introduced.

❑ Keyboard strokes are shown like this: Ctrl+A.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Introduction

xxxii

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxxii



❑ File names, URLs, and code within the text appear like so: persistence.properties. 

❑ Code is presented in two different ways:

Monofont type with no highlighting is used for code that you have seen before or
for code that was created automatically for you.
Gray highlighting is used to show code that’s new or modified.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. At the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book. 

While just using the downloaded code is an option, I strongly recommend that you type the code for
examples manually and only turn to the code download as a last resort. This will not only be very effec-
tive in helping you learn and remember the language syntax, but will also give you valuable experience
in making and hopefully correcting mistakes in your code.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-22590-5.

After you download the code, just decompress it with your favorite compression tool. Alternatively, 
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information. 

To find the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page you can view all errata that has been submitted for this book and posted by Wrox editors. A 
complete book list including links to each book’s errata is also available at www.wrox.com/misc-
pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

Introduction

xxxiii

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxxiii



p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to 
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and 
complete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, 
you must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

xxxiv

25905flast.qxd:WroxPro  2/21/08  8:28 AM  Page xxxiv



1
Programming 

with Visual C++ 2008

Windows programming isn’t difficult. In fact, Microsoft Visual C++ 2008 makes it remarkably easy,
as you’ll see throughout the course of this book. There’s just one obstacle in your path: Before you get
to the specifics of Windows programming, you have to be thoroughly familiar with the capabilities
of the C++ programming language, particularly the object-oriented aspects of the language. Object-
oriented techniques are central to the effectiveness of all the tools that are provided by Visual C++
2008 for Windows programming, so it’s essential that you gain a good understanding of them. That’s
exactly what this book provides.

This chapter gives you an overview of the essential concepts involved in programming applications
in C++. You’ll take a rapid tour of the Integrated Development Environment (IDE) that comes with
Visual C++ 2008. The IDE is straightforward and generally intuitive in its operation, so you’ll be able
to pick up most of it as you go along. The best approach to getting familiar with it is to work through
the process of creating, compiling, and executing a simple program. By the end of this chapter, you
will have learned:

❑ What the principal components of Visual C++ 2008 are

❑ What the .NET Framework consists of and the advantages it offers

❑ What solutions and projects are and how you create them

❑ About console programs 

❑ How to create and edit a program

❑ How to compile, link, and execute C++ console programs

❑ How to create and execute basic Windows programs

So power up your PC, start Windows, load the mighty Visual C++ 2008, and begin your journey.

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 1



The .NET Framework
The .NET Framework is a central concept in Visual C++ 2008 as well as in all the other .NET development
products from Microsoft. The .NET Framework consists of two elements: the Common Language Runtime
(CLR) in which your application executes, and a set of libraries called the .NET Framework class libraries.
The .NET Framework class libraries provide the functional support your code will need when executing
with the CLR, regardless of the programming language used, so .NET programs written in C++, C#, or any
of the other languages that support the .NET Framework all use the same .NET libraries. 

There are two fundamentally different kinds of C++ applications you can develop with Visual C++ 2008.
You can write applications that natively execute on your computer. These applications will be referred
to as native C++ programs. You write native C++ programs in the version of C++ that is defined by the
ISO/ANSI (International Standards Organization/American National Standards Institute) language stan-
dard. You can also write applications to run under the control of the CLR in an extended version of C++
called C++/CLI. These programs will be referred to as CLR programs, or C++/CLI programs.

The .NET Framework is not strictly part of Visual C++ 2008 but rather a component of the Windows oper-
ating system that makes it easier to build software applications and Web services. The .NET Framework
offers substantial advantages in code reliability and security, as well as the ability to integrate your C++
code with code written in over 20 other programming languages that target the .NET Framework. A slight
disadvantage of targeting the .NET Framework is that there is a small performance penalty, but you won’t
notice this in the majority of circumstances. 

The Common Language Runtime (CLR)
The CLR is a standardized environment for the execution of programs written in a wide range of high-level
languages including Visual Basic, C#, and of course C++. The specification of the CLR is now embodied
in the European Computer Manufacturers Association (ECMA) standard for the Common Language
Infrastructure (CLI), ECMA-335, and also in the equivalent ISO standard, ISO/IEC 23271, so the CLR 
is an implementation of this standard. You can see why C++ for the CLR is referred to as C++/CLI —
it’s C++ for the Common Language Infrastructure, so you are likely to see C++/CLI compilers on other
operating systems that implement the CLI.

Note that information on all ECMA standards is available from www.ecma-international.org and
ECMA-335 is currently available as a free download.

The CLI is essentially a specification for a virtual machine environment that enables applications written
in diverse high-level programming languages to be executed in different system environments without
changing or recompiling the original source code. The CLI specifies a standard intermediate language for
the virtual machine to which the high-level language source code is compiled. With the .NET Framework,
this intermediate language is referred to as Microsoft Intermediate Language (MSIL). Code in the interme-
diate language is ultimately mapped to machine code by a just-in-time (JIT) compiler when you execute a
program. Of course, code in the CLI intermediate language can be executed within any other environment
that has a CLI implementation. 

2

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 2



The CLI also defines a common set of data types called the Common Type System (CTS) that should be
used for programs written in any programming language targeting a CLI implementation. The CTS speci-
fies how data types are used within the CLR and includes a set of predefined types. You may also define
your own data types, and these must be defined in a particular way to be consistent with the CLR, as you’ll
see. Having a standardized type system for representing data allows components written in different pro-
gramming languages to handle data in a uniform way and makes it possible to integrate components writ-
ten in different languages into a single application. 

Data security and program reliability is greatly enhanced by the CLR, in part because dynamic memory
allocation and release for data is fully automatic but also because the MSIL code for a program is compre-
hensively checked and validated before the program executes. The CLR is just one implementation of the
CLI specification that executes under Microsoft Windows on a PC; there will undoubtedly be other imple-
mentations of the CLI for other operating system environments and hardware platforms. You’ll sometimes
find that the terms CLI and CLR are used interchangeably, although it should be evident that they are not
the same thing. The CLI is a standard specification; the CLR is Microsoft’s implementation of the CLI. 

Writing C++ Applications
You have tremendous flexibility in the types of applications and program components that you can develop
with Visual C++ 2008. As noted earlier in this chapter, you have two basic options for Windows applica-
tions: You can write code that executes with the CLR, and you can also write code that compiles directly
to machine code and thus executes natively. For window-based applications targeting the CLR, you use
Windows Forms as the base for the GUI provided by the .NET Framework libraries. Using Windows Forms
enables rapid GUI development because you assemble the GUI graphically from standard components
and have the code generated completely automatically. You then just need to customize the code that has
been generated to provide the functionality you require.

For natively executing code, you have several ways to go. One possibility is to use the Microsoft Founda -
tion Classes (MFC) for programming the graphical user interface for your Windows application. The MFC
encapsulates the Windows operating system Application Programming Interface (API) for GUI creation
and control and greatly eases the process of program development. The Windows API originated long
before the C++ language arrived on the scene so it has none of the object-oriented characteristics that
would be expected if it were written today; however, you are not obliged to use the MFC. If you want 
the ultimate in performance, you can write your C++ code to access the Windows API directly. 

C++ code that executes with the CLR is described as managed C++ because data and code is managed by
the CLR. In CLR programs, the release of memory that you have allocated dynamically for storing data is
taken care of automatically, thus eliminating a common source of error in native C++ applications. C++
code that executes outside of the CLR is sometimes described by Microsoft as unmanaged C++ because
the CLR is not involved in its execution. With unmanaged C++ you must take care of all aspects of allocat-
ing and releasing memory during execution of your program yourself, and you also forego the enhanced
security provided by the CLR. You’ll also see unmanaged C++ referred to as native C++ because it com-
piles directly to native machine code.

Figure 1-1 shows the basic options you have for developing C++ applications. 

3

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 3



Figure 1-1

Figure 1-1 is not the whole story. An application can consist partly of managed C++ and partly of native
C++, so you are not obliged to stick to one environment or the other. Of course, you do lose out some-
what by mixing the code, so you would choose to follow this approach only when necessary, such as
when you want to convert an existing native C++ application to run with the CLR. You obviously won’t
get the benefits inherent in managed C++ in the native C++ code, and there can also be appreciable over-
head involved in communications between the managed and unmanaged code components. The ability
to mix managed and unmanaged code can be invaluable, however, when you need to develop or extend
existing unmanaged code but also want to obtain the advantages of using the CLR. Of course, for new
applications you should decide whether you want to create a managed C++ application or a native C++
application at the outset.

Learning Windows Programming
There are always two basic aspects to interactive applications executing under Windows: You need code to
create the Graphical User Interface (the GUI) with which the user interacts, and you need code to process
these interactions to provide the functionality of the application. Visual C++ 2008 provides you with a great
deal of assistance in both aspects of Windows application development. As you’ll see later in this chapter,
you can create a working Windows program with a GUI without writing any code yourself at all. All the
basic code to create the GUI can be generated automatically by Visual C++ 2008; however, it’s essential 
to understand how this automatically generated code works because you need to extend and modify it to
make it do what you want, and to do that you need a comprehensive understanding of C++.

MFCNative C++

Native C++

Operating System

Framework Classes

Common Language Runtime

Managed C++

Hardware

4

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 4



For this reason, you’ll first learn C++ — both the native C++ and C++/CLI versions of the language —
without getting involved in Windows programming considerations. After you’re comfortable with C++,
you’ll learn how you develop fully-fledged Windows applications using native C++ and C++/CLI. This
means that while you are learning C++, you’ll be working with programs that just involve command
line input and output. By sticking to this rather limited input and output capability, you’ll be able to con-
centrate of the specifics of how the C++ language works and avoid the inevitable complications involved
in GUI building and control. After you become comfortable with C++, you’ll find that it’s an easy and
natural progression to applying C++ to the development of Windows application programs.

Learning C++
Visual C++ 2008 fully supports two versions of C++ defined by two separate standards: 

❑ The ISO/ANSI C++ standard is for implementing native applications — unmanaged C++. This
version of C++ is supported on the majority of computer platforms.

❑ The C++/CLI standard is designed specifically for writing programs that target the CLR and is
an extension to the ISO/ANSI C++. 

Chapters 2 through 9 of this book teach you the C++ language. Because C++/CLI is an extension of
ISO/ANSI C++, the first part of each chapter introduces elements of the ISO/ANSI C++ language; the
second part explains the additional features that C++/CLI introduces.

Writing programs in C++/CLI allows you to take full advantage of the capabilities of the .NET Framework,
something that is not possible with programs written in ISO/ANSI C++. Although C++/CLI is an exten-
sion of ISO/ANSI C++, to be able to execute your program fully with the CLR means that it must conform
to the requirements of the CLR. This implies that there are some features of ISO/ANSI C++ that you cannot
use in your CLR programs. One example of this that you might deduce from what I have said up to now
is that the dynamic memory allocation and release facilities offered by ISO/ANSI C++ are not compatible
with the CLR; you must use the CLR mechanism for memory management and this implies that you must
use C++/CLI classes, not native C++ classes. 

The C++ Standards
The ISO/ANSI standard is defined by the document ISO/IEC 14882 that is published by the American
National Standards Institute (ANSI). ISO/ANSI standard C++ is the well-established version of C++
that has been around since 1998 and is supported by compilers on the majority of computer hardware
platforms and operating systems. Programs that you write in ISO/ANSI C++ can be ported from one
system environment to another reasonably easily, although the library functions that a program uses —
particularly those related to building a graphical user interface — are a major determinant of how easy
or difficult it will be. ISO/ANSI standard C++ has been the first choice of many professional program
developers because it is so widely supported, and because it is one of the most powerful programming
languages available today.

The ISO/ANSI standard for C++ can be purchased from www.iso.org.

C++/CLI is a version of C++ that extends the ISO/ANSI standard for C++ to better support the Common
Language Infrastructure (CLI) that is defined by the standard ECMA-355. The first draft of this standard

5

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 5



appeared in 2003 and was developed from an initial technical specification that was produced by Microsoft
to support the execution of C++ programs with the .NET Framework. Thus both the CLI and C++/CLI
were originated by Microsoft in support of the .NET Framework. Of course, standardizing the CLI and
C++/CLI greatly increases the likelihood of implementations in environments other than Windows. It’s
important to appreciate that although C++/CLI is an extension of ISO/ANSI C++, there are features of
ISO/ANSI C++ that you must not use when you want your program to execute fully under the control of
the CLR. You’ll learn what these are as you progress through the book. 

The CLR offers substantial advantages over the native environment. By targeting your C++ programs at
the CLR, your programs will be more secure and not prone to the potential errors you can make when
using the full power of ISO/ANSI C++. The CLR also removes the incompatibilities introduced by vari-
ous high-level languages by standardizing the target environment to which they are compiled and thus
permits modules written in C++ to be combined with modules written in other languages such as C# or
Visual Basic.

Attributes
Attributes are an advanced feature of programming with C++/CLI that allow you to add descriptive
declarations to your code. At the simplest level, you can use attributes to annotate particular program-
ming elements in your program but there’s more to attributes than just additional descriptive data.
Attributes can affect how your code behaves at run time by modifying the way the code is compiled 
or by causing extra code to be generated that supports additional capabilities. A range of standard
attributes is available for C++/CLI and it is also possible to create your own. 

A detailed discussion of attributes is beyond the scope of this book but I mention them here because you
will make use of attributes in one or two places in the book, particularly in Chapter 18 where you learn
how to write objects to a file.

Console Applications
As well as developing Windows applications, Visual C++ 2008 also allows you to write, compile, and
test C++ programs that have none of the baggage required for Windows programs — that is, applica-
tions that are essentially character-based, command-line programs. These programs are called console
applications in Visual C++ 2008 because you communicate with them through the keyboard and the
screen in character mode.

Writing console applications might seem as though you are being sidetracked from the main objective of
Windows programming, but when it comes to learning C++ (which you do need to do before embarking
on Windows-specific programming), it’s the best way to proceed. There’s a lot of code in even a simple
Windows program, and it’s very important not to be distracted by the complexities of Windows when
learning the ins and outs of C++. Therefore, in the early chapters of the book where you are concerned
with how C++ works, you’ll spend time walking with a few lightweight console applications before you
get to run with the heavyweight sacks of code in the world of Windows.

6

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 6



While you’re learning C++, you’ll be able to concentrate on the language features without worrying about
the environment in which you’re operating. With the console applications that you’ll write, you have only
a text interface, but this will be quite sufficient for understanding all of C++ because there’s no graphical
capability within the definition of the language. Naturally, I will provide extensive coverage of graphical
user interface programming when you come to write programs specifically for Windows using Microsoft
Foundation Classes (MFC) in native C++ applications and Windows Forms with the CLR.

There are two distinct kinds of console applications and you’ll be using both. Win32 console applications
compile to native code, and you’ll be using these to try out the capabilities of ISO/ANSI C++. CLR console
applications target the CLR so you’ll be using these when you are working with the features of C++/CLI.

Windows Programming Concepts
Our approach to Windows programming is to use all the tools that Visual C++ 2008 provides. The project
creation facilities that are provided with Visual C++ 2008 can generate skeleton code for a wide variety of
native C++ application programs automatically, including basic Windows programs. For Windows applica-
tions that you develop for the CLR you get even more automatic code generation. You can create complete
applications using Windows Forms that only require a small amount of customizing code to be written by
you and sometimes no additional code at all. Creating a project is the starting point for all applications and
components that you develop with Visual C++ 2008, and to get a flavor of how this works, you’ll look at
the mechanics of creating some examples, including an outline Windows program, later in this chapter.

A Windows program, whether a native C++ program or a program written for the CLR, has a different
structure from that of the typical console program you execute from the command line, and it’s more
complicated. In a console program, you can get input from the keyboard and write output back to the
command line directly, whereas a Windows program can access the input and output facilities of the
computer only by way of functions supplied by the host environment; no direct access to the hardware
resources is permitted. Because several programs can be active at one time under Windows, Windows
has to determine which application a given raw input such as a mouse click or the pressing of a key on
the keyboard is destined for and signal the program concerned accordingly. Thus the Windows operat-
ing system has primary control of all communications with the user.

Also, the nature of the interface between a user and a Windows application is such that a wide range of
different inputs is usually possible at any given time. A user may select any of a number of menu options,
click a toolbar button, or click the mouse somewhere in the application window. A well-designed Windows
application has to be prepared to deal with any of the possible types of input at any time because there
is no way of knowing in advance which type of input is going to occur. These user actions are received
by the operating system in the first instance and are all regarded by Windows as events. An event that
originates with the user interface for your application will typically result in a particular piece of your
program code being executed. How program execution proceeds is therefore determined by the sequence
of user actions. Programs that operate in this way are referred to as event-driven programs and are differ-
ent from traditional procedural programs that have a single order of execution. Input to a procedural
program is controlled by the program code and can occur only when the program permits it; therefore, a
Windows program consists primarily of pieces of code that respond to events caused by the action of the
user, or by Windows itself. This sort of program structure is illustrated in Figure 1-2.

7

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 7



Figure 1-2

Each square block in Figure 1-2 represents a piece of code written specifically to deal with a particular
event. The program may appear to be somewhat fragmented because of the number of disjointed blocks
of code, but the primary factor welding the program into a whole is the Windows operating system itself.
You can think of your program as customizing Windows to provide a particular set of capabilities. 

Of course, the modules servicing various external events, such as selecting a menu or clicking the mouse,
all typically have access to a common set of application-specific data in a particular program. This appli-
cation data contains information that relates to what the program is about — for example, blocks of text in
an editor or player scoring records in a program aimed at tracking how your baseball team is doing —
as well as information about some of the events that have occurred during execution of the program.
This shared collection of data allows various parts of the program that look independent to communi-
cate and operate in a coordinated and integrated fashion. I will go into this in much more detail later
in the book.

Keyboard
Input

Press Left
Mouse
Button

Press Right
Mouse
Button

Process
Keyboard

Input

Process
Left Mouse

Button

Process
Right

Mouse
Button

WINDOWS

Program Data

Your Program

Events:

8

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 8



Even an elementary Windows program involves several lines of code, and with Windows programs that are
generated by the Application Wizards that come with Visual C++ 2008, “several” turns out to be “many.” To
simplify process of understanding how C++ works, you need a context that is as uncomplicated as possible.
Fortunately, Visual C++ 2008 comes with an environment that is ready-made for the purpose.

What Is the Integrated 
Development Environment?

The Integrated Development Environment (IDE) that comes with Visual C++ 2008 is a completely self-
contained environment for creating, compiling, linking, and testing your C++ programs. It also happens
to be a great environment in which to learn C++ (particularly when combined with a great book).

Visual C++ 2008 incorporates a range of fully integrated tools designed to make the whole process of writ-
ing C++ programs easy. You will see something of these in this chapter, but rather than grind through a
boring litany of features and options in the abstract, first take a look at the basics to get a view of how the
IDE works and then pick up the rest in context as you go along.

Components of the System
The fundamental parts of Visual C++ 2008, provided as part of the IDE, are the editor, the compiler, the
linker, and the libraries. These are the basic tools that are essential to writing and executing a C++ pro-
gram. Their functions are as follows.

The Editor
The editor provides an interactive environment for you to create and edit C++ source code. As well as
the usual facilities, such as cut and paste, which you are certainly already familiar with, the editor also
provides color cues to differentiate between various language elements. The editor automatically recog-
nizes fundamental words in the C++ language and assigns a color to them according to what they are.
This not only helps to make your code more readable but also provides a clear indicator of when you
make errors in keying such words.

The Compiler
The compiler converts your source code into object code, and detects and reports errors in the compilation
process. The compiler can detect a wide range of errors that are due to invalid or unrecognized program
code, as well as structural errors, where, for example, part of a program can never be executed. The object
code output from the compiler is stored in files called object files. There are two types of object code that
the compiler produces. These object codes usually have names with the extension .obj.

The Linker
The linker combines the various modules generated by the compiler from source code files, adds required
code modules from program libraries supplied as part of C++, and welds everything into an executable
whole. The linker can also detect and report errors — for example, if part of your program is missing or a
non-existent library component is referenced.

9

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 9



The Libraries
A library is simply a collection of pre-written routines that supports and extends the C++ language
by providing standard professionally produced code units that you can incorporate into your pro-
grams to carry out common operations. The operations that are implemented by routines in the 
various libraries provided by Visual C++ 2008 greatly enhance productivity by saving you the effort 
of writing and testing the code for such operations yourself. I have already mentioned the .NET
Framework library, and there are a number of others — too many to enumerate here — but I’ll 
mention the most important ones.

The Standard C++ Library defines a basic set of routines common to all ISO/ANSI C++ compilers. It
contains a wide range of routines including numerical functions such as calculating square roots and
evaluating trigonometrical functions, character and string processing routines such as classifying char-
acters and comparing character strings, and many others. You’ll get to know quite a number of these
as you develop your knowledge of ISO/ANSI C++. There are also libraries that support the C++/CLI
extensions to ISO/ANSI C++.

Native window-based applications are supported by a library called the Microsoft Foundation Classes
(MFC). The MFC greatly reduces the effort needed to build the graphical user interface for an application.
You’ll see a lot more of the MFC when you finish exploring the nuances of the C++ language. Another
library contains a set of facilities called Windows Forms that are roughly the equivalent of the MFC for
window-based applications that are executed with the .NET Framework. You’ll be seeing how you make
use of Windows Forms to develop applications, too. 

Using the IDE
All program development and execution in this book is performed from within the IDE. When you start
Visual C++ 2008, notice an application window similar to that shown in Figure 1-3.

Figure 1-3 shows the Visual Studio 2008 windows using the Classic theme. If you are not using 
the Windows Classic theme, your window will look different, especially if you have Windows Vista
installed. All the screen images in the book use the Windows Classic theme for commonality between
Vista and XP, and if you want to make the windows display the same on your machine, follow the
instructions in the “Using the Windows Classic Theme” section in the Introduction.

The window to the left in Figure 1-3 is the Solution Explorer window, the top-right window presently
showing the Start page is the Editor window, and the tab visible in the window at the bottom is the
Code Definition window. The Solution Explorer window enables you to navigate through your pro-
gram files and display their contents in the Editor window and to add new files to your program. The
Solution Explorer window has an additional tab (only three are shown in Figure 1-3) that displays the
Resource View for your application, and you can select which tabs are to be displayed from the View
menu. The Editor window is where you enter and modify source code and other components of your
application. The Code Definition window displays the definition of a symbol selected in the Editor win-
dow. There are two tabs displayed alongside the Code Definition tab, the Call Browser window that
enables you to search your code for function calls, and the Output window that displays messages that
result from compiling and linking your program.

10

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 10



Figure 1-3

Toolbar Options
You can choose which toolbars are displayed in your Visual C++ window by right-clicking in the toolbar
area. A pop-up menu with a list of toolbars (Figure 1-4) appears, and the toolbars that are currently dis-
played have check marks alongside.

This is where you decide which toolbars are visible at any one time. You can make your set of tool-
bars the same as those shown in Figure 1-3 by making sure the Build, Class Designer, Debug,
Standard, and View Designer menu items are checked. Clicking in the gray area to the left of a 
toolbar checks it if it is unchecked and results in it being displayed; clicking a check mark hides the
corresponding toolbar.

You don’t need to clutter up the application window with all the toolbars you think you might need at
some time. Some toolbars appear automatically when required, so you’ll probably find that the default
toolbar selections are perfectly adequate most of the time. As you develop your applications, from time
to time you might think it would be more convenient to have access to toolbars that aren’t displayed.
You can change the set of toolbars that are visible whenever it suits you by right-clicking in the toolbar
area and choosing from the context menu.

11

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 11



Figure 1-4

Similar to many other Windows applications, the toolbars that make up Visual C++ 2008 come 
complete with tooltips. Just let the mouse pointer linger over a toolbar button for a second or two 
and a white label displays the function of that button.

Dockable Toolbars
A dockable toolbar is one that you can drag around with the mouse to position at a convenient place 
in the window. When it is placed in any of the four borders of the application, it is said to be docked and
looks similar to the toolbars you see at the top of the application window. The toolbar on the upper line
of toolbar buttons that contains the disk icons and the text box to the right of a pair of binoculars is the
Standard toolbar. You can drag this away from the toolbar by placing the cursor on it and dragging it
with the mouse while you hold down the left mouse button. It then appears as a separate window you
can position anywhere.

If you drag any dockable toolbar away from its docked position, it looks like the Standard toolbar you see
in Figure 1-5, enclosed in a little window — with a different caption. In this state, it is called a floating tool-
bar. All the toolbars that you see in Figure 1-3 are dockable and can be floating, so you can experiment with
dragging any of them around. You can position them in docked positions where they revert to their normal
toolbar appearance. You can dock a dockable toolbar at any side of the main window.

12

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 12



Figure 1-5

You’ll become familiar with many of the toolbar icons that Visual C++ 2008 uses from other Windows
applications, but you may not appreciate exactly what these icons do in the context of Visual C++, so I’ll
describe them as we use them.

Because you’ll use a new project for every program you develop, looking at what exactly a project is and
understanding how the mechanism for defining a project works is a good place to start finding out about
Visual C++ 2008.

Documentation
There will be plenty of occasions when you’ll want to find out more information about Visual C++ 2008.
The Microsoft Development Network (MSDN) Library provides comprehensive reference material on
all the capabilities on Visual C++ 2008 and more besides. When you install Visual C++ 2008 onto your
machine, there is an option to install part or all of the MSDN documentation. If you have the disk space
available I strongly recommend that you install the MSDN Library.

Press the F1 function to browse the MSDN Library. The Help menu also provides various routes into the
documentation. As well as offering reference documentation, the MSDN Library is a useful tool when
dealing with errors in your code, as you’ll see later in this chapter.

Projects and Solutions
A project is a container for all the things that make up a program of some kind — it might be a console
program, a window-based program, or some other kind of program — and it usually consists of one or
more source files containing your code plus possibly other files containing auxiliary data. All the files
for a project are stored in the project folder and detailed information about the project is stored in an
XML file with the extension .vcproj that is also in the project folder. The project folder also contains
other folders that are used to store the output from compiling and linking your project.

The idea of a solution is expressed by its name, in that it is a mechanism for bringing together all the pro-
grams and other resources that represent a solution to a particular data processing problem. For example, 
a distributed order entry system for a business operation might be composed of several different programs
that could each be developed as a project within a single solution; therefore, a solution is a folder in which
all the information relating to one or more projects is stored, so one or more project folders are subfolders
of the solution folder. Information about the projects in a solution is stored in two files with the extensions
.sln and .suo. When you create a project, a new solution is created automatically unless you elect to add
the project to an existing solution. 

When you create a project along with a solution, you can add further projects to the same solution. You
can add any kind of project to an existing solution, but you would usually add only a project that was
related in some way to the existing project or projects in the solution. Generally, unless you have a good

13

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 13



reason to do otherwise, each of your projects should have its own solution. Each example you create with
this book will be a single project within its own solution.

Defining a Project
The first step in writing a Visual C++ 2008 program is to create a project for it using the File > New >
Project menu option from the main menu or you can press Ctrl+Shift+N; you can also simply click
Project... adjacent to Create: in the Recent Projects pane. As well as containing files that define all the
code and any other data that goes to make up your program, the project XML file in the project folder
also records the Visual C++ 2008 options you’re using. Although you don’t need to concern yourself
with the project file — it is entirely maintained by the IDE — you can browse it if you want to see what
the contents are, but take care not to modify it accidentally. 

That’s enough introductory stuff for the moment. It’s time to get your hands dirty.

Try It Out Creating a Project for a Win32 Console Application
You’ll now take a look at creating a project for a console application. First select File > New > Project
or use one of the other possibilities mentioned earlier to bring up the New Project dialog box, shown in
Figure 1-6.

Figure 1-6

The left pane in the New Project dialog box displays the types of projects you can create; in this case,
click Win32. This also identifies an Application Wizard that creates the initial contents for the project.
The right pane displays a list of templates available for the project type you have selected in the left
pane. The template you select is used by the Application Wizard when creating the files that make 
up the project. In the next dialog box, you have an opportunity to customize the files that are created

14

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 14



when you click the OK button in this dialog box. For most of the type/template options, a basic set of
program source modules are created automatically.

You can now enter a suitable name for your project by typing into the Name: edit box — for example, you
could call this one Ex1_01, or you can choose your own project name. Visual C++ 2008 supports long file
names, so you have a lot of flexibility. The name of the solution folder appears in the bottom edit box and,
by default, the solution folder has the same name as the project. You can change this if you want. The dia-
log box also allows you to modify the location for the solution that contains your project — this appears in
the Location: edit box. If you simply enter a name for your project, the solution folder is automatically
set to a folder with that name, with the path shown in the Location: edit box. By default the solution
folder is created for you if it doesn’t already exist. If you want to specify a different path for the solution
folder, just enter it in the Location: edit box. Alternatively, you can use the Browse button to select
another path for your solution. Clicking the OK button displays the Win32 Application Wizard dialog
box shown in Figure 1-7.

Figure 1-7

This dialog box explains the settings currently in effect. If you click the Finish button, the wizard cre-
ates all the project files based on this. In this case you can click Application Settings on the left to
display the Application Settings page of the wizard shown in Figure 1-8.

The Application Settings page allows you to choose options that you want to apply to the project.
For most of the projects you’ll be creating when you are learning the C++ language, you select the Empty
project checkbox, but here you can leave things as they are and click the Finish button. The Application
Wizard then creates the project with all the default files.

15

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:35 AM  Page 15



Figure 1-8

The project folder will have the name that you supplied as the project name and will hold all the files
making up the project definition. If you didn’t change it, the solution folder has the same name as the
project folder and contains the project folder plus the files defining the contents of the solution. If you
use Windows Explorer to inspect the contents of the solution folder, you’ll see that it contains three files:

❑ A file with the extension .sln that records information about the projects in the solution.

❑ A file with the extension .suo in which user options that apply to the solution will be recorded.

❑ A file with the extension .ncb that records data about Intellisense for the solution. Intellisense
is the facility that provides auto-completion and prompting for code in the Editor window as
you enter it.

If you use Windows Explorer to look in the project folder, notice there are seven files initially, including 
a file with the name ReadMe.txt that contains a summary of the contents of the files that have been
created for the project. The project you have created will automatically open in Visual C++ 2008 with
the left pane as in Figure 1-9. I have increased the width of this pane so that you can see the complete
names on the tabs.

The Solution Explorer tab presents a view of all the projects in the current solution and the files they con-
tain — here there is just one project of course. You can display the contents of any file as an additional tab
in the Editor pane just by double-clicking in name in the Solution Explorer tab. In the Replace with Editor
pane you can switch instantly between any of the files that have been displayed just by clicking on the
appropriate tab.

16

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 16



Figure 1-9

The Class View tab displays the classes defined in your project and also shows the contents of each class.
You don’t have any classes in this application, so the view is empty. When we discuss classes, you will see
that you can use the Class View tab to move around the code relating to the definition and implementa-
tion of all your application classes quickly and easily.

The Property Manager tab shows the properties that have been set for the Debug and Release versions
of your project. I’ll explain these versions a little later in this chapter. You can change any of the prop-
erties shown by right-clicking a property and selecting Properties from the context menu; this displays
a dialog box where you can set the project property. You can also press Alt+F7 to display the proper-
ties dialog box at any time; I’ll also discuss this in more detail when we go into the Debug and Release
versions of a program.

The Resource View shows the dialog boxes, icons, menus toolbars, and other resources that are used by
the program. Because this is a console program, no resources are used; however, when you start writing
Windows applications, you’ll see a lot of things here. Through this tab you can edit or add to the resources
available to the project.

Like most elements of the Visual C++ 2008 IDE, the Solution Explorer and other tabs provide context-
sensitive pop-up menus when you right-click items displayed in the tab and in some cases in the empty
space in the tab, too. If you find that the Solution Explorer pane gets in your way when writing code,
you can hide it by clicking the Autohide icon. To redisplay it, click the name tab on the left of the IDE
window.

Modifying the Source Code
The Application Wizard generates a complete Win32 console program that you can compile and execute.
Unfortunately, the program doesn’t do anything as it stands, so to make it a little more interesting you
need to change it. If it is not already visible in the Editor pane, double-click Ex1_01.cpp in the Solution

17

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 17



Explorer pane. This file is the main source file for the program that the Application Wizard generated
and it looks like that shown in Figure 1-10.

Figure 1-10

If the line numbers are not displayed on your system, select Tools > Options from the main menu to
display the Options dialog box. If you extend the C/C++ option in the TextEditor subtree in the right
pane and select General from the extended tree, you can select Line Numbers in the right pane of the
dialog box. I’ll first give you a rough guide to what this code in Figure 1-10 does, and you’ll see more
on all of these later. 

The first two lines are just comments. Anything following “//” in a line is ignored by the compiler. When
you want to add descriptive comments in a line, precede your text by “//”. 

Line 4 is an #include directive that adds the contents of the file stdafx.h to this file in place of this
#include directive. This is the standard way of adding the contents of .h source files to a .cpp source
file a in a C++ program. 

Line 7 is the first line of the executable code in this file and the beginning of the function _tmain(). A
function is simply a named unit of executable code in a C++ program; every C++ program consists of at
least one — and usually many more — functions.

Lines 8 and 10 contain left and right braces, respectively, that enclose all the executable code in the function
_tmain(). The executable code is, therefore, just the single line 10 and all this does is end the program.

Now you can add the following two lines of code in the Editor window:

// Ex1_01.cpp : Defines the entry point for the console application.
//

#include “stdafx.h”
#include <iostream>

18

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 18



int _tmain(int argc, _TCHAR* argv[])
{
std::cout << “Hello world!\n”;
return 0;

} 

The unshaded lines are the ones generated for you. The new lines you should add are shown shaded. To
introduce each new line, place the cursor at the end on the text on the preceding line and press Enter to
create an empty line in which you can type the new code. Make sure it is exactly as shown in the preced-
ing example; otherwise, the program may not compile.

The first new line is an #include directive that adds the contents of one of the standard libraries for
ISO/ANSI C++ to the source file. The <iostream> library defines facilities for basic I/O operations, and
the one you are using in the second line that you added writes output to the command line. std::cout
is the name of the standard output stream and you write the string “Hello world!\n” to std::cout in
the second addition statement. Whatever appears between the pair of double quote characters is written
to the command line.

Building the Solution
To build the solution, press F7 or select the Build > Build Solution menu item. Alternatively, you
can click the toolbar button corresponding to this menu item. The toolbar buttons for the Build menu
may not display, but you can easily fix this by right-clicking in the toolbar area and selecting the Build
toolbar from those in the list. The program should then compile successfully. If there are errors, ensure
that you didn’t make an error while entering the new code, so check the two new lines very carefully.

Files Created by Building a Console Application
After the example has been built without error, take a look in the project folder by using Windows Explorer
to see a new subfolder to the solution folder Ex1_01 called Debug. This folder contains the output of the
build you just performed on the project. Notice that this folder contains three files.

Other than the .exe file, which is your program in executable form, you don’t need to know much about
what’s in these files. In case you’re curious, however, the .ilk file is used by the linker when you rebuild
your project. It enables the linker to incrementally link the object files produced from the modified source
code into the existing .exe file. This avoids the need to re-link everything each time you change your
program, and the .pdb file contains debugging information that is used when you execute the program
in debug mode. In this mode, you can dynamically inspect information that is generated during program
execution.

There’s a Debug subdirectory to the Ex1_01 project file, too. This contains ten more files that were created
during the build process and you can see what kind of information they contain from the Type description
in Windows Explorer.

19

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 19



Debug and Release Versions of Your Program
You can set a range of options for a project through the Project > Ex1_01 Properties menu item.
These options determine how your source code is processed during the compile and link stages. The set 
of options that produces a particular executable version of your program is called a configuration. When
you create a new project workspace, Visual C++ 2008 automatically creates configurations for producing
two versions of your application. One version, called the Debug version, includes information that helps
you debug the program. With the Debug version of your program you can step through the code when
things go wrong, checking on the data values in the program. The other, called the Release version, has
no debug information included and has the code optimization options for the compiler turned on to
provide you with the most efficient executable module. These two configurations are sufficient for your
needs throughout this book, but when you need to add other configurations for an application, you can
do so through the Build > Configuration Manager menu. Note that this menu item won’t appear if
you haven’t got a project loaded. This is obviously not a problem, but might be confusing if you’re just
browsing through the menus to see what’s there.

You can choose which configuration of your program to work with by selecting the configuration from
the Active solution configuration drop-down list in the Configuration Manager dialog box, 
as shown in Figure 1-11.

Figure 1-11

Select the configuration you want to work with from the list and then click the Close button. While
you’re developing an application, you’ll work with the debug configuration. After your application has
been tested using the debug configuration and appears to be working correctly, you typically rebuild
the program as a release version; this produces optimized code without the debug and trace capability,
so the program runs faster and occupies less memory.

Executing the Program
After you have successfully compiled the solution, you can execute your program by pressing Ctrl+F5.
You should see the window shown in Figure 1-12.

20

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 20



Figure 1-12

As you see, you get the text that was between the double quotes written to the command line. The “\n”
that appeared at the end of the text string is a special sequence called an escape sequence that denotes 
a newline character. Escape sequences are used to represent characters in a text string that you cannot
enter directly from the keyboard.

Try It Out Creating an Empty Console Project
The previous project contained a certain amount of excess baggage that you don’t need when working
with simple C++ language examples. The precompiled headers option chosen by default resulted in the
stdafx.h file being created in the project. This is a mechanism for making the compilation process more
efficient when there are a lot of files in a program but this won’t be necessary for many of our examples.
In these instances you start with an empty project to which you can add your own source files. You can
see how this works by creating a new project in a new solution for a Win32 console program with the
name Ex1_02. After you have entered the project name and clicked the OK button, click Applications
Settings on the right side of the dialog box that follows. You can then select Empty project from the
additional options, as Figure 1-13 shows.

Figure 1-13

21

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 21



When you click the Finish button, the project is created as before, but this time without any source files.

Next you add a new source file to the project. Right-click the Solution Explorer pane and then select Add >
New Item from the context menu. A dialog box displays; click Code in the left pane, and C++ File(.cpp)
in the right pane. Enter the file name as Ex1_02, as shown in Figure 1-14.

Figure 1-14

When you click the Add button, the new file is added to the project and is displayed in the Editor window.
Of course, the file is empty so nothing will be displayed; enter the following code in the Editor window:

// Ex1_02.cpp A simple console program
#include <iostream>                    // Basic input and output library

int main()
{
std::cout << “This is a simple program that outputs some text.” << std::endl;
std::cout << “You can output more lines of text” << std::endl;
std::cout << “just by repeating the output statement like this.” << std::endl;
return 0;                            // Return to the operating system

}

Note the automatic indenting that occurs as you type the code. C++ uses indenting to make programs
more readable, and the editor automatically indents each line of code that you enter, based on what was
in the previous line. You can also see the syntax color highlighting in action as you type. Some elements
of the program are shown in different colors as the editor automatically assigns colors to language ele-
ments depending on what they are.

The preceding code is the complete program. You probably noticed a couple of differences compared to
the code generated by the Application Wizard in the previous example. There’s no #include directive
for the stdafx.h file. You don’t have this file as part of the project here because you are not using the

22

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 22



precompiled headers facility. The name of the function here is main; before it was _tmain. In fact all
ISO/ANSI C++ programs start execution in a function called main(). Microsoft also provides for this
function to be called wmain when Unicode characters are used and the name _tmain is defined to be
either main or wmain, depending on whether or not the program is going to use Unicode characters. For
the previous example, the name _tmain is defined behind the scenes to be main. You use the name main
in all the ISO/ANSI C++ examples.

The output statements are a little different. The first statement in main() is:

std::cout << “This is a simple program that outputs some text.” << std::endl;

You have two occurrences of the << operator, and each one sends whatever follows to std::cout,
which is the standard output stream. First the string between double quotes is sent to the stream and
then std::endl where std::endl is defined in the standard library as a newline character. Earlier you
used the escape sequence \n for a newline character within a string between double quotes. You could
have written the preceding statement as:

std::cout << “This is a simple program that outputs some text.\n”;

I should explain why the line is shaded, where the previous line of code is not. Where I repeat a line of code
for explanation purposes I show it unshaded. The preceding line of code is new and does not appear earlier
so I have shown it shaded.

You can now build this project in the same way as the previous example. Note that any open source files
in the Editor pane are saved automatically if you have not already saved them. When you have compiled
the program successfully, press Ctrl+F5 to execute it. The window shown in Figure 1-15 displays.

Figure 1-15

Dealing with Errors
Of course, if you didn’t type the program correctly, you get errors reported. To show how this works,
you could deliberately introduce an error into the program. If you already have errors of your own, you
can use those to perform this exercise. Go back to the Editor pane and delete the semicolon at the end of
the second-to-last line between the braces (line 8); then rebuild the source file. The Output pane at the
bottom of the application window includes the error message:

C2143: syntax error : missing ‘;’ before ‘return’

Every error message during compilation has an error number that you can look up in the documentation.
Here, the problem is obvious; however, in more obscure cases, the documentation may help you figure
out what is causing the error. To get the documentation on an error, click the line in the Output pane that

23

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 23



contains the error number and then press F1. A new window displays containing further information
about the error. You can try it with this simple error, if you like.

When you have corrected the error, you can then rebuild the project. The build operation works efficiently
because the project definition keeps track of the status of the files making up the project. During a normal
build, Visual C++ 2008 recompiles only the files that have changed since the program was last compiled
or built. This means that if your project has several source files and you’ve edited only one of the files
since the project was last built, only that file is recompiled before linking to create a new .exe file.

You’ll also use CLR console programs, so the next section shows you what a CLR console project looks like.

Try It Out Creating a CLR Console Project
Press Ctrl+Shift+N to display the New Project dialog box; then select the project type as CLR and the
template as CLR Console Application, as shown in Figure 1-16.

Figure 1-16

Enter the name as Ex1_03. When you click the OK button, the files for the project are created. There are
no options for a CLR console project, so you always start with the same set of files in a project with this
template. If you want an empty project — something you won’t need with this book — there’s a separate
template for this.

If you look at the Solution Explorer pane shown in Figure 1-17, you see there are some extra files
compared to a Win32 console project.

There are a couple of files in the virtual Resource Files folder. The .ico file stores an icon for the application
that is displayed when the program is minimized; the .rc file records the resources for the application —
just the icon in this case.

24

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 24



Figure 1-17

There is also a file with the name AssemblyInfo.cpp. Every CLR program consists of one or more
assemblies where an assembly is a collection of code and resources that form a functional unit. An
assembly also contains extensive data for the CLR; there are specifications of the data types that are
being used, versioning information about the code, and information that determines if the contents of
the assembly can be accessed from another assembly. In short, an assembly is a fundamental building
block in all CLR programs. 

If the source code in the Ex1_03.cpp file is not displayed in the Editor window, double-click the file
name in the Solution Explorer pane. It should look like Figure 1-18.

Figure 1-18

It has the same #include directive as the default native C++ console program because CLR programs
use precompiled headers for efficiency. The next line is new:

using namespace System;

The .NET library facilities are all defined within a namespace, and all the standard sort of stuff you are
likely to use is in a namespace with the name System. This statement indicates the program code that
follows uses the System namespace, but what exactly is a namespace? 

25

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 25



A namespace is a very simple concept. Within your program code and within the code that forms the .NET
libraries, names have to be given to lots of things — data types, variables, and blocks of code called func-
tions all have to have names. The problem is that if you happen to invent a name that is already used in the
library, there’s potential for confusion. A namespace provides a way of getting around this problem. All the
names in the library code that is defined within the System namespace are implicitly prefixed with the
namespace name. So, a name such as String in the library is really System::String. This means that if
you have inadvertently used the name String for something in your code, you can use System::String
to refer String from the .NET library. 

The two colons — :: — are an operator called the scope resolution operator. Here the scope resolu-
tion operator separates the namespace name System from the type name String. You have seen this in
the native C++ examples earlier in this chapter with std::cout and std::endl. This is the same story —
std is the namespace name for native C++ libraries, and cout and endl are the names that have been
defined within the std namespace to represent the standard output stream and the newline character,
respectively. 

In fact, the using namespace statement in the example allows you to use any name from the System
namespace without having to use the namespace name as a prefix. If you did end up with a name conflict
between a name you have defined and a name in the library, you could resolve the problem by removing
the using namespace statement and explicitly qualifying the name from the library with the namespace
name. You learn more about namespaces in Chapter 2.

You can compile and execute the program by pressing Ctrl+F5. The output is as shown in Figure 1-19.

Figure 1-19

The output is similar to that from the first example. This output is produced by the line:

Console::WriteLine(L”Hello World”);

This uses a .NET library function to write the information between the double quotes to the command
line, so this is the CLR equivalent of the native C++ statement that you added to Ex1_01:

std::cout << “Hello world!\n”;

It is more immediately apparent what the CLR statement does than the native C++ statement.

Setting Options in Visual C++ 2008
There are two sets of options you can set. You can set options that apply to the tools provided by Visual
C++ 2008, which apply in every project context. Also, you can set options that are specific to a project
and determine how the project code is to be processed when it is compiled and linked. Options are set
through the Options dialog box that’s displayed when you select Tools > Options from the main menu.
The Options dialog box is shown in Figure 1-20.

26

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 26



Clicking the plus sign (+) for any of the items in the left pane displays a list of subtopics. Figure 1-20 shows
the options for the General subtopic under Projects and Solutions. The right pane displays the
options you can set for the topic you have selected in the left pane. You should concern yourself with only a
few of these at this time, but you’ll find it useful to spend a little time browsing the range of options avail-
able to you. Clicking the Help button (with the ?) at the top right of the dialog box displays an explanation
of the current options.

You probably want to choose a path to use as a default when you create a new project, and you can do
this through the first option shown in Figure 1-20. Just set the path to the location where you want your
projects and solutions stored.

You can set options that apply to every C++ project by selecting the Projects and Solutions > VC++
Project Settings topic in the left pane. You can also set options specific to the current project through
the Project > Properties menu item in the main menu. This menu item label is tailored to reflect the
name of the current project.

Figure 1-20

Creating and Executing Windows Applications
Just to show how easy it’s going to be, you can now create two working Windows applications. You’ll 
create a native C++ application using MFC and then you’ll create a Windows Forms application that runs
with the CLR. I’ll defer discussion of the programs that you generate until I’ve covered the necessary
ground for you to understand it in detail. You will see, though, that the processes are straightforward.

Creating an MFC Application
To start with, if an existing project is active — as indicated by the project name appearing in the title bar of
the Visual C++ 2008 main window — you can select Close Solution from the File menu. Alternatively,
you can create a new project and have the current solution closed automatically.

To create the Windows program select New > Project from the File menu or press Ctrl+Shift+N;
then choose the project type as MFC and select MFC Application as the project template. You can then
enter the project name as Ex1_04, as shown in Figure 1-21.

27

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 27



When you click the OK button, the MFC Application Wizard dialog box is displayed. The dialog box
has a range of options that let you choose which features you’d like to have included in your application.
These are identified by the items in the list on the right of the dialog box, as Figure 1-22 shows. You’ll get
to use many of these in examples later on.

Figure 1-21

Figure 1-22

28

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 28



You can ignore all these options in this instance and just accept the default settings, so click the Finish
button to create the project with the default settings. The Solution Explorer pane in the IDE window looks
like Figure 1-23.

Figure 1-23

Note that I have hidden the Property Manager tab by right-clicking it and selecting Hide, so it doesn’t
appear in Figure 1-23. The list shows a large number of files that have been created. You need plenty
of space on your hard drive when writing Windows programs! The files with the extension .cpp con-
tain executable C++ source code, and the .h files contain C++ code consisting of definitions that are
used by the executable code. The .ico files contain icons. The files are grouped into the subfolders
you can see for ease of access. These aren’t real folders, though, and they won’t appear in the project
folder on your disk.

If you now take a look at the Ex1_04 solution folder using Windows Explorer or whatever else you may
have handy for looking at the files on your hard disk, notice that you have generated a total of 26 files.
Three of these are in the solution folder, a further 19 are in the project folder and four more are in a sub-
folder, res, to the project folder. The files in the res subfolder contain the resources used by the pro-
gram — such as the menus and icons used in the program. You get all this as a result of just entering 
the name you want to assign to the project. You can see why, with so many files and file names being
created automatically, a separate directory for each project becomes more than just a good idea.

One of the files in the Ex1_04 project directory is ReadMe.txt, and this provides an explanation of the
purpose of each of the files that the MFC Application Wizard has generated. You can take a look at it if
you want, using Notepad, WordPad, or even the Visual C++ 2008 editor. To view it in the Editor window,
double-click it in the Solution Explorer pane.

29

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 29



Building and Executing the MFC Application
Before you can execute the program, you have to build the project — meaning, compile the source code
and link the program modules. You do this in exactly the same way that you did with the console applica-
tion example. To save time, press Ctrl+F5 to get the project built and then executed in a single operation.

After the project has been built, the Output window indicates that there are no errors and the executable
starts running. The window for the program you’ve generated is shown in Figure 1-24.

Figure 1-24

As you see, the window is complete with menus and a toolbar. Although there is no specific functionality
in the program — that’s what you need to add to make it your program — all the menus work. You can try
them out. You can even create further windows by selecting New from the File menu.

I think you’ll agree that creating a Windows program with the MFC Application Wizard hasn’t stressed
too many brain cells. You’ll need to get a few more ticking away when you come to developing the basic
program you have here into a program that does something more interesting, but it won’t be that hard.
Certainly, for many people, writing a serious Windows program the old-fashioned way, without the aid
of Visual C++ 2008, required at least a couple of months on a fish diet before making the attempt. That’s
why so many programmers used to eat sushi. That’s all gone now with Visual C++ 2008. You never know,
however, what’s around the corner in programming technology. If you like sushi, it’s best to continue with
it to be on the safe side.

Creating a Windows Forms Application
This is a job for another Application Wizard. So create yet another new project, but this time select the type
as CLR in the left pane of the New Project dialog box and the template as Windows Forms Application.
You can then enter the project name as Ex1_05, as shown in Figure 1-25.

There are no options to choose from in this case, so click the OK button to create the project.

The Solution Explorer pane in Figure 1-26 shows the files that have been generated for this project.

30

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 30



Figure 1-25

Figure 1-26

There are considerably fewer files in this project — if you look in the directories, you’ll see there are a total
of 15 including the solution files. One reason for this is the initial GUI is much simpler than the native C++
application using MFC. The Windows Forms application has no menus or toolbars, and there is only one
window. Of course, you can add all these things quite easily, but the wizard for a Windows Forms applica-
tion does not assume you want them from the start.

The Editor window looks rather different as Figure 1-27 shows.

31

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  9:36 AM  Page 31



Figure 1-27

The Editor window shows an image of the application window rather than code. The reason for this is
that developing the GUI for a Windows Forms is oriented towards a graphical design approach rather
than a coding approach. You add GUI components to the application window by dragging or placing
them there graphically, and Visual C++ 2008 automatically generates the code to display them. If you
press Ctrl+Alt+X or select View > Toolbox, you’ll see an additional window displayed showing a
list of GUI components as in Figure 1-28.

Figure 1-28

32

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 32



The Toolbox window presents a list of standard components that you can add to a Windows Forms
application. You can try adding some buttons to the window for Ex1_05. Click Button in the Toolbox
window list and then click in the client area of the Ex1_05 application window that is displayed in the
Editor window where you want the button to be placed. You can adjust the size of the button by drag-
ging its borders, and you can reposition the button by dragging it around. You can also change the cap-
tion just by typing — try entering Start on the keyboard and then press Enter. The caption changes
and along the way another window displays, showing the properties for the button. I won’t go into
these now, but essentially these are the specifications that affect the appearance of the button, and you
can change these to suit your application. Try adding another button with the caption Stop, for example.
The Editor window will look like Figure 1-29.

Figure 1-29

You can graphically edit any of the GUI components at any time, and the code adjusts automatically. Try
adding a few other components in the same way and then compile and execute the example by pressing
Ctrl+F5. The application window displays in all its glory. Couldn’t be easier, could it?

Summary
In this chapter, you have run through the basic mechanics of using Visual C++ 2008 to create applications
of various kinds. You created and executed native and CLR console programs, and with the help of the
Application Wizards, you created an MFC-based Windows program and a Windows Forms program that
executes with the CLR. 

The points from this chapter that you should keep in mind are:

❑ The Common Language Runtime (CLR) is the Microsoft implementation of the Common
Language Infrastructure (CLI) standard.

❑ The .NET Framework comprises the CLR plus the .NET libraries that support applications 
targeting the CLR.

33

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 33



❑ Native C++ applications are written the ISO/ANSI C++ language.

❑ Programs written in the C++/CLI language execute with the CLR.

❑ Attributes can provide additional information to the compiler to instruct it to modify or extend
particular programming elements in a program.

❑ A solution is a container for one or more projects that form a solution to an information-processing
problem of some kind.

❑ A project is a container for the code and resource elements that make up a functional unit in a
program.

❑ An assembly is a fundamental unit in a CLR program. All CLR programs are made up of one or
more assemblies.

Starting with the next chapter, you’ll use console applications extensively throughout the first half of 
the book. All the examples illustrating how C++ language elements are used are executed using either
Win32 or CLR console applications. You will return to the Application Wizard for MFC-based programs
and Windows Forms applications as soon as you have finished delving into the secrets of C++.

34

Chapter 1: Programming with Visual C++ 2008

25905c01.qxd:WroxPro  2/21/08  8:36 AM  Page 34



2
Data, Variables, 
and Calculations

In this chapter, you’ll get down to the essentials of programming in C++. By the end of the chapter
you’ll be able to write a simple C++ program of the traditional form: input-process-output. As I said
in the previous chapter, I’ll first discuss the ANSI/ISO C++ language features and then cover any
additional or different aspects of the C++/CLI language.

As you explore aspects of the language using working examples, you’ll have an opportunity to
get some additional practice with the Visual C++ Development Environment. You should create
a project for each of the examples before you build and execute them. Remember that when you
are defining projects in this chapter and the following chapters through to Chapter 11, they are
all console applications.

In this chapter you will learn about:

❑ C++ program structure

❑ Namespaces

❑ Variables in C++

❑ Defining variables and constants

❑ Basic input from the keyboard and output to the screen

❑ Performing arithmetic calculations

❑ Casting operands

❑ Variable scope

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 35



The Structure of a C++ Program
Programs that will run as console applications under Visual C++ 2008 are programs that read data
from the command line and output the results to the command line. To avoid having to dig into the
complexities of creating and managing application windows before you have enough knowledge to
understand how they work, all the examples that you’ll write to understand how the C++ language
works will be console programs, either Win32 console programs or .NET console programs. This will
enable you to focus entirely on the C++ language in the first instance; once you have mastered that,
you’ll be ready to deal with creating and managing application windows. You’ll first look at how 
console programs are structured.

A program in C++ consists of one or more functions. In Chapter 1, you saw an example that was a
Win32 console program consisting simply of the function main(), where main is the name of the func-
tion. Every ANSI/ISO standard C++ program contains the function main(), and all C++ programs of 
any size consist of several functions — the main() function where execution of the program starts, 
plus a number of other functions. A function is simply a self-contained block of code with a unique
name that you invoke for execution by using the name of the function. As you saw in Chapter 1, a
Win32 console program that is generated by the Application Wizard has a main function with the 
name _tmain. This is a programming device to allow the name to be main or wmain depending on
whether or not the program is using Unicode characters. The names wmain and _tmain are Microsoft-
specific. The name for the main function conforming to the ISO/ANSI standard for C++ is main. I’ll 
use the name main for all our ISO/ANSI C++ examples because this is the most portable option. If 
you only intend to compile your code with Microsoft Visual C++, then it is advantageous to use the
Microsoft-specific names for main.

A typical command line program might be structured as shown in Figure 2-1.

Figure 2-1 illustrates that execution of the program shown starts at the beginning of the function
main(). From main(), execution transfers to a function input_names(), which returns execution to the
position immediately following the point where it was called in main(). The sort_names()function is
then called from main(), and, once control returns to main(), the final function output_names() is
called. Eventually, once output has been completed, execution returns once again to main() and the
program ends.

Of course, different programs may have radically different functional structures, but they all start exe-
cution at the beginning of main(). The principal advantage of having a program broken up into func-
tions is that you can write and test each piece separately. There is a further advantage in that functions
written to perform a particular task can be re-used in other programs. The libraries that come with
C++ provide a lot of standard functions that you can use in your programs. They can save you a great
deal of work.

You’ll see more about creating and using functions in Chapter 5.

36

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 36



Figure 2-1

Try It Out A Simple Program
A simple example can help you to understand the elements of a program a little better. Start by creating
a new project — you can use the Ctrl+Shift+N key combination as a shortcut for this. When the dialog
shown in Figure 2-2 appears, select Win32 as the project type and Win32 Console Application as the
template. You can name the project Ex2_01.

int main() 
{ 
 
input_names(); 
 
sort_names(); 
 
output_names(); 
 
return 0; 
 
} 

The return from 
main() goes back 
to the operating  

system 

Execution starts 
with main() 

When a function is called, 
it starts at the beginning 

The return from a function 
goes back to a point following 

where it was called 

void input_names() 
{ 
 // ... 
 
return ; 
 
} 
 

void sort_names() 
{ 
 // ... 
 
return ; 
 
} 
 

void output_names() 
{ 
 // ... 
 
return ; 
 
} 
 

37

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 37



Figure 2-2

If you click the OK button, you’ll see a new dialog in the form shown in Figure 2-3 that shows an overview
of what the Application Wizard will generate.

Figure 2-3

If you now click Application Settings on the left of this dialog, you’ll see further options for a Win32
application displayed, as shown in Figure 2-4.

38

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 38



Figure 2-4

The default setting is a Console application that will include a file containing a default version of main(),
but you’ll start from the most basic project structure, so choose Empty project from the set of additional
options and click the Finish button. Now you have a project created, but it contains no files at all. You can
see what the project contains from the Solution Explorer pane on the left of the Visual C++ 2008 main win-
dow, as shown in Figure 2-5.

Figure 2-5

You’ll start by adding a new source file to the project, so right-click Source Files in the Solution Explorer
pane and select the Add > New Item . . . menu option. The Add New Item dialog, similar to that
shown in Figure 2-6, displays.

Make sure the C++ File(.cpp) template is highlighted by clicking on it and enter the file name, as
shown in Figure 2-6. The file will automatically be given the extension .cpp, so you don’t have to enter
the extension. There is no problem having the name of the file the same as the name of the project. The
project file will have the extension .vcproj so that will differentiate it from the source file.

39

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 39



Figure 2-6

Click the Add button to create the file. You can then type the following code in the Editor pane of the
IDE window:

// Ex2_01.cpp
// A Simple Example of a Program
#include <iostream>

using std::cout;
using std::endl;

int main()
{

int apples, oranges;                     // Declare two integer variables
int fruit;                               // ...then another one

apples = 5; oranges = 6;                 // Set initial values
fruit = apples + oranges;                // Get the total fruit

cout << endl;                            // Start output on a new line
cout << “Oranges are not the only fruit... “ << endl

<< “- and we have “ << fruit << “ fruits in all.”;
cout << endl;                            // Output a new line character

return 0;                                // Exit the program
}

The preceding example is intended to illustrate some of the ways in which you can write C++ state-
ments and is not a model of good programming style.

Since the file is identified by its extension as a file containing C++ code, the keywords in the code that
the editor recognizes will be colored to identify them. You will be able to see if you have entered Int

40

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 40



where you should have entered int, because Int will not have the color used to highlight keywords in
your source code.

If you look at the Solution Explorer pane for your new project, you’ll see the newly created source file.
Solution Explorer will always show all the files in a project. If you click on the Class View tab at the 
bottom of the Solution Explorer pane the Class View will be displayed. This consists of two panes, the
upper pane showing global functions and macros within the project (and classes when you get to create 
a project involving classes) and the lower pane presently empty. The main() function will appear in the
lower pane if you select Global Functions and Variables in the upper Class View pane; this is shown in
Figure 2-7. I’ll consider what this means in more detail later, but essentially globals are functions and/or
variables that are accessible from anywhere in the program.

Figure 2-7

The third tab in Class View is labeled Property Manager and if you click on this and extend the items in
the tree that is displayed by clicking the + signs, it will look like Figure 2-8.

Figure 2-8

This shows the two possible versions you can build, the Debug version for testing and the Release ver-
sion when your program has been tested. The properties for each version of the project are shown, and
double-clicking on any of them will display a dialog showing the Property Pages where you can change
properties if necessary.

You have three ways to compile and link the program; you can select the Build Ex2_01 menu item from
the Build menu, you can press the F7 function key, or you can select the appropriate toolbar button —
you can identify what a toolbar button does by hovering the mouse cursor over it. If there is no toolbar

41

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 41



button that shows the tooltip Build Ex2_01 when the cursor is over it, then the Build toolbar is not cur-
rently displayed. You can remedy this by right-clicking on an empty part of the toolbar area and selecting
Build from the list of toolbars that is displayed. It’s a very long list and you will probably want to choose
different sets of toolbars to be displayed, depending on what you are doing.

Assuming the build operation was successful you can execute the program by pressing the Ctrl+F5
keys or by selecting Start Without Debugging from the Debug menu. You should get the following
output in a command line window:

Oranges are not the only fruit...
- and we have 11 fruits in all.
Press any key to continue . . .

The first two lines were produced by the program, and the last line indicates how you can end the exe-
cution and close the command line window. I won’t show this last line of output from other console
examples but it’s always there.

Program Comments
The first two lines in the program are comments. Comments are an important part of any program, but
they’re not executable code — they are there simply to help the human reader. All comments are ignored
by the compiler. On any line of code, two successive slashes // that are not contained within a text string
(you’ll see what text strings are later) indicate that the rest of the line is a comment.

You can see that several lines of the program contain comments as well as program statements. You can
also use an alternative form of comment bounded by /* and */. For example, the first line of the program
could have been written:

/*   Ex2_01.cpp   */

The comment using // covers only the portion of the line following the two successive slashes, whereas
the /*...*/ form defines whatever is enclosed between the /* and the */ as a comment and can span
several lines. For example, you could write:

/*
Ex2_01.cpp
A Simple Program Example

*/

All four lines are comments. If you want to highlight some particular comment lines, you can always
embellish them with a frame of some description:

/*****************************
*  Ex2-01.cpp               *
*  A Simple Program Example *
*****************************/

As a rule, you should always comment your programs comprehensively. The comments should be suffi-
cient for another programmer or you at a later date to understand the purpose of any particular piece of
code and how it works. I will often use comments in examples to explain in more detail than you would
in a production program.

42

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 42



The #include Directive — Header Files
Following the comments, you have an #include directive:

#include <iostream>

This is called a directive because it directs the compiler to do something — in this case to insert the con-
tents of the file <iostream> into the program source file before compilation. The <iostream> file is
called a header file because it’s usually brought in at the beginning of a program file. The <iostream>
header file contains definitions that are necessary for you to be able to use C++ input and output state-
ments. If you didn’t include the contents of <iostream> into the program, it wouldn’t compile because
you use output statements in the program that depend on some of the definitions in this file. There are
many different header files provided by Visual C++ that cover a wide range of capabilities. You’ll be see-
ing more of them as you progress through the language facilities.

An #include statement is one of several preprocessor directives and I’ll be introducing other preprocessor
directives as you need them throughout the book. The Visual C++ editor recognizes preprocessor directives
and highlights them in blue in your edit window. Preprocessor directives are commands executed by the
preprocessor phase of the compiler that executes before your code is compiled into object code, and pre-
processor directives generally act on your source code in some way before it is compiled. They all start
with the # character.

Namespaces and the Using Declaration
As you saw in Chapter 1, the standard library is an extensive set of routines that have been written to
carry many common tasks: for example, dealing with input and output, performing basic mathematical
calculations. Since there are a very large number of these routines as well as other kinds of things that
have names, it is quite possible that you might accidentally use the same name as one of the names defined
in the standard library for your own purposes. A namespace is a mechanism in C++ for avoiding prob-
lems that can arise when duplicate names are used in a program for different things, and it does this
by associating a given set of names such as those from the standard library with a sort of family name,
which is the namespace name.

Every name that is defined in code that appears within a namespace also has the namespace name associ-
ated with it. All the standard library facilities for ISO/ANSI C++ are defined within a namespace with the
name std, so every item from this standard library that you can access in your program has its own name,
plus the namespace name, std, as a qualifier. The names cout and endl are defined within the standard
library so their full names are std::cout and std::endl, and you saw these in action in Chapter 1. The
two colons that separate the namespace name from the name of an entity form an operator called the
scope resolution operator, and I’ll discuss other uses for this operator later on in the book. Using the full
names in the program will tend to make the code look a bit cluttered, so it would be nice to be able to use
their simple names, unqualified by the namespace name, std. The two lines in our program that follow
the #include directive for <iostream> make this possible:

using std::cout;
using std::endl;

These are using declarations that tell the compiler that you intend to use the names cout and endl from
the namespace std without specifying the namespace name. The compiler will now assume that wherever
you use the name cout in the source file subsequent to the first using declaration, you mean the cout that

43

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 43



is defined in the standard library. The name cout represents the standard output stream that by default
corresponds to the command line and the name endl represents the newline character.

You’ll learn more about namespaces, including how you define your own namespaces, a little later this
chapter.

The main() Function
The function main() in the example consists of the function header defining it as main() plus everything
from the first opening curly brace ({) to the corresponding closing curly brace (}). The braces enclose the
executable statements in the function, which are referred to collectively as the body of the function.

As you’ll see, all functions consist of a header that defines (amongst other things) the function name, fol-
lowed by the function body that consists of a number of program statements enclosed between a pair of
braces. The body of a function may contain no statements at all, in which case it doesn’t do anything.

A function that doesn’t do anything may seem somewhat superfluous, but when you’re writing a large
program, you may map out the complete program structure in functions initially but omit the code for
many of the functions leaving them with empty or minimal bodies. Doing this means that you can com-
pile and execute the whole program with all its functions at any time and add detailed coding for the
functions incrementally.

Program Statements
The program statements making up the function body of main() are each terminated with a semicolon.
It’s the semicolon that marks the end of a statement, not the end of the line. Consequently a statement
can be spread over several lines when this makes the code easier to follow and several statements can
appear in a single line. The program statement is the basic unit in defining what a program does. This is
a bit like a sentence in a paragraph of text, where each sentence stands by itself in expressing an action
or an idea, but relates to and combines with the other sentences in the paragraph in expressing a more
general idea. A statement is a self-contained definition of an action that the computer is to carry out, but
that can be combined with other statements to define a more complex action or calculation.

The action of a function is always expressed by a number of statements, each ending with a semicolon.
Take a quick look at each of the statements in the example just written, just to get a general feel for how
it works. I will discuss each type of statement more fully later in this chapter.

The first statement in the body of the main() function is:

int apples, oranges;           // Declare two integer variables

This statement declares two variables, apples and oranges. A variable is just a named bit of computer
memory that you can use to store data, and a statement that introduces the names of one or more variables
is called a variable declaration. The keyword int in the preceding statement indicates that the variables
with the names apples and oranges are to store values that are whole numbers, or integers. Whenever
you introduce the name of a variable into a program, you always specify what kind of data it will store,
and this is called the type of the variable.

44

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 44



The next statement declares another integer variable, fruit:

int fruit;                               // ...then another one

While you can declare several variables in the same statement, as you did in the preceding statement for
apples and oranges, it is generally a good idea to declare each variable in a separate statement on its
own line as this enables you to comment them individually to explain how you intend to use them.

The next line in the example is:

apples = 5; oranges = 6;       // Set initial values

This line contains two statements, each terminated by a semicolon. I put this here just to demonstrate that
you can put more than one statement in a line. While it isn’t obligatory, it’s generally good programming
practice to write only one statement on a line as it makes the code easier to understand. Good program-
ming practice is about adopting approaches to coding that make your code easy to follow, and minimize
the likelihood of errors.

The two statements in the preceding line store the values 5 and 6 in the variables apples and oranges,
respectively. These statements are called assignment statements because they assign a new value to a
variable and the = is the assignment operator.

The next statement is:

fruit = apples + oranges;      // Get the total fruit

This is also an assignment statement but is a little different because you have an arithmetic expression
to the right of the assignment operator. This statement adds together the values stored in the variables
apples and oranges and stores the result in the variable fruit.

The next three statements are:

cout << endl;               // Start output on a new line
cout << “Oranges are not the only fruit... “ << endl

<< “- and we have “ << fruit << “ fruits in all.”;
cout << endl;               // Start output on a new line

These are all output statements. The first statement is the first line here, and it sends a newline character,
denoted by the word endl, to the command line on the screen. In C++, a source of input or a destination
for output is referred to as a stream. The name cout specifies the “standard” output stream, and the opera-
tor << indicates that what appears to the right of the operator is to be sent to the output stream, cout. The
<< operator “points” in the direction that the data flows — from the variable or string that appears on the
right of the operator to the output destination on the left. Thus in the first statement the value represented
by the name endl — which represents a newline character — is sent to the stream identified by the name
cout — and data transferred to cout is written to the command line.

The meaning of the name cout and the operator << are defined in the standard library header file
<iostream>, which you added to the program code by means of the #include directive at the beginning

45

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 45



of the program. cout is a name in the standard library and therefore is within the namespace std.
Without the using directive it would not be recognized unless you used its fully qualified name,
which is std::cout, as I mentioned earlier. Because cout has been defined to represent the standard
output stream, you shouldn’t use the name cout for other purposes so you can’t use it as the name of 
a variable in your program for example. Obviously, using the same name for different things is likely 
to cause confusion.

The second output statement of the three is spread over two lines:

cout << “Oranges are not the only fruit... “ << endl
<< “- and we have “ << fruit << “ fruits in all.”;

As I said earlier, you can spread each statement in a program over as many lines as you wish if it helps
to make the code clearer. The end of a statement is always signaled by a semicolon, not the end of a line.
Successive lines are read and combined into a single statement by the compiler until it finds the semi-
colon that defines the end of the statement. Of course, this means that if you forget to put a semicolon 
at the end of a statement, the compiler will assume the next line is part of the same statement and join
them together. This usually results in something the compiler cannot understand, so you’ll get an error
message.

The statement sends the text string “Oranges are not the only fruit... “ to the command line,
followed by another newline character (endl), then another text string, “- and we have “, followed
by the value stored in the variable fruit, then finally another text string, “ fruits in all.”. There 
is no problem stringing together a sequence of things that you want to output in this way. The statement
executes from left to right, with each item being sent to cout in turn. Note that each item to be sent to
cout is preceded by its own << operator.

The third and last output statement just sends another newline character to the screen, and the three
statements produce the output from the program that you see.

The last statement in the program is:

return 0;                      // Exit the program

This terminates execution of the main() function, which stops execution of the program. Control returns
to the operating system, and the 0 is a return code that tells the operating system that the application ter-
minated successfully after completing its task. I’ll discuss all of these statements in more detail later on.

The statements in a program are executed in the sequence in which they are written, unless a statement
specifically causes the natural sequence to be altered. In Chapter 3, you’ll look at statements that alter the
sequence of execution.

Whitespace
Whitespace is the term used in C++ to describe blanks, tabs, newline characters, form feed characters,
and comments. Whitespace serves to separate one part of a statement from another and enables the
compiler to identify where one element in a statement, such as int, ends and the next element begins.
Otherwise, whitespace is ignored and has no effect.

46

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 46



Look at this statement for example:

int fruit;                     // ...then another one

There must be at least one whitespace character (usually a space) between int and fruit for the com-
piler to be able to distinguish them but if you add more whitespace characters they will be ignored. The
content of the line following the semicolon is all whitespace and is therefore ignored.

On the other hand, look at this statement:

fruit = apples + oranges;      // Get the total fruit

No whitespace characters are necessary between fruit and =, or between = and apples, although you
are free to include some if you wish. This is because the = is not alphabetic or numeric, so the compiler
can separate it from its surroundings. Similarly, no whitespace characters are necessary on either side of
the + sign but you can include some if you want to aid the readability of your code.

As I said, apart from its use as a separator between elements in a statement that might otherwise be con-
fused, whitespace is ignored by the compiler (except, of course, in a string of characters between quotes).
You can therefore include as much whitespace as you like to make your program more readable, as you
did when you spread an output statement in the last example over several lines. Remember that in C++
the end of a statement is wherever the semicolon occurs.

Statement Blocks
You can enclose several statements between a pair of braces, in which case they become a block, or a
compound statement. The body of a function is an example of a block. Such a compound statement can
be thought of as a single statement (as you’ll see when you look at the decision-making possibilities in
C++ in Chapter 3). In fact, wherever you can put a single statement in C++, you could equally well put a
block of statements between braces. As a consequence, blocks can be placed inside other blocks. In fact,
blocks can be nested, one within another, to any depth.

A statement block also has important effects on variables, but I will defer discussion of this until later in
this chapter when I discuss something called variable scope.

Automatically Generated Console Programs
In the last example you opted to produce the project as an empty project with no source files, and then
you added the source file subsequently. If you just allow the Application Wizard to generate the project 
as you did in Chapter 1, the project will contain several files, and you should explore their contents in a
little more depth. Create a new Win32 console project with the name Ex2_01A and this time just allow the
Application Wizard to finish without choosing to set any of the options in the Application Settings
dialog. The project will have three files containing code: the Ex2_01A.cpp and stdafx.cpp source files,
and the stdafx.h header file. This is to provide for basic capability that you might need in a console pro-
gram and represents a working program at it stands, which does nothing. If you have a project open, you
can close it by selecting the File > Close Solution item on the main menu. You can create a new
project with an existing project open, in which case the old project will be closed automatically unless
you elect to add it to the same solution.

47

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 47



First of all, the contents of Ex2_01A.cpp will be:

// Ex2_01A.cpp : Defines the entry point for the console application.
//

#include “stdafx.h”

int _tmain(int argc, _TCHAR* argv[])
{
return 0;

}

This is decidedly different from the previous example. There is an #include directive for the stdafx.h
header file that was not in the previous version, and the function where execution starts is called _tmain(),
not main().

The Application Wizard has generated the stdafx.h header file as part of the project, and if you take a
look at the code in there, you’ll see there are two further #include directives for standard library header
files stdio.h and tchar.h. The old-style header stdio.h is for standard I/O and was used before the cur-
rent ISO/ANSI standard for C++; this covers the same functionality as the <iostream> header. tchar.h
is a Microsoft-specific header file defining text functions. The idea is that stdafx.h should define a set of
standard system include files for your project — you would add #include directives for any other sys-
tem headers that you need in this file. While you are learning ISO/ANSI C++, you won’t be using either
of the headers that appear in stdafx.h, which is one reason for not using the default file generation
capability provided by the Application Wizard.

As I already explained, Visual C++ 2008 supports wmain() as an alternative to main() when you are
writing a program that’s using Unicode characters — wmain() being a Microsoft-specific command that
is not part of ISO/ANSI C++. In support of that, the tchar.h header defines the name _tmain so that 
it will normally be replaced by main, but will be replaced by wmain if the symbol _UNICODE is defined.
Thus to identify a program as using UNICODE you would add the following statement to the beginning
of the stdafx.h header file:

#define _UNICODE

Now that I’ve explained all that, I’ll stick to plain old main() for our ISO/ANSI C++ examples that are
console applications because this option is standard C++ and therefore the most portable coding approach.

Defining Variables
A fundamental objective in all computer programs is to manipulate some data and get some answers. An
essential element in this process is having a piece of memory that you can call your own, that you can refer
to using a meaningful name, and where you can store an item of data. Each individual piece of memory so
specified is called a variable.

As you already know, each variable will store a particular kind of data, and the type of data that can be
stored is fixed when you define the variable in your program. One variable might store whole numbers

48

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 48



(that is, integers), in which case you couldn’t use it to store numbers with fractional values. The value
that each variable contains at any point is determined by the statements in your program, and of course,
its value will usually change many times as the program calculation progresses.

The next section looks first at the rules for naming a variable when you introduce it into a program.

Naming Variables
The name you give to a variable is called an identifier, or more conveniently a variable name. Variable
names can include the letters A–z (upper- or lowercase), the digits 0–9, and the underscore character.
No other characters are allowed, and if you happen to use some other character, you will typically get an
error message when you try to compile the program. Variable names must also begin with either a letter
or an underscore. Names are usually chosen to indicate the kind of information to be stored.

Because variable names in Visual C++ 2008 can be up to 2048 characters long, you have a reasonable
amount of flexibility in what you call your variables. In fact, as well as variables, there are quite a few
other things that have names in C++ and they too can have names of up to 2048 characters, with the
same definition rules as a variable name. Using names of the maximum length allowed can make your
programs a little difficult to read, and unless you have amazing keyboard skills, they are the very devil
to type in. A more serious consideration is that not all compilers support such long names. If you antici-
pate compiling your code in other environments, it’s a good idea to limit names to a maximum of 31
characters; this will usually be adequate for devising meaningful names and will avoid problems of
compiler name length constraints in most instances.

Although you can use variable names that begin with an underscore, for example _this and _that, this
is best avoided because of potential clashes with standard system variables that have the same form. You
should also avoid using names starting with a double underscore for the same reason.

Examples of good variable names are:

❑ price

❑ discount

❑ pShape

❑ value_

❑ COUNT

8_Ball, 7Up, and 6_pack are not legal. Neither is Hash! or Mary-Ann. This last example is a common
mistake, although Mary_Ann with an underscore in place of the hyphen would be quite acceptable. Of
course, Mary Ann would not be, because blanks are not allowed in variable names. Note that the variable
names republican and Republican are quite different, as names are case-sensitive so upper- and lower-
case letters are differentiated. Of course, whitespace characters in general cannot appear within a name,
and if you inadvertently include whitespace characters, you will have two or more names instead of one,
which will usually cause the compiler to complain.

A convention that is often adopted in C++ is to reserve names beginning with a capital letter for naming
classes and use names beginning with a lowercase letter for variables. I’ll discuss classes in Chapter 8.

49

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 49



Keywords in C++
There are reserved words in C++ called keywords that have special significance within the language. They
will be highlighted with a particular color by the Visual C++ 2008 editor as you enter your program — in
my system the default color is blue. If a keyword you type does not appear highlighted, then you have
entered the keyword incorrectly. Incidentally, if you don’t like the default colors used by the text editor,
you can change them by selecting Options from the Tools menu and making changes when you select
Environment/Fonts and Colors in the dialog.

Remember that keywords, like the rest of the C++ language, are case-sensitive. For example, the pro-
gram that you entered earlier in the chapter contained the keywords int and return; if you write Int
or Return, these are not keywords and therefore will not be recognized as such. You will see many more
as you progress through the book. You must ensure that the names you choose for entities in your pro-
gram, such as variables, are not the same as any of the keywords in C++. A complete list of the key-
words used in Visual C++ 2008 appears in Appendix A.

Declaring Variables
As you saw earlier, a variable declaration is a program statement that specifies the name of a variable of
a given type. For example:

int value;

This declares a variable with the name value that can store integers. The type of data that can be stored
in the variable value is specified by the keyword int, so you can only use value to store data of type
int. Because int is a keyword, you can’t use int as a name for one of your variables.

Note that a variable declaration always ends with a semicolon.

A single declaration can specify the names of several variables but, as I have said, it is generally better 
to declare variables in individual statements, one per line. I’ll deviate from this from time to time in this
book, but only in the interests of not spreading code over too many pages.

In order to store data (for example, the value of an integer), you not only need to have defined the name of
the variable, you also need to have associated a piece of the computer’s memory with the variable name.
This process is called variable definition. In C++, a variable declaration is also a definition (except in a few
special cases, which we shall come across during the book). In the course of a single statement, we intro-
duce the variable name, and also tie it to an appropriately sized piece of memory.

So, the statement

int value;

is both a declaration and a definition. You use the variable name value that you have declared, to access
the piece of the computer’s memory that you have defined and that can store a single value of type int.

You use the term declaration when you introduce a name into your program, with information on what
the name will be used for. The term definition refers to the allotment of computer memory to the name.
In the case of variables, you can declare and define in a single statement, as in the preceding line. The
reason for this apparently pedantic differentiation between a declaration and a definition is that you 
will meet statements that are declarations but not definitions.

50

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 50



You must declare a variable at some point between the beginning of your program and when the variable
is used for the first time. In C++, it is good practice to declare variables close to their first point of use.

Initial Values for Variables
When you declare a variable, you can also assign an initial value to it. A variable declaration that assigns
an initial value to a variable is called an initialization. To initialize a variable when you declare it, you
just need to write an equals sign followed by the initializing value after the variable name. You can write
the following statements to give each of the variables an initial value:

int value = 0;
int count = 10;
int number = 5;

In this case, value will have the value 0, count will have the value 10, and number will have the value 5.

There is another way of writing the initial value for a variable in C++ called functional notation. Instead
of an equals sign and the value, you can simply write the value in parentheses following the variable name.
So you could rewrite the previous declarations as:

int value(0);
int count(10);
int number(5);

Generally it’s a good idea to use either one notation or the other consistently when you are initializing
variables. However, I’ll use one notation in some examples and the other notation in others so you get
used to seeing both of them in working code.

If you don’t supply an initial value for a variable, then it will usually contain whatever garbage was left
in the memory location it occupies by the previous program you ran (there is an exception to this that
you will meet later in this chapter). Wherever possible, you should initialize your variables when you
declare them. If your variables start out with known values, it makes it easier to work out what is hap-
pening when things go wrong. And one thing you can be sure of — things will go wrong.

Fundamental Data Types
The sort of information that a variable can hold is determined by its data type. All data and variables in your
program must be of some defined type. ISO/ANSI standard C++ provides you with a range of fundamental
data types, specified by particular keywords. Fundamental data types are so called because they store val-
ues of types that represent fundamental data in your computer, essentially numerical values, which also
includes characters because a character is represented by a numerical character code. You have already
seen the keyword int for defining integer variables. C++/CLI also defines fundamental data types that
are not part of ISO/ANSI C++, and I’ll go into those a little later in this chapter.

As part of the object-oriented aspects of the language, you can also create your own data types, as you’ll
see later, and of course the various libraries that you have at your disposal with Visual C++ 2008 also
define further data types. For the moment, explore the elementary numerical data types that ISO/ANSI
C++ provides. The fundamental types fall into three categories: types that store integers, types that store

51

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 51



non-integral values — which are called floating-point types — and the void type that specifies an empty
set of values or no type.

Integer Variables
As I have said, integer variables are variables that can have only values that are whole numbers. The num-
ber of players in a football team is an integer, at least at the beginning of the game. You already know that
you can declare integer variables using the keyword int. Variables of type int occupy 4 bytes in memory
and can store both positive and negative integer values. The upper and lower limits for the values of a vari-
able of type int correspond to the maximum and minimum signed binary numbers, which can be repre-
sented by 32 bits. The upper limit for a variable of type int is 231–1 which is 2,147,483,647, and the lower
limit is –(231), which is –2,147,483,648. Here’s an example of defining a variable of type int:

int toeCount = 10;

In Visual C++ 2008, the keyword short also defines an integer variable, this time occupying two bytes.
The keyword short is equivalent to short int, and you could define two variables of type short with
the following statements:

short feetPerPerson = 2;
short int feetPerYard = 3;

Both variables are of the same type here because short means exactly the same as short int. I used
both forms of the type name to show them in use, but it would be best to stick to one representation of
the type in your programs and short is used most often.

C++ also provides another integer type, long, which can also be written as long int. Here’s how you
declare variables of type long:

long bigNumber = 1000000L;
long largeValue = 0L;

Of course, you could also use functional notation when specifying the initial values:

long bigNumber(1000000L);
long largeValue(0L);

These statements declare the variables bigNumber and largeValue with initial values 1000000 and 0,
respectively. The letter L appended to the end of the literals specifies that they are integers of type long.
You can also use the small letter l for the same purpose, but it has the disadvantage that it is easily con-
fused with the numeral 1. Integer literals without an L appended are of type int.

You must not include commas when writing large numeric values in a program. In text you might
write the number 12,345, but in your program code you must write this as 12345.

Integer variables declared as long in Visual C++ 2008 occupy 4 bytes and can have values from
–2,147,483,648 to 2,147,483,647. This is the same range as for variables declared as int.

52

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 52



With other C++ compilers, variables of type long (which is the same as type long int) may not be the
same as type int, so if you expect your programs to be compiled in other environments, don’t assume
that long and int are equivalent. For truly portable code, you should not even assume that an int is 
4 bytes (for example, under older 16-bit versions of Visual C++ a variable of type int was 2 bytes).

Character Data Types
The char data type serves a dual purpose. It specifies a one-byte variable that you can use to store integers
within a given range or to store the code for a single ASCII character, which is the American Standard Code
for Information Interchange. The codes in the ASCII character set appears in Appendix B. You can declare a
char variable with this statement:

char letter = ‘A’;

Or you could write this as:

char letter(‘A’);

This declares the variable with the name letter and initializes it with the constant ‘A’. Note that you
specify a value that is a single character between single quotes, rather than the double quotes used pre-
viously for defining a string of characters to be displayed. A string of characters is a series of values of type
char that are grouped together into a single entity called an array. I’ll discuss arrays and how strings are
handled in C++ in Chapter 4.

Because the character ‘A’ is represented in ASCII by the decimal value 65, you could have written the
statement as:

char letter = 65;            // Equivalent to A

This produces the same result as the previous statement. The range of integers that can be stored in a
variable of type char with Visual C++ is from –128 to 127.

Note that the ISO/ANSI C++ standard does not require that type char should represent signed 1-byte
integers. It is the compiler implementer’s choice as to whether type char represents signed integers in
the range –128 to +127 or unsigned integers in the range 0 to 255. You need to keep this in mind if you
are porting your C++ code to a different environment.

The type wchar_t is so called because it is a wide character type, and variables of this type store 2-byte
character codes with values in the range from 0 to 65,535. Here’s an example of defining a variable of
type wchar_t:

wchar_t letter = L’Z’;       // A variable storing a 16-bit character code

This defines a variable, letter, that is initialized with the 16-bit code for the letter Z. The L preceding
the character constant, ‘Z’, tells the compiler that this is a 16-bit character code value. A wchar_t vari-
able stores Unicode code values.

53

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 53



You could have used functional notation here, too:

wchar_t letter(L’Z’);        // A variable storing a 16-bit character code

You can also use hexadecimal constants to initialize char variables (and other integer types), and it is
obviously going to be easier to use this notation when character codes are available as hexadecimal val-
ues. A hexadecimal number is written using the standard representation for hexadecimal digits: 0 to 9,
and A to F (or a to f) for digits with values from 10 to 15. It’s also preceded by 0x (or 0X) to distinguish it
from a decimal value. Thus, to get exactly the same result again, you could rewrite the last statement as
follows:

wchar_t letter(0x5A);        // A variable storing a 16-bit character code

Don’t write decimal integer values with a leading zero. The compiler will interpret such values as octal
(base 8), so a value written as 065 will be equivalent to 53 in normal decimal notation.

Notice that Windows XP provides a Character Map utility that enables you to locate characters from any
of the fonts available to Windows. It will show the character code in hexadecimal and tell you the key-
stroke to use for entering the character. You’ll find the Character map utility if you click on the Start
button and look in the System Tools folder that is within the Accessories folder.

Integer Type Modifiers
Variables of the integral types char, int, short, or long store signed integer values by default, so you
can use these types to store either positive or negative values. This is because these types are assumed 
to have the default type modifier signed. So, wherever you wrote int or long you could have written
signed int or signed long, respectively.

You can also use the signed keyword by itself to specify the type of a variable, in which case it means
signed int. For example:

signed value = -5;           // Equivalent to signed int

This usage is not particularly common, and I prefer to use int, which makes it more obvious what is
meant.

The range of values that can be stored in a variable of type char is from –128 to +127, which is the same as
the range of values you can store in a variable of type signed char. In spite of this, type char and type
signed char are different types, so you should not make the mistake of assuming they are the same.

If you are sure that you don’t need to store negative values in a variable (for example, if you were record-
ing the number of miles you drive in a week), then you can specify a variable as unsigned:

unsigned long mileage = 0UL;

Here, the minimum value that can be stored in the variable mileage is zero, and the maximum value 
is 4,294,967,295 (that’s 232–1). Compare this to the range of –2,147,483,648 to 2,147,483,647 for a signed
long. The bit that is used in a signed variable to determine the sign of the value is used in an unsigned
variable as part of the numeric value instead. Consequently, an unsigned variable has a larger range of

54

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 54



positive values, but it can’t represent a negative value. Note how a U (or u) is appended to unsigned
constants. In the preceding example I also have L appended to indicate that the constant is long. You
can use either upper- or lowercase for U and L, and the sequence is unimportant. However, it’s a good
idea to adopt a consistent way of specifying such values.

You can also use unsigned by itself as the type specification for a variable, in which case you are speci-
fying the variable to be of type unsigned int.

Remember, both signed and unsigned are keywords, so you can’t use them as variable names.

The Boolean Type
Boolean variables are variables can have only two values: a value called true and a value called false.
The type for a logical variable is bool, named after George Boole, who developed Boolean algebra, and
type bool is regarded as an integer type. Boolean variables are also referred to as logical variables. Variables
of type bool are used to store the results of tests that can be either true or false, such as whether one value
is equal to another.

You could declare the name of a variable of type bool with the statement:

bool testResult;

Of course, you can also initialize variables of type bool when you declare them:

bool colorIsRed = true;

Or like this:

bool colorIsRed(true);

You will find that the values TRUE and FALSE are used quite extensively with variables of numeric
type, and particularly of type int. This is a hangover from the time before variables of type bool were
implemented in C++ when variables of type int were typically used to represent logical values. In this
case a zero value is treated as false and a non-zero value as true. The symbols TRUE and FALSE are still
used within the MFC where they represent a non-zero integer value and 0, respectively. Note that TRUE
and FALSE — written with capital letters — are not keywords in C++; they are just symbols defined
within the MFC. Note also that TRUE and FALSE are not legal bool values, so don’t confuse true
with TRUE.

Floating-Point Types
Values that aren’t integral are stored as floating-point numbers. A floating-point number can be expressed
as a decimal value such as 112.5, or with an exponent such as 1.125E2 where the decimal part is multiplied
by the power of 10 specified after the E (for Exponent). Our example is, therefore, 1.125 × 102, which is 112.5.

A floating-point constant must contain a decimal point, or an exponent, or both. If
you write a numerical value with neither, you have an integer.

55

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 55



You can specify a floating-point variable using the keyword double, as in this statement:

double in_to_mm = 25.4;

A variable of type double occupies 8 bytes of memory and stores values accurate to approximately 15
decimal digits. The range of values stored is much wider than that indicated by the 15 digits accuracy,
being from 1.7 × 10-308 to 1.7 × 10308, positive and negative.

If you don’t need 15 digits precision, and you don’t need the massive range of values provided by double
variables, you can opt to use the keyword float to declare floating-point variables occupying 4 bytes. For
example:

float pi = 3.14159f;

This statement defines a variable pi with the initial value 3.14159. The f at the end of the constant specifies
that it is of type float. Without the f, the constant would have been of type double. Variables that you
declare as float have approximately 7 decimal digits of precision and can have values from 3.4 × 10-38 to
3.4 × 1038, positive and negative.

The ISO/ANSI standard for C++ also defines the long double floating-point type, which in Visual
C++ 2008 is implemented with the same range and precision as type double. With some compilers
long double corresponds to a 16-byte floating-point value with a much greater range and precision
than type double.

Fundamental Types in ISO/ANSI C++
The following table contains a summary of all the fundamental types in ISO/ANSI C++ and the range of
values that are supported for these in Visual C++ 2008.

Type Size in Bytes Range of Values

bool 1 true or false

char 1 By default the same as type signed char: –128 to +127
Optionally you can make char the same range as type
unsigned char.

signed char 1 –128 to +127

unsigned char 1 0 to 255

wchar_t 2 0 to 65,535

short 2 –32,768 to +32,767

unsigned short 2 0 to 65,535

int 4 –2,147,483,648 to 2,147,483,647

unsigned int 4 0 to 4,294,967,295

56

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 56



Literals
I have already used lots of explicit values to initialize variables and in C++, fixed values of any kind
are referred to as literals. A literal is a value of a specific type so values such as 23, 3.14159, 9.5f,
and true are examples of literals of type int, type double, type float, and type bool, respectively.
The literal “Samuel Beckett” is an example of a literal that is a string, but I’ll defer discussion of
exactly what type this is until Chapter 4. Here’s a summary of how you write literals of various types.

You can’t specify a literal to be of type short or unsigned short, but the compiler will accept initial
values that are literals of type int for variables of these types provided the value of the literal is within
the range of the variable type.

You will often need to use literals in calculations within a program, for example, conversion values such
as 12 for feet into inches or 25.4 for inches to millimeters, or a string to specify an error message. However,

Type Examples of Literals

char, signed char, 
or unsigned char

‘A’, ‘Z’, ‘8’, ‘*’

wchar_t L’A’, L’Z’, L’8’, L’*’

int -77, 65, 12345, 0x9FE

unsigned int 10U, 64000u

long -77L, 65L, 12345l

unsigned long 5UL, 999999999UL, 25ul, 35Ul

float 3.14f, 34.506F

double 1.414, 2.71828

long double 1.414L, 2.71828l

bool true, false

Type Size in Bytes Range of Values

long 4 –2,147,483,648 to 2,147,483,647

unsigned long 4 0 to 4,294,967,295

float 4 ±3.4×10±38 with approximately 7 digits accuracy

double 8 ±1.7×10±308 with approximately 15 digits accuracy

long double 8 ±1.7×10±308 with approximately 15 digits accuracy

57

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 57



you should avoid using numeric literals within programs explicitly where their significance is not
obvious. It is not necessarily apparent to everyone that when you use the value 2.54, it is the number
of centimeters in an inch. It is better to declare a variable with a fixed value corresponding to your literal
instead — you might name the variable inchesToCentimeters, for example. Then wherever you use
inchesToCentimeters in your code, it will be quite obvious what it is. You will see how to fix the
value of a variable a little later on in this chapter.

Defining Synonyms for Data Types
The typedef keyword enables you to define your own type name for an existing type. Using typedef, you
could define the type name BigOnes as equivalent to the standard long int type with the declaration:

typedef long int BigOnes;       // Defining BigOnes as a type name

This defines BigOnes as an alternative type specifier for long int, so you could declare a variable mynum
as long int with the declaration:

BigOnes mynum = 0L;             // Define a long int variable

There’s no difference between this declaration and the one using the built-in type name. You could equally
well use

long int mynum = 0L;            // Define a long int variable

for exactly the same result. In fact, if you define your own type name such as BigOnes, you can use both
type specifiers within the same program for declaring different variables that will end up as having the
same type.

Since typedef only defines a synonym for an existing type, it may appear to be a bit superficial, but it is
not at all. You’ll see later that it fulfills a very useful role in enabling you to simplify more complex dec-
larations by defining a single name that represents a somewhat convoluted type specification, and this
can make your code much more readable.

Variables with Specific Sets of Values
You will sometimes be faced with the need for variables that have a limited set of possible values that can
be usefully referred to by labels — the days of the week, for example, or months of the year. There is a spe-
cific facility in C++ to handle this situation, called an enumeration. Take one of the examples I have just
mentioned — a variable that can assume values corresponding to days of the week. You can define this as
follows:

enum Week{Mon, Tues, Wed, Thurs, Fri, Sat, Sun} thisWeek;

This declares an enumeration type with the name Week and the variable thisWeek, which is an instance
of the enumeration type Week that can assume only the constant values specified between the braces. If
you try to assign to thisWeek anything other than one of the set of values specified, it will cause an error.
The symbolic names listed between the braces are known as enumerators. In fact, each of the names of
the days will be automatically defined as representing a fixed integer value. The first name in the list,
Mon, will have the value 0, Tues will be 1, and so on.

58

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 58



You could assign one of the enumeration constants as the value of the variable thisWeek like this:

thisWeek = Thurs;

Note that you do not need to qualify the enumeration constant with the name of the enumeration. The
value of thisWeek will be 3 because the symbolic constants that an enumeration defines are assigned
values of type int by default in sequence starting with 0.

By default, each successive enumerator is one larger than the value of the previous one, but if you would
prefer the implicit numbering to start at a different value, you can just write:

enum Week {Mon = 1, Tues, Wed, Thurs, Fri, Sat, Sun} thisWeek;

Now the enumeration constants will be equivalent to 1 through 7. The enumerators don’t even need to
have unique values. You could define Mon and Tues as both having the value 1, for example, with the
statement:

enum Week {Mon = 1, Tues = 1, Wed, Thurs, Fri, Sat, Sun} thisWeek;

As the type of the variable thisWeek is type int, it will occupy four bytes, as will all variables that are
of an enumeration type.

Note that you are not allowed to use functional notation for initializing enumerators. You must use the
assignment operator as in the examples you have seen.

Having defined the form of an enumeration, you can define another variable thus:

enum Week nextWeek;

This defines a variable nextWeek as an enumeration that can assume the values previously specified.
You can also omit the enum keyword in declaring a variable, so, instead of the previous statement, you
could write:

Week next_week;

If you wish, you can assign specific values to all the enumerators. For example, you could define this
enumeration:

enum Punctuation {Comma = ‘,’, Exclamation = ‘!’, Question = ‘?’} things;

Here you have defined the possible values for the variable things as the numerical equivalents of the
appropriate symbols. If you look in the ASCII table in Appendix B, you will see that the symbols are 44,
33 and 63, respectively, in decimal. As you can see, the values assigned don’t have to be in ascending
order. If you don’t specify all the values explicitly, each enumerator will be assigned a value increment-
ing by 1 from the last specified value, as in our second Week example.

You can omit the enumeration type if you don’t need to define other variables of this type later. For
example:

enum {Mon, Tues, Wed, Thurs, Fri, Sat, Sun} thisWeek, nextWeek, lastWeek;

59

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 59



Here you have three variables declared that can assume values from Mon to Sun. Because the enumera-
tion type is not specified, you cannot refer to it. Note that you cannot define other variables for this enu-
meration at all, because you would not be permitted to repeat the definition. Doing so would imply that
you were redefining values for Mon to Sun, and this isn’t allowed.

Basic Input/Output Operations
Here, you will only look at enough of native C++ input and output to get you through learning about
C++. It’s not that it’s difficult — quite the opposite in fact — but for Windows programming you won’t
need it at all. C++ input/output revolves around the notion of a data stream, where you can insert data
into an output stream or extract data from an input stream. You have already seen that the ISO/ANSI
C++ standard output stream to the command line on the screen is referred to as cout. The complemen-
tary input stream from the keyboard is referred to as cin.

Input from the Keyboard
You obtain input from the keyboard through the stream cin, using the extractor operator for a stream
>>. To read two integer values from the keyboard into integer variables num1 and num2, you can write
this statement:

cin >> num1 >> num2;

The extraction operator, >>, “points” in the direction that data flows — in this case, from cin to each of
the two variables in turn. Any leading whitespace is skipped, and the first integer value you key in is read
into num1. This is because the input statement executes from left to right. Any whitespace following num1
is ignored and the second integer value that you enter is read into num2. There has to be some whitespace
between successive values though, so that they can be differentiated. The stream input operation ends
when you press the Enter key, and execution then continues with the next statement. Of course, errors
can arise if you key in the wrong data, but I will assume that you always get it right!

Floating-point values are read from the keyboard in exactly the same way as integers and, of course, you
can mix the two. The stream input and operations automatically deal with variables and data of any of
the fundamental types. For example, in the statements,

int num1 = 0, num2 = 0;
double factor = 0.0;
cin >> num1 >> factor >> num2;

the last line will read an integer into num1, then a floating-point value into factor and, finally, an integer
into num2.

Output to the Command Line
You have already seen output to the command line, but I want to revisit it anyway. Writing information 
to the display operates in a complementary fashion to input. As you have seen, the stream is called cout,
and you use the insertion operator, << to transfer data to the output stream. This operator also “points” 
in the direction of data movement. You have already used this operator to output a text string between
quotes. I can demonstrate the process of outputting the value of a variable with a simple program.

60

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 60



Try It Out Output to the Command Line
I’ll assume that you’ve got the hang of creating a new empty project by adding a new source file to the 
project and building it into an executable. Here’s the code that you need to put in the source file once
you have created the Ex2_02 project:

// Ex2_02.cpp
// Exercising output
#include <iostream>

using std::cout;
using std::endl;

int main()
{

int num1 = 1234, num2 = 5678;
cout << endl;                                // Start on a new line
cout << num1 << num2;                        // Output two values
cout << endl;                                // End on a new line
return 0;                                    // Exit program

}

How It Works
The first statement in the body of main() declares and initializes two integer variables, num1 and num2.
This is followed by two output statements, the first of which moves the screen cursor position to a new
line. Because output statements execute from left to right, the second output statement displays the value
of num1 followed by the value of num2.

When you compile and execute this, you will get the output:

12345678

The output is correct, but it’s not exactly helpful. You really need the two output values to be separated
by at least one space. The default for stream output is to just output the digits in the output value, which
doesn’t provide for spacing successive output values out nicely so they can be differentiated. As it is, you
have no way to tell where the first number ends and the second number begins.

Formatting the Output
You can fix the problem of there being no spaces between items of data quite easily, though, just by out-
putting a space between the two values. You can do this by replacing the following line in your original
program:

cout << num1 << num2;                        // Output two values

Just substitute the statement:

cout << num1 << ‘ ‘ << num2;                 // Output two values

61

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 61



Of course, if you had several rows of output that you wanted to align in columns, you would need some
extra capability because you do not know how many digits there will be in each value. You can take care
of this situation by using what is called a manipulator. A manipulator modifies the way in which data
output to (or input from) a stream is handled.

Manipulators are defined in the header file <iomanip>, so you need to add an #include directive for it.
The manipulator that you’ll use is setw(n), which will output the value that follows right-justified in a
field n spaces wide, so setw(6) causes the next output value to be presented in a field with a width of
six spaces. Let’s see it working.

Try It Out Using Manipulators
To get something more like the output you want, you can change the program to the following:

// Ex2_03.cpp
// Exercising output
#include <iostream>
#include <iomanip>

using std::cout;
using std::endl;
using std::setw;

int main()
{

int num1 = 1234, num2 = 5678;
cout << endl;                                // Start on a new line
cout << setw(6) << num1 << setw(6) << num2;  // Output two values
cout << endl;                                // Start on a new line
return 0;                                    // Exit program

}

How It Works
The changes from the last example are the addition of the #include directive for the <iomanip> header
file, the addition of a using declaration for the setw name from the std namespace, and the insertion 
of the setw() manipulator in the output stream preceding each value so that the output values are pre-
sented in a field six characters wide. Now you get nice neat output where you can actually separate the
two values:

1234  5678

Note that the setw() manipulator works only for the single output value immediately following its inser-
tion into the stream. You have to insert the manipulator into the stream immediately preceding each value
that you want to output within a given field width. If you put only one setw(), it would apply to the first
value to be output after it was inserted. Any following value would be output in the default manner. You
could try this out by deleting the second setw(6) and its insertion operator in the example.

62

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 62



Escape Sequences
When you write a character string between double quotes, you can include special characters called
escape sequences in the string They are called escape sequences because they allow characters to be
included in a string that otherwise could not be represented by escaping from the default interpretation
of the characters. An escape sequence starts with a backslash character, \, and the backslash character
cues the compiler to interpret the character that follows in a special way. For example, a tab character is
written as \t, so the t is understood by the compiler to represent a tab in the string, and not the letter t.
Look at these two output statements:

cout << endl << “This is output.”;
cout << endl << “\tThis is output after a tab.”;

They will produce these lines:

This is output.
This is output after a tab.

The \t in the second output statement causes the output text to be indented to the first tab position.

In fact, instead of using endl you could use the escape sequence for the newline character, \n, in each
string, so you could rewrite the preceding statements as follows:

cout << “\nThis is output.”;
cout << “\n\tThis is output after a tab.”;

Here are some escape sequences that may be particularly useful:

Obviously, if you want to be able to include a backslash or a double quote as a character to appear in a
string, you must use the appropriate escape sequences to represent them. Otherwise, the backslash would
be interpreted as the start of another escape sequence, and the double quote would indicate the end of the
character string.

Escape Sequence What It Does 

\a sounds a beep

\n newline

\’ single quote

\\ backslash

\b backspace

\t tab

\” double quote

\? question mark

63

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 63



You can also use characters specified by escape sequences in the initialization of variables of type char.
For example:

char Tab = ‘\t’;               // Initialize with tab character

Because a character literal is delimited by single quote characters, you must use an escape sequence to
specify a character literal that is a single quote, thus ‘\’’.

Try It Out Using Escape Sequences
Here’s a program that uses some of the escape sequences in the table in the previous section:

// Ex2_04.cpp
// Using escape sequences
#include <iostream>
#include <iomanip>

using std::cout;

int main()
{

char newline = ‘\n’;                         // Newline escape sequence
cout << newline;                             // Start on a new line
cout << “\”We\’ll make our escapes in sequence\”, he said.”;
cout << “\n\tThe program\’s over, it\’s time take make a beep beep.\a\a”;
cout << newline;                             // Start on a new line
return 0;                                    // Exit program

}

If you compile and execute this example it will produce the following output:

“We’ll make our escapes in sequence”, he said.
The program’s over, it’s time take make a beep beep.

How It Works
The first line in main() defines the variable newline and initializes it with a character defined by the
escape sequence for a new line. You can then use newline instead of endl from the standard library.

After writing newline to cout you output a string that uses the escape sequences for a double quote
(\”) and a single quote (\’). You don’t have to use the escape sequence for a single quote here because
the string is delimited by double quotes and the compile would recognize a single quote character as just
that, and not a delimiter. You must use the escape sequences for the double quotes in the string though.
The string starts with a newline escape sequence followed by a tab escape sequence, so the output line is
indented by the tab distance. The string also ends with two instances of the escape sequence for a beep,
so you should here a double beep from your PC’s speaker.

64

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 64



Calculating in C++
This is where you actually start doing something with the data that you enter. You know how to carry
out simple input and output; now you are beginning the bit in the middle, the “processing” part of a
C++ program. Almost all of the computational aspects of C++ are fairly intuitive, so you should slice
through this like a hot knife through butter.

The Assignment Statement
You have already seen examples of the assignment statement. A typical assignment statement looks like this:

whole = part1 + part2 + part3;

The assignment statement enables you to calculate the value of an expression which appears on the right-
hand side of the equals sign, in this case the sum of part1, part2, and part3, and store the result in the
variable specified on the left-hand side, in this case the variable with the name whole. In this statement,
the whole is exactly the sum of its parts, and no more.

Note how the statement, as always, ends with a semicolon.

You can also write repeated assignments such as:

a = b = 2;

This is equivalent to assigning the value 2 to b and then assigning the value of b to a, so both variables
will end up storing the value 2.

Understanding Lvalues and Rvalues
An lvalue is something that refers to an address in memory, and is so called because any expression that
results in an lvalue can appear on the left of the equals sign in an assignment statement. Most variables
are lvalues, because they specify a place in memory. However, as you’ll see, there are variables that aren’t
lvalues and can’t appear on the left of an assignment because their values have been defined as constant.

The variables a and b that appear in the preceding paragraph are lvalues, whereas the result of evaluat-
ing the expression a+b would not be, because its result doesn’t determine an address in memory where 
a value might be stored. The result of an expression that is not an lvalue is referred to as an rvalue.

Lvalues will pop up at various times throughout the book, sometimes where you least expect them, so
keep the idea in mind.

Arithmetic Operations
The basic arithmetic operators you have at your disposal are addition, subtraction, multiplication, and
division, represented by the symbols +, -, *, and /, respectively. These operate generally as you would

65

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 65



expect, with the exception of division which has a slight aberration when working with integer variables
or constants, as you’ll see. You can write statements such as the following:

netPay = hours * rate - deductions;

Here, the product of hours and rate will be calculated and then deductions subtracted from the value
produced. The multiply and divide operators are executed before addition and subtraction, as you would
expect. I will discuss the order of execution of the various operators in expressions more fully later in this
chapter. The overall result of evaluating the expression hours * rate - deductions will be stored in
the variable netPay.

The minus sign used in the last statement has two operands — it subtracts the value of its right operand
from the value of its left operand. This is called a binary operation because two values are involved. The
minus sign can also be used with one operand to change the sign of the value to which it is applied, in
which case it is called a unary minus. You could write this:

int a = 0;
int b = -5;
a = -b;                        // Changes the sign of the operand

Here, a will be assigned the value +5 because the unary minus changes the sign of the value of the
operand b.

Note that an assignment is not the equivalent of the equations you saw in high school algebra. It specifies
an action to be carried out rather than a statement of fact. The expression to the right of the assignment
operator is evaluated and the result is stored in the lvalue — typically a variable — that appears on the left.

Look at this statement:

number = number + 1;

This means “add 1 to the current value stored in number and then store the result back in number.” As a
normal algebraic statement it wouldn’t make sense.

Try It Out Exercising Basic Arithmetic
You can exercise basic arithmetic in C++ by calculating how many standard rolls of wallpaper are
needed to paper a room. The following example does this:

// Ex2_05.cpp
// Calculating how many rolls of wallpaper are required for a room
#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int main()
{

double height = 0.0, width = 0.0, length = 0.0; // Room dimensions
double perimeter = 0.0;                         // Room perimeter

const double rollwidth = 21.0;                  // Standard roll width

66

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 66



const double rolllength = 12.0*33.0;            // Standard roll length(33ft.)

int strips_per_roll = 0;                        // Number of strips in a roll
int strips_reqd = 0;                            // Number of strips needed
int nrolls = 0;                                 // Total number of rolls

cout << endl                                    // Start a new line
<< “Enter the height of the room in inches: “;

cin >> height;

cout  << endl                                   // Start a new line
<< “Now enter the length and width in inches: “;

cin >> length >> width;

strips_per_roll = rolllength / height;          // Get number of strips per roll
perimeter = 2.0*(length + width);               // Calculate room perimeter
strips_reqd = perimeter / rollwidth;            // Get total strips required
nrolls = strips_reqd / strips_per_roll;         // Calculate number of rolls

cout << endl
<< “For your room you need “ << nrolls << “ rolls of wallpaper.”
<< endl;

return 0;
}

Unless you are more adept than I am at typing, chances are there will be a few errors when you compile
this for the first time. Once you have fixed the typos, it will compile and run just fine. You’ll get a couple
of warning messages from the compiler. Don’t worry about them — the compiler is just making sure you
understand what’s going on. I’ll explain the reason for the warning messages in a moment.

How It Works
One thing needs to be clear at the outset — I assume no responsibility for you running out of wallpaper
as a result of using this program! As you’ll see, all errors in the estimate of the number of rolls required
are due to the way C++ works and to the wastage that inevitably occurs when you hang your own wall-
paper — usually 50 percent +!

I’ll work through the statements in this example in sequence, picking out the interesting, novel, or even
exciting features. The statements down to the start of the body of main() are familiar territory by now,
so I will take those for granted.

A couple of general points about the layout of the program are worth noting. First, the statements in the
body of main() are indented to make the extent of the body easier to see, and second, various groups of
statements are separated by a blank line to indicate that they are functional groups. Indenting statements
is a fundamental technique in laying out program code in C++. You will see that this is applied univer-
sally to provide visual cues to help you identify the various logical blocks in a program.

The const Modifier
You have a block of declarations for the variables used in the program right at the beginning of the body
of main(). These statements are also fairly familiar, but there are two that contain some new features:

const double rollwidth = 21.0;                   // Standard roll width
const double rolllength = 12.0*33.0;              // Standard roll length(33ft.)

67

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 67



They both start out with a new keyword: const. This is a type modifier that indicates that the variables
are not just of type double, but are also constants. Because you effectively tell the compiler that these are
constants, the compiler will check for any statements that attempt to change the values of these variables,
and if it finds any, it will generate an error message. A variable declared as const is not an lvalue and,
therefore, can’t legally be placed on the left of an assignment operation.

You could check this out by adding, anywhere after the declaration of rollwidth, a statement such as:

rollwidth = 0;

You will find the program no longer compiles, returning ‘error C2166: l-value specifies const
object’.

It can be very useful to define constants that you use in a program by means of const variable types, par-
ticularly when you use the same constant several times in a program. For one thing, it is much better than
sprinkling literals throughout your program that may not have blindingly obvious meanings; with the
value 42 in a program you could be referring to the meaning of life, the universe, and everything, but if
you use a const variable with the name myAge that has a value of 42, it becomes obvious that you are not.
For another thing, if you need to change the value of a const variable that you are using, you will need 
to change its definition only in a source file to ensure that the change automatically appears throughout.
You’ll see this technique used quite often.

Constant Expressions
The const variable rolllength is also initialized with an arithmetic expression (12.0*33.0). Being able
to use constant expressions to initialize variables saves having to work out the value yourself. It can also
be more meaningful, as it is in this case because 33 feet times 12 inches is a much clearer expression of
what the value represents than simply writing 396. The compiler will generally evaluate constant expres-
sions accurately, whereas if you do it yourself, depending on the complexity of the expression and your
ability to number-crunch, there is a finite probability that it may be wrong.

You can use any expression that can be calculated as a constant at compile time, including const objects
that you have already defined. So, for instance, if it was useful in the program to do so, you could declare
the area of a standard roll of wallpaper as:

const double rollarea = rollwidth*rolllength;

This statement would need to be placed after the declarations for the two const variables used in the
initialization of rollarea because all the variables that appear in a constant expression must be known
to the compiler at the point in the source file where the constant expression appears.

Program Input
After declaring some integer variables, the next four statements in the program handle input from the
keyboard:

cout << endl                                     // Start a new line
<< “Enter the height of the room in inches: “;

cin >> height;

cout << endl                                      // Start a new line

68

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 68



<< “Now enter the length and width in inches: “;
cin >> length >> width;

Here you have written text to cout to prompt for the input required and then read the input from the
keyboard using cin, which is the standard input stream. You first obtain the value for the room height
and then read the length and width successively. In a practical program, you would need to check
for errors and possibly make sure that the values that are read are sensible, but you don’t have enough
knowledge to do that yet!

Calculating the Result
You have four statements involved in calculating the number of standard rolls of wallpaper required for
the size of room given:

strips_per_roll = rolllength / height;            // Get number of strips in a roll
perimeter = 2.0*(length + width);                 // Calculate room perimeter
strips_reqd = perimeter / rollwidth;              // Get total strips required
nrolls = strips_reqd / strips_per_roll;           // Calculate number of rolls

The first statement calculates the number of strips of paper with a length corresponding to the height
of the room that you can get from a standard roll, by dividing one into the other. So, if the room is 
8 feet high, you divide 96 into 396, which would produce the floating-point result 4.125. There is a sub-
tlety here, however. The variable where you store the result, strips_per_roll, was declared as int,
so it can store only integer values. Consequently, any floating-point value to be stored as an integer is
rounded down to the nearest integer, 4 in this case, and this value is stored. This is actually the result
that you want here because, although they may fit under a window or over a door, fractions of a strip
are best ignored when estimating.

The conversion of a value from one type to another is called casting. This particular example is called an
implicit cast, because the code doesn’t explicitly state that a cast is needed, and the compiler has to work
it out for itself. The two warnings you got during compilation were issued because the implicit casts that
were inserted implied information could be lost due to the conversion from one type to another.

You should beware when using implicit casts. Compilers do not always supply a warning that an
implicit cast is being made, and if you are assigning a value of one type to a variable of a type with a
lesser range of values, then there is always a danger that you will lose information. If there are implicit
casts in your program that you have included accidentally, then they may represent bugs that may be
difficult to locate.

Where such an assignment is unavoidable, you can specify the conversion explicitly to demonstrate that
it is no accident and that you really meant to do it. You do this by making an explicit cast of the value on
the right of the assignment to int, so the statement would become:

strips_per_roll = static_cast<int>(rolllength / height);   // Get number of strips
// in a roll

The addition of static_cast<int> with the parentheses around the expression on the right tells the com-
piler explicitly that you want to convert the value of the expression to int. Although this means that you
still lose the fractional part of the value, the compiler assumes that you know what you are doing and will
not issue a warning. You’ll see more about static_cast<>() and other types of explicit casting, later in
this chapter.

69

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 69



Note how you calculate the perimeter of the room in the next statement. To multiply the sum of the length
and the width by two, you enclose the expression summing the two variables between parentheses. This
ensures that the addition is performed first and the result is multiplied by 2.0 to produce the correct value
for the perimeter. You can use parentheses to make sure that a calculation is carried out in the order you
require because expressions in parentheses are always evaluated first. Where there are nested parentheses,
the expressions within the parentheses are evaluated in sequence, from the innermost to the outermost.

The third statement, calculating how many strips of paper are required to cover the room, uses the same
effect that you observed in the first statement: The result is rounded down to the nearest integer because
it is to be stored in the integer variable, strips_reqd. This is not what you need in practice. It would be
best to round up for estimating, but you don’t have enough knowledge of C++ to do this yet. Once you
have read the next chapter, you can come back and fix it!

The last arithmetic statement calculates the number of rolls required by dividing the number of strips
required (an integer) by the number of strips in a roll (also an integer). Because you are dividing one
integer by another, the result has to be an integer, and any remainder is ignored. This would still be the
case if the variable nrolls were floating point. The integer value resulting from the expression would
be converted to floating-point form before it was stored in nrolls. The result that you obtain is essen-
tially the same as if you had produced a floating-point result and rounded down to the nearest integer.
Again, this is not what you want, so if you want to use this, you will need to fix it.

Displaying the Result
The result of the calculation is displayed by the following statement:

cout << endl
<< “For your room you need “ << nrolls << “ rolls of wallpaper.”
<< endl;

This is a single output statement spread over three lines. It first outputs a newline character and then the
text string “For your room you need “. This is followed by the value of the variable nrolls and finally
the text string “ rolls of wallpaper.”. As you can see, output statements are very easy in C++.

Finally, the program ends when this statement is executed:

return 0;

The value zero here is a return value that, in this case, will be returned to the operating system. You will
see more about return values in Chapter 5.

Calculating a Remainder
You saw in the last example that dividing one integer value by another produces an integer result that
ignores any remainder, so that 11 divided by 4 gives the result 2. Because the remainder after division
can be of great interest, particularly when you are dividing cookies amongst children, for example, C++

70

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 70



provides a special operator, %, for this. So you can write the following statements to handle the cookie-
sharing problem:

int residue = 0, cookies = 19, children = 5;
residue = cookies % children;

The variable residue will end up with the value 4, the number left after dividing 19 by 5. To calculate
how many cookies each child receives, you just need to use division, as in the statement:

each = cookies / children;

Modifying a Variable
It’s often necessary to modify the existing value of a variable, such as by incrementing it or doubling it.
You could increment a variable called count using the statement:

count = count + 5;

This simply adds 5 to the current value stored in count and stores the result back in count, so if count
started out at 10, it would end up as 15.

You also have an alternative, shorthand way of writing the same thing in C++:

count += 5;

This says, “Take the value in count, add 5 to it, and store the result back in count.” We can also use other
operators with this notation. For example,

count *= 5;

has the effect of multiplying the current value of count by 5 and storing the result back in count. In
general, you can write statements of the form,

lhs op=  rhs;

lhs stands for any legal expression for the left-hand side of the statement and is usually (but not neces-
sarily) a variable name. rhs stands for any legal expression on the right-hand side of the statement. op
is any of the following operators:

You have already met the first five of these operators, and you’ll see the others, which are the shift and
logical operators, later in this chapter.

+ - * / %

<< >> & ^ |

71

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 71



The general form of the statement is equivalent to this:

lhs = lhs op (rhs);

The parentheses around rhs imply that this expression is evaluated first, and the result becomes the
right operand for op.

This means that you can write statements such as:

a /= b + c;

This will be identical in effect to this statement:

a = a/(b + c);

Thus, the value of a will be divided by the sum of b and c, and the result will be stored back in a.

The Increment and Decrement Operators
I will now introduce some unusual arithmetic operators called the increment and decrement operators,
as you will find them to be quite an asset once you get further into applying C++ in earnest. These are
unary operators that you use to increment or decrement the value stored in a variable that holds an inte-
gral value. For example, assuming the variable count is of type int, the following three statements all
have exactly the same effect:

count = count + 1;      count += 1;      ++count;

They each increment the variable count by 1. The last form, using the increment operator, is clearly the
most concise.

The increment operator not only changes the value of the variable to which you apply it, but also results
in a value. Thus, using the increment operator to increase the value of a variable by 1 can also appear as
part of a more complex expression. If incrementing a variable using the ++ operator, as in ++count, is con-
tained within another expression, then the action of the operator is to first increment the value of the vari-
able and then use the incremented value in the expression. For example, suppose count has the value 5,
and you have defined a variable total of type int. Suppose you write the following statement:

total = ++count + 6;

This results in count being incremented to 6, and this result is added to 6, so total is assigned the
value 12.

So far, you have written the increment operator, ++, in front of the variable to which it applies. This is called
the prefix form of the increment operator. The increment operator also has a postfix form, where the opera-
tor is written after the variable to which it applies; the effect of this is slightly different. The variable to which
the operator applies is incremented only after its value has been used in context. For example, reset count
to the value 5 and rewrite the previous statement as:

total = count++ + 6;

72

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 72



Then total is assigned the value 11, because the initial value of count is used to evaluate the expres-
sion before the increment by 1 is applied. The preceding statement is equivalent to the two statements:

total = count + 6;
++count;

The clustering of ‘+’ signs, in the example of the preceding postfix form, is likely to lead to confusion.
Generally, it isn’t a good idea to write the increment operator in the way that I have written it here. It
would be clearer to write:

total = 6 + count++;

Where you have an expression such as a++ + b, or even a+++b, it becomes less obvious what is meant or
what the compiler will do. They are actually the same, but in the second case you might really have meant
a + ++b, which is different. It evaluates to one more than the other two expressions.

Exactly the same rules that I have discussed in relation to the increment operator apply to the decrement
operator, --. For example, if count has the initial value 5, then the statement

total = --count + 6;

results in total having the value 10 assigned, whereas,

total = 6 + count--;

sets the value of total to 11. Both operators are usually applied to integers, particularly in the context 
of loops, as you will see in Chapter 3. You will see in later chapters that they can also be applied to other
data types in C++, notably variables that store addresses.

Try It Out The Comma Operator
The comma operator allows you to specify several expressions where normally only one might occur.
This is best understood by looking at an example that demonstrates how it works:

// Ex2_06.cpp
// Exercising the comma operator
#include <iostream>

using std::cout;
using std::endl;

int main()
{

long num1(0L), num2(0L), num3(0L), num4(0L);

num4 = (num1 = 10L, num2 = 20L, num3 = 30L);
cout << endl

<< “The value of a series of expressions “
<< “is the value of the rightmost: “
<< num4;

cout << endl;

73

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 73



return 0;
}

How It Works
If you compile and run this program you will get this output:

The value of a series of expressions is the value of the rightmost: 30

This is fairly self-explanatory. The first statement in main() creates four variables, num1 through num4,
and initializes them to zero using functional notation. The variable num4 receives the value of the last
of the series of three assignments, the value of an assignment being the value assigned to the left-hand
side. The parentheses in the assignment for num4 are essential. You could try executing this without
them to see the effect. Without the parentheses, the first expression separated by commas in the series
will become:

num4 = num1 = 10L

So, num4 will have the value 10L.

Of course, the expressions separated by the comma operator don’t have to be assignments. You could
equally well write the following statements:

long num1(1L), num2(10L), num3(100L), num4(0L);
num4 = (++num1, ++num2, ++num3);

The effect of the assignment statement will be to increment the variables num1, num2, and num3 by 1, and
to set num4 to the value of the last expression which will be 101L. This example is aimed at illustrating the
effect of the comma operator and is not an example of how to write good code.

The Sequence of Calculation
So far, I haven’t talked about how you arrive at the sequence of calculations involved in evaluating an
expression. It generally corresponds to what you will have learned at school when dealing with basic
arithmetic operators, but there are many other operators in C++. To understand what happens with
these you need to look at the mechanism used in C++ to determine this sequence. It’s referred to as
operator precedence.

Operator Precedence
Operator precedence orders the operators in a priority sequence. In any expression, operators with the
highest precedence are always executed first, followed by operators with the next highest precedence,
and so on, down to those with the lowest precedence of all. The precedence of the operators in C++ is
shown in the following table.

74

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 74



There are a lot of operators here that you haven’t seen yet, but you will know them all by the end of the
book. Rather than spreading them around, I have put all the C++ operators in the precedence table so that
you can always refer back to it if you are uncertain about the precedence of one operator relative to another.

Operators with the highest precedence appear at the top of the table. All the operators that appear in the
same cell in the table have equal precedence. If there are no parentheses in an expression, operators with
equal precedence are executed in a sequence determined by their associativity. Thus, if the associativity is
“left,” the left-most operator in an expression is executed first, progressing through the expression to the
right-most. This means that an expression such as a + b + c + d is executed as though it was written
(((a + b) + c) + d) because binary + is left-associative.

Operators Associativity

:: Left

()  []   ->   . Left

!  ~  +(unary) -(unary) ++  --  &(unary) *(unary) (typecast)
static_cast   const_cast   dynamic_cast   reinterpret_cast
sizeof   new   delete typeid

Right

.*(unary) ->* Left

*   /   % Left

+   - Left

<<   >> Left

<   <=   >   >= Left

==   != Left

& Left

^ Left

| Left

&& Left

|| Left

?:(conditional operator) Right

=  *=  /=  %=  +=  -=  &=  ^=  |=  <<=  >>= Right

, Left

75

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 75



Note that where an operator has a unary (working with one operand) and a binary (working with two
operands) form, the unary form is always of a higher precedence and is, therefore, executed first.

Variable Types and Casting
Calculations in C++ can be carried out only between values of the same type. When you write an expres-
sion involving variables or constants of different types, for each operation to be performed the compiler
has to convert the type of one of the operands to match that of the other. This conversion process is called
casting. For example, if you want to add a double value to a value of an integer type, the integer value is
first converted to double, after which the addition is carried out. Of course, the variable that contains the
value to be cast is itself not changed. The compiler will store the converted value in a temporary memory
location, which will be discarded when the calculation is finished.

There are rules that govern the selection of the operand to be converted in any operation. Any expres-
sion to be calculated breaks down into a series of operations between two operands. For example, the
expression 2*3-4+5 amounts to the series 2*3 resulting in 6, 6-4 resulting in 2, and finally 2+5 result-
ing in 7. Thus, the rules for casting operands where necessary need to be defined only in terms of deci-
sions about pairs of operands. So, for any pair of operands of different types, the following rules are
checked in the order that they are written. When one applies, that rule is used.

Rules for Casting Operands
1. If either operand is of type long double, the other is converted to long double.

2. If either operand is of type double, the other is converted to double.

3. If either operand is of type float, the other is converted to float.

4. Any operand of type char, signed char, unsigned char, short, or unsigned short is 
converted to type int.

5. An enumeration type is converted to the first of int, unsigned int, long, or unsigned long
that accommodates the range of the enumerators.

6. If either operand is of type unsigned long, the other is converted to unsigned long.

7. If one operand is of type long and the other is of type unsigned int, then both operands are
converted to type unsigned long.

8. If either operand is of type long, the other is converted to type long.

This looks and reads as though it is incredibly complicated, but the basic principle is to always convert the
value that has the type that is of a more limited range to the type of the other value. This maximizes the

You can always override the precedence of operators by using parentheses. Because
there are so many operators in C++, it’s sometimes hard to be sure what takes prece-
dence over what. It is a good idea to insert parentheses to make sure. A further plus
is that parentheses often make the code much easier to read.

76

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 76



likelihood of being able to accommodate the result. You could try these rules on a hypothetical expression
to see how they work. Suppose that you have a sequence of variable declarations as follows:

double value = 31.0;
int count = 16;
float many = 2.0f;
char num = 4;

Also suppose that you have the following rather arbitrary arithmetic statement:

value = (value - count)*(count - num)/many + num/many;

You can now work out what casts the compiler will apply in the execution of the statement.

The first operation is to calculate (value - count). Rule 1 doesn’t apply but Rule 2 does, so the value of
count is converted to double and the double result 15.0 is calculated.

Next (count - num) must be evaluated, and here the first rule in sequence that applies is Rule 4, so num
is converted from char to int and the result 12 is produced as a value of type int.

The next calculation is the product of the first two results, a double 15.0 and an int 12. Rule 2 applies
here, and the 12 is converted to 12.0 as double, and the double result 180.0 is produced.

This result now has to be divided by many, so Rule 2 applies again, and the value of many is converted to
double before generating the double result 90.0.

The expression num/many is calculated next, and here Rule 3 applies to produce the float value 2.0f
after converting the type of num from char to float.

Lastly, the double value 90.0 is added to the float value 2.0f for which Rule 2 applies, so after convert-
ing the 2.0f to 2.0 as double, the final result of 92.0 is stored in value.

In spite of the preceding sequence reading a bit like The Auctioneer’s Song, you should get the general idea.

Casts in Assignment Statements
As you saw in example Ex2_05.cpp earlier in this chapter, you can cause an implicit cast by writing an
expression on the right-hand side of an assignment that is of a different type from the variable on the left-
hand side. This can cause values to be changed and information to be lost. For instance, if you assign a
float or double value to a variable of type int or a long, the fractional part of the float or double
will be lost and just the integer part will be stored. (You may lose even more information if your float-
ing-point variable exceeds the range of values available for the integer type concerned.)

For example, after executing the following code fragment,

int number = 0;
float decimal = 2.5f;
number = decimal;

77

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 77



the value of number will be 2. Note the f at the end of the constant 2.5f. This indicates to the compiler that
this constant is single precision floating point. Without the f, the default would have been type double.
Any constant containing a decimal point is floating point. If you don’t want it to be double precision, you
need to append the f. A capital letter F would do the job just as well.

Explicit Casts
With mixed expressions involving the basic types, your compiler automatically arranges casting where
necessary, but you can also force a conversion from one type to another by using an explicit cast. To cast
the value of an expression to a given type, you write the cast in the form:

static_cast<the_type_to_convert_to>(expression)

The keyword static_cast reflects the fact that the cast is checked statically — that is, when your pro-
gram is compiled. No further checks are made when you execute the program to see if this cast is safe
to apply. Later, when you get to deal with classes, you will meet dynamic_cast, where the conversion
is checked dynamically — that is, when the program is executing. There are also two other kinds of
cast — const_cast for removing the const-ness of an expression and reinterpret_cast, which is
an unconditional cast — but I’ll say no more about these here.

The effect of the static_cast operation is to convert the value that results from evaluating expression
to the type that you specify between the angled brackets. The expression can be anything from a single
variable to a complex expression involving lots of nested parentheses.

Here’s a specific example of the use of static_cast<>():

double value1 = 10.5;
double value2 = 15.5;
int whole_number = static_cast<int>(value1) + static_cast<int>(value2);

The initializing value for the variable whole_number is the sum of the integral parts of value1 and
value2, so they are each explicitly cast to type int. The variable whole_number will therefore have
the initial value 25. The casts do not affect the values stored in value1 and value2, which will remain
as 10.5 and 15.5, respectively. The values 10 and 15 produced by the casts are just stored temporarily
for use in the calculation and then discarded. Although both casts cause a loss of information in the
calculation, the compiler will always assume that you know what you are doing when you specify a
cast explicitly.

Also, as I described in Ex2_05.cpp relating to assignments involving different types, you can always
make it clear that you know the cast is necessary by making it explicit:

strips_per_roll = static_cast<int>(rolllength / height);     //Get number of strips
// in a roll

You can write an explicit cast for a numerical value to any numeric type, but you should be conscious of the
possibility of losing information. If you cast a value of type float or double to type long, for example, you
will lose the fractional part of the value when it is converted, so if the value started out as less than 1.0, the
result will be 0. If you cast a value of type double to type float, you will lose accuracy because a float
variable has only 7 digits precision, whereas double variables maintain 15. Even casting between integer

78

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 78



types provides the potential for losing data, depending on the values involved. For example, the value of an
integer of type long can exceed the maximum that you can store in a variable of type short, so casting from
a long value to a short may lose information.

In general, you should avoid casting as far as possible. If you find that you need a lot of casts in your
program, the overall design of your program may well be at fault. You need to look at the structure of
the program and the ways in which you have chosen data types to see whether you can eliminate, or 
at least reduce, the number of casts in your program.

Old-Style Casts
Prior to the introduction of static_cast<>() (and the other casts: const_cast<>(), dynamic_cast<>(),
and reinterpret_cast<>(), which I’ll discuss later in the book) into C++, an explicit cast of the result of
an expression to another type was written as:

(the_type_to_convert_to)expression

The result of expression is cast to the type between the parentheses. For example, the statement to calculate
strips_per_roll in the previous example could be written:

strips_per_roll = (int)(rolllength / height);      //Get number of strips in a roll

Essentially, there are four different kinds of casts, and the old-style casting syntax covers them all. Because
of this, code using the old-style casts is more error prone — it is not always clear what you intended, and
you may not get the result you expected. Although you will still see the old style of casting used exten-
sively (it’s still part of the language and you will see it in MFC code for historical reasons), I strongly rec-
ommend that you stick to using only the new casts in your code.

The Bitwise Operators
The bitwise operators treat their operands as a series of individual bits rather than a numerical value.
They work only with integer variables or integer constants as operands, so only data types short, int,
long, signed char, and char, as well as the unsigned variants of these, can be used. The bitwise oper-
ators are useful in programming hardware devices, where the status of a device is often represented as 
a series of individual flags (that is, each bit of a byte may signify the status of a different aspect of the
device), or for any situation where you might want to pack a set of on-off flags into a single variable.
You will see them in action when you look at input/output in detail, where single bits are used to con-
trol various options in the way data is handled.

There are six bitwise operators:

The next sections take a look at how each of them works.

& bitwise AND | bitwise OR ^ bitwise exclusive OR

~ bitwise NOT >> shift right << shift left

79

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 79



The Bitwise AND
The bitwise AND, &, is a binary operator that combines corresponding bits in its operands in a particular
way. If both corresponding bits are 1, the result is a 1 bit, and if either or both bits are 0, the result is a 0 bit.

The effect of a particular binary operator is often shown using what is called a truth table. This shows,
for various possible combinations of operands, what the result is. The truth table for & is as follows:

For each row and column combination, the result of & combining the two is the entry at the intersection
of the row and column. You can see how this works in an example:

char letter1 = ‘A’, letter2 = ‘Z’, result = 0;
result = letter1 & letter2;

You need to look at the bit patterns to see what happens. The letters ‘A’ and ‘Z’ correspond to hexadec-
imal values 0x41 and 0x5A, respectively (see Appendix B for ASCII codes). The way in which the bitwise
AND operates on these two values is shown in Figure 2-9.

Figure 2-9

You can confirm this by looking at how corresponding bits combine with & in the truth table. After the
assignment, result will have the value 0x40, which corresponds to the character ‘@’.

Bitwise AND 0 1

0 0 0

1 0 1

80

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  9:42 AM  Page 80



Because the & produces zero if either bit is zero, you can use this operator to make sure that unwanted
bits are set to 0 in a variable. You achieve this by creating what is called a “mask” and combining with
the original variable using &. You create the mask by specifying a value that has 1 where you want to
keep a bit, and 0 where you want to set a bit to zero. The result of ANDing the mask with another inte-
ger will be 0 bits where the mask bit is 0, and the same value as the original bit in the variable where the
mask bit is 1. Suppose you have a variable letter of type char where, for the purposes of illustration,
you want to eliminate the high order 4 bits, but keep the low order 4 bits. This is easily done by setting
up a mask as 0x0F and combining it with the value of letter using & like this:

letter = letter & 0x0F;

or, more concisely:

letter &= 0x0F;

If letter started out as 0x41, it would end up as 0x01 as a result of either of these statements. This
operation is shown in Figure 2-10.

Figure 2-10

The 0 bits in the mask cause corresponding bits in letter to be set to 0, and the 1 bits in the mask cause
corresponding bits in letter to be kept as they are.

Similarly, you can use a mask of 0xF0 to keep the 4 high order bits, and zero the 4 low order bits.
Therefore, this statement,

letter &= 0xF0;

will result in the value of letter being changed from 0x41 to 0x40.

& 

= 

0letter: 0×41

mask: 0×0F

result: 0×01

0

0

& 

= 

1

0

0

& 

= 

0

0

0

& 

= 

0

0

0

& 

= 

0

1

0

& 

= 

0

1

0

& 

= 

0

1

0

& 

= 

1

1

1

81

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 81



The Bitwise OR
The bitwise OR, |, sometimes called the inclusive OR, combines corresponding bits such that the result
is a 1 if either operand bit is a 1, and 0 if both operand bits are 0. The truth table for the bitwise OR is:

You can exercise this with an example of how you could set individual flags packed into a variable of
type int. Suppose that you have a variable called style of type short that contains 16 individual 1-bit
flags. Suppose further that you are interested in setting individual flags in the variable style. One way
of doing this is by defining values that you can combine with the OR operator to set particular bits on.
To use in setting the rightmost bit, you can define:

short vredraw = 0x01;

For use in setting the second-to-rightmost bit, you could define the variable hredraw as:

short hredraw = 0x02;

So you could set the rightmost two bits in the variable style to 1 with the statement:

style = hredraw | vredraw;

The effect of this statement is illustrated in Figure 2-11.

Because the OR operation results in 1 if either of two bits is a 1, ORing the two variables together produces
a result with both bits set on.

Figure 2-11

OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR 

= 

0hredraw: 0×02

vredraw: 0×01

style: 0×03

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

0

0

0

= 

1

0

1

= 

0

1

1

Bitwise OR 0 1

0 0 1

1 1 1

82

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 82



A very common requirement is to be able to set flags in a variable without altering any of the others which
may have been set elsewhere. You can do this quite easily with a statement such as:

style |= hredraw | vredraw;

This statement will set the two rightmost bits of the variable style to 1, leaving the others at whatever
they were before the execution of this statement.

The Bitwise Exclusive OR
The exclusive OR, ^, is so called because it operates similarly to the inclusive OR but produces 0 when
both operand bits are 1. Therefore, its truth table is as follows:

Using the same variable values that we used with the AND, you can look at the result of the following
statement:

result = letter1 ^ letter2;

This operation can be represented as:

letter1 0100 0001

letter2 0101 1010

EORed together produce:

result 0001 1011

The variable result is set to 0x1B, or 27 in decimal notation.

The ^ operator has a rather surprising property. Suppose that you have two char variables, first with
the value ‘A’, and last with the value ‘Z’, corresponding to binary values 0100 0001 and 0101 1010. If
you write the statements

first ^= last;             // Result first is 0001 1011
last ^= first;             // Result last is 0100 0001
first ^= last;             // Result first is 0101 1010

the result of these is that first and last have exchanged values without using any intermediate mem-
ory location. This works with any integer values.

Bitwise EOR 0 1

0 0 1

1 1 0

83

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 83



The Bitwise NOT
The bitwise NOT, ~, takes a single operand for which it inverts the bits: 1 becomes 0, and 0 becomes 1.
Thus, if you execute the statement

result = ~letter1;

if letter1 is 0100 0001, the variable result will have the value 1011 1110, which is 0xBE, or 190 as a
decimal value.

The Bitwise Shift Operators
These operators shift the value of an integer variable a specified number of bits to the left or right. The
operator >> is for shifts to the right, while << is the operator for shifts to the left. Bits that “fall off” either
end of the variable are lost. Figure 2-12 shows the effect of shifting the 2-byte variable left and right, with
the initial value shown.

Figure 2-12

You declare and initialize a variable called number with the statement:

unsigned short number = 16387U;

As you saw earlier in this chapter, you write unsigned integer literals with a letter U or u appended to
the number. You can shift the contents of this variable to the left with the statement:

number <<= 2;              // Shift left two bit positions

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Decimal 16,387 in binary is:

Shift left 2:

Shift right 2:

These two
bits are
shifted out
and lost

These two
bits are
shifted out
and lost

Zeros are shifted
in from the left

Zeros are shifted
in from the right

– – – – – – – – – –  

– – – – – – – – – –  

=12 

= 4096 

84

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 84



The left operand of the shift operator is the value to be shifted, and the number of bit positions that the
value is to be shifted is specified by the right operand. The illustration shows the effect of the operation.
As you can see, shifting the value 16,387 two positions to the left produces the value 12. The rather dras-
tic change in the value is the result of losing the high order bit when it is shifted out.

You can also shift the value to the right. Let’s reset the value of number to its initial value of 16,387. Then
you can write:

number >>= 2;              // Shift right two bit positions

This shifts the value 16,387 two positions to the right, storing the value 4,096. Shifting right two bits is
effectively dividing the value by 4 (without remainder). This is also shown in the illustration.

As long as bits are not lost, shifting n bits to the left is equivalent to multiplying the value by 2, n times.
In other words, it is equivalent to multiplying by 2n. Similarly, shifting right n bits is equivalent to divid-
ing by 2n. But beware: as you saw with the left shift of the variable number, if significant bits are lost, the
result is nothing like what you would expect. However, this is no different from the multiply operation.
If you multiplied the 2-byte number by 4 you would get the same result, so shifting left and multiply
are still equivalent. The problem of accuracy arises because the value of the result of the multiplication
is outside the range of a 2-byte integer.

You might imagine that confusion could arise between the operators that you have been using for input
and output and the shift operators. As far as the compiler is concerned, the meaning will always be clear
from the context. If it isn’t, the compiler will generate a message, but you need to be careful. For example,
if you want to output the result of shifting a variable number left by 2 bits, you could write the following
statement:

cout << (number << 2);

Here, the parentheses are essential. Without them, the shift operator will be interpreted by the compiler
as a stream operator, so you won’t get the result that you intended; the output will be the value of num-
ber followed by the value 2.

In the main, the right shift operation is similar to the left shift. For example, suppose the variable number
has the value 24, and you execute the following statement:

number >>= 2;

This will result in number having the value 6, effectively dividing the original value by 4. However, the
right shift operates in a special way with signed integer types that are negative (that is, the sign bit,
which is the leftmost bit, is 1). In this case, the sign bit is propagated to the right. For example, declare
and initialize a variable number of type char with the value -104 in decimal:

char number = -104;        // Binary representation is 1001 1000

Now you can shift it right 2 bits with the operation:

number >>= 2;              // Result 1110 0110

85

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 85



The decimal value of the result is -26, as the sign bit is repeated. With operations on unsigned integer
types, of course, the sign bit is not repeated and zeros appear.

You may be wondering how the shift operators, << and >>, can be the same as the operators used with
the standard streams for input and output. These operators can have different meanings in the two con-
texts because cin and cout are stream objects, and because they are objects it is possible to redefine the
meaning of operators in context by a process called operator overloading. Thus the >> operator has
been redefined for input stream objects such as cin so you can use it in the way you have seen. The 
<< operator has also been redefined for use with output stream objects such as cout. You will learn
about operator overloading in Chapter 8.

Understanding Storage Duration and Scope
All variables have a finite lifetime when your program executes. They come into existence from the point
at which you declare them and then, at some point, they disappear — at the latest, when your program
terminates. How long a particular variable lasts is determined by a property called its storage duration.
There are three different kinds of storage duration that a variable can have:

❑ Automatic storage duration

❑ Static storage duration

❑ Dynamic storage duration

Which of these a variable will have depends on how you create it. I will defer discussion of variables
with dynamic storage duration until Chapter 4, but you will be exploring the characteristics of the other
two in this chapter.

Another property that variables have is scope. The scope of a variable is simply that part of your program
over which the variable name is valid. Within a variable’s scope you can legally refer to it, either to set
its value or to it in an expression. Outside of the scope of a variable, you cannot refer to its name — any
attempt to do so will cause a compiler error. Note that a variable may still exist outside of its scope, even
though you cannot refer to it by name. You will see examples of this situation a little later in this discussion.

All of the variables that you have declared up to now have had automatic storage duration, and are
therefore called automatic variables. Let’s take a closer look at these first.

Automatic Variables
The variables that you have declared so far have been automatic declared within a block — that is, within
the extent of a pair of braces. These are called automatic variables and are said to have local scope or block
scope. An automatic variable is “in scope” from the point at which it is declared until the end of the block
containing its declaration. The space that an automatic variable occupies is allocated automatically in a
memory area called the stack that is set aside specifically for this purpose. The default size for the stack is
1MB, which is adequate for most purposes, but if it should turn out to be insufficient, you can increase the
size of the stack by setting the /STACK option for the project to a value of your choosing.

An automatic variable is “born” when it is defined and space for it is allocated on the stack, and it auto-
matically ceases to exist at the end of the block containing the definition of the variable. This will be at

86

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 86



the closing brace matching the first opening brace that precedes the declaration of the variable. Every
time the block of statements containing a declaration for an automatic variable is executed, the variable
is created anew, and if you specified an initial value for the automatic variable, it will be reinitialized
each time it is created. When an automatic variable dies, its memory on the stack will be freed for use
by other automatic variables.

There is a keyword, auto, which you can use to specify automatic variables, but it is rarely used since it
is implied by default. What follows is an example of what I’ve discussed so far about scope.

Try It Out Automatic Variables
I can demonstrate the effect of scope on automatic variables with the following example:

// Ex2_07.cpp
// Demonstrating variable scope
#include <iostream>

using std::cout;
using std::endl;

int main()
{                                         // Function scope starts here

int count1 = 10;
int count3 = 50;
cout << endl

<< “Value of outer count1 = “ << count1
<< endl;

{                                // New scope starts here...
int count1 = 20;              // This hides the outer count1
int count2 = 30;
cout << “Value of inner count1 = “ << count1

<< endl;
count1 += 3;                  // This affects the inner count1
count3 += count2;

}                                // ...and ends here

cout << “Value of outer count1 = “ << count1
<< endl
<< “Value of outer count3 = “ << count3
<< endl;

// cout << count2 << endl;       // uncomment to get an error

return 0;
}                                         // Function scope ends here

The output from this example will be:

Value of outer count1 = 10
Value of inner count1 = 20
Value of outer count1 = 10
Value of outer count3 = 80

87

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 87



How It Works
The first two statements declare and define two integer variables, count1 and count3, with initial values
of 10 and 50, respectively. Both these variables exist from this point to the closing brace at the end of the
program. The scope of these variables also extends to the closing brace at the end of main().

Remember that the lifetime and scope of a variable are two different things. It’s important not to get
these two ideas confused. The lifetime is the period during execution from when the variable is first 
created to when it is destroyed and the memory it occupies is freed for other uses. The scope of a 
variable is the region of program code over which the variable may be accessed.

Following the variable definitions, the value of count1 is output to produce the first of the lines shown
above. There is then a second brace, which starts a new block. Two variables, count1 and count2, 
are defined within this block, with values 20 and 30 respectively. The count1 declared here is different
from the first count1. The first count1 still exists, but its name is masked by the second count1. Any
use of the name count1 following the declaration within the inner block refers to the count1 declared
within that block.

I used a duplicate of the variable name count1 here only to illustrate what happens. Although this code
is legal, it isn’t a good approach to programming in general. In a real-world programming environment
it would be confusing, and if you use duplicate names it makes it very easy to hide variables defined in
an outer scope accidentally.

The value shown in the second output line shows that within the inner block, you are using the count1
in the inner scope — that is, inside the innermost braces:

cout << “Value of inner count1 = “ << count1
<< endl;

Had you still been using the outer count1, then this would display the value 10. The variable count1 is
then incremented by the statement:

count1 += 3;               // This affects the inner count1

The increment applies to the variable in the inner scope, since the outer one is still hidden. However,
count3, which was defined in the outer scope, is incremented in the next statement without any problem:

count3 += count2;

This shows that the variables that were declared at the beginning of the outer scope are accessible from
within the inner scope. (Note that if count3 had been declared after the second of the inner pair of braces,
then it would still be within the outer scope, but in that case count3 would not exist when the above state-
ment is executed.)

After the brace ending the inner scope, count2 and the inner count1 cease to exist. The variables count1
and count3 are still there in the outer scope and the values displayed show that count3 was indeed incre-
mented in the inner scope.

If you uncomment the line

// cout << count2 << endl;          // uncomment to get an error

88

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 88



the program will no longer compile correctly because it attempts to output a non-existent variable. You
will get an error message something like,

c:\microsoft visual studio\myprojects\Ex2_07\Ex2_07.cpp(29) : error C2065: ‘count2’
: undeclared identifier

This is because count2 is out of scope at this point.

Positioning Variable Declarations
You have great flexibility in where you place the declarations for your variables. The most important
aspect to consider is what scope the variables need to have. Beyond that, you should generally place a
declaration close to where the variable is to be first used in a program. You should write your programs
with a view to making them as easy as possible for another programmer to understand, and declaring a
variable at its first point of use can be helpful in achieving that.

It is possible to place declarations for variables outside of all of the functions that make up a program.
The next section looks what effect that has on the variables concerned.

Global Variables
Variables that are declared outside of all blocks and classes (I will discuss classes later in the book) are
called globals and have global scope (which is also called global namespace scope or file scope). This
means that they are accessible throughout all the functions in the file, following the point at which they
are declared. If you declare them at the very top of your program, they will be accessible from anywhere
in the file.

Globals also have static storage duration by default. Global variables with static storage duration 
will exist from the start of execution of the program until execution of the program ends. If you do 
not specify an initial value for a global variable, it will be initialized with 0 by default. Initialization 
of global variables takes place before the execution of main() begins, so they are always ready to be
used within any code that is within the variable’s scope.

Figure 2-13 shows the contents of a source file, Example.cpp, and the arrows indicate the scope of each
of the variables.

The variable value1, which appears at the beginning of the file, is declared at global scope, as is value4,
which appears after the function main(). The scope of each global variable extends from the point at which
it is defined to the end of the file. Even though value4 exists when execution starts, it cannot be referred
to in main() because main() is not within the variable’s scope. For main() to use value4, you would
need to move its declaration to the beginning of the file. Both value1 and value4 will be initialized with
0 by default, which is not the case for the automatic variables. Note that the local variable called value1
in function() hides the global variable of the same name.

Since global variables continue to exist for as long as the program is running, this might raise the question
in your mind, “Why not make all variables global and avoid this messing about with local variables that
disappear?” This sounds very attractive at first, but as with the Sirens of mythology, there are serious side
effects that completely outweigh any advantages you may gain.

89

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 89



Figure 2-13

Real programs are generally composed of a large number of statements, a significant number of functions,
and a great many variables. Declaring all variables at the global scope greatly magnifies the possibility of
accidental erroneous modification of a variable, as well as making the job of naming them sensibly quite
intractable. They will also occupy memory for the duration of program execution. By keeping variables
local to a function or a block, you can be sure they have almost complete protection from external effects,
they will only exist and occupy memory from the point at which they are defined to the end of the enclos-
ing block, and the whole development process becomes much easier to manage.

If you take a look at the Class View pane on the right of the IDE window for any of the examples that you
have created so far and extend the class tree for the project by clicking on the +, you will see an entry called
Global Functions and Variables. If you click on this, you will see a list of everything in your program that
has global scope. This will include all the global functions, as well as any global variables that you have
declared.

long value1;

int value4;

int main()
{
    int value2;
    …
        {
            int value3;
            …
        }
}

int function(int n)
{
    long value5; 
  
    int value1;
     …
  
}

value3
value2

value1

value4

value1

value5

90

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 90



Try It Out The Scope Resolution Operator
As you have seen, a global variable can be hidden by a local variable with the same name. However, it’s
still possible to get at the global variable by using the scope resolution operator (::), which you saw in
Chapter 1 when I was discussing namespaces. I can demonstrate how this works with a revised version
of the last example:

// Ex2_08.cpp
// Demonstrating variable scope
#include <iostream>

using std::cout;
using std::endl;

int count1 = 100;                         // Global version of count1

int main()
{                                         // Function scope starts here

int count1 = 10;
int count3 = 50;
cout << endl

<< “Value of outer count1 = “ << count1
<< endl;

cout << “Value of global count1 = “ << ::count1            // From outer block
<< endl;

{                                // New scope starts here...
int count1 = 20;              //This hides the outer count1
int count2 = 30;
cout << “Value of inner count1 = “ << count1

<< endl;
cout << “Value of global count1 = “ << ::count1         // From inner block

<< endl;

count1 += 3;                  // This affects the inner count1
count3 += count2;

}                                // ...and ends here.

cout << “Value of outer count1 = “ << count1
<< endl
<< “Value of outer count3 = “ << count3
<< endl;

//cout << count2 << endl;        // uncomment to get an error
return 0;

}                                         // Function scope ends here

91

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 91



If you compile and run this example, you’ll get the following output:

Value of outer count1 = 10
Value of global count1 = 100
Value of inner count1 = 20
Value of global count1 = 100
Value of outer count1 = 10
Value of outer count3 = 80

How It Works
The shaded lines of code indicate the changes I have made to the previous example; I just need to discuss
the effects of those. The declaration of count1 prior to the definition of the function main() is global, so
in principle it is available anywhere through the function main(). This global variable is initialized with
the value of 100:

int count1 = 100;                         // Global version of count1

However, you have two other variables called count1, which are defined within main(), so throughout
the program the global count1 is hidden by the local count1 variables. The first new output statement is:

cout << “Value of global count1 = “ << ::count1               // From outer block
<< endl;

This uses the scope resolution operator (::) to make it clear to the compiler that you want to reference
the global variable count1, not the local one. You can see that this works from the value displayed in the
output.

In the inner block, the global count1 is hidden behind two variables called count1: the inner count1
and the outer count1. We can see the global scope resolution operator doing its stuff within the inner
block, as you can see from the output generated by the statement we have added there:

cout << “Value of global count1 = “ << ::count1               // From inner block
<< endl;

This outputs the value 100, as before — the long arm of the scope resolution operator used in this fashion
always reaches a global variable.

You have seen earlier that you can refer to a name in the std namespace by qualifying the name with
the namespace name, such as with std::cout or std::endl. The compiler searches the namespace
that has the name specified by the left operand of the scope resolution operator for the name that you
specify as the right operand. In the preceding example, you are using the scope resolution operator to
search the global namespace for the variable count1. By not specifying a namespace name in front of
the operator, you are telling the compiler to search the global namespace for the name that follows it.

You’ll see a lot more of this operator when you get to explore object-oriented programming in Chapter 9
where it is used extensively.

92

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 92



Static Variables
It’s conceivable that you might want to have a variable that’s defined and accessible locally, but which
also continues to exist after exiting the block in which it is declared. In other words, you need to declare
a variable within a block scope, but to give it static storage duration. The static specifier provides you
with the means of doing this, and the need for this will become more apparent when we come to deal with
functions in Chapter 5.

In fact, a static variable will continue to exist for the life of a program even though it is declared within a
block and available only from within that block (or its sub-blocks). It still has block scope, but it has static
storage duration. To declare a static integer variable called count you would write:

static int count;

If you don’t provide an initial value for a static variable when you declare it, then it will be initialized for
you. The variable count declared here will be initialized with 0. The default initial value for a static vari-
able is always 0, converted to the type applicable to the variable. Remember that this is not the case with
automatic variables.

If you don’t initialize your automatic variables, they will contain junk values left over from the program
that last used the memory they occupy.

Namespaces
I have mentioned namespaces several times, so it’s time you got a better idea of what they are about. They
are not used in the libraries supporting MFC, but the libraries that support the CLR and Windows forms
use namespaces extensively, and of course the ANSI C++ standard library does, too.

You know already that all the names used in the ISO/ANSI C++ standard library are defined in a name-
space with the name std. This means that all the names used in the standard library have an additional
qualifying name, std, so cout for example is really std::cout. You can see fully qualified names in use
with this trivial example:

// Ex2_09.cpp
// Demonstrating namespace names
#include <iostream>

int value = 0;

int main()
{
std::cout << “enter an integer: “;
std::cin  >> value;
std::cout << “\nYou entered “ << value

<< std:: endl;
return 0;

}

93

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 93



The declaration for the variable value is outside of the definition of main(). This declaration is said to
be at global namespace scope, because the variable declaration does not appear within a namespace.
The variable is accessible from anywhere within main() as well as from within any other function defini-
tions that you might have in the same source file. I have put the declaration for value outside of main()
just so I can demonstrate in the next section how it could be in a namespace.

Note the absence of using declarations for cout and endl. It isn’t necessary in this case because you are
fully qualifying the names you are using from the namespace std. It would be silly to do so, but you could
use cout as the name of the integer variable here, and there would be no confusion because cout by itself
is different from std::cout. Thus namespaces provide a way to separate the names used in one part of a
program from those used in another. This is invaluable with large projects involving several teams of pro-
grammers working on different parts of the program. Each team can have its own namespace name, and
worries about two teams accidentally using the same name for different functions disappear.

Look at this line of code:

using namespace std;

This statement is a using directive.

The effect of this is to import all the names from the std namespace into the source file so you can refer
to anything that is defined in this namespace without qualifying the name in your program. Thus you can
write the name cout instead of std::cout and endl instead of std::endl. The downside of this blanket
using directive is that it effectively negates the primary reason for using a namespace — that is, prevent-
ing accidental name clashes. There are two ways to access names from a namespace without negating its
intended effect.  One way is to qualify each name explicitly with the namespace name; unfortunately,
this tends to make the code very verbose and reduce its readability. The other possibility that I men-
tioned early on in this chapter is to introduce just the names that you use in your code with using decla-
rations, like this for example:

using std::cout;             // Allows cout usage without qualification
using std::endl;             // Allows endl usage without qualification

These statements are called using declarations. Each statement introduces a single name from the spec-
ified namespace and allows it to be used unqualified within the program code that follows. This pro-
vides a much better way of importing names from a namespace as you only import the names that you
actually use in your program. Because Microsoft has set the precedent of importing all names from the
System namespace with C+/CLI code, I will continue with that in the C++/CLI examples. In general I
recommend that you use using declarations in your own code rather than using directives when you
are writing programs of any significant size.

Of course, you can define your own namespace that has a name that you choose. The next section shows
how that’s done.

Declaring a Namespace
You use the keyword namespace to declare a namespace — like this:

namespace myStuff
{

94

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 94



// Code that I want to have in the namespace myStuff...
}

This defines a namespace with the name myStuff. All name declarations in the code between the braces
will be defined within the myStuff namespace, so to access any such name from a point outside this
namespace, the name must be qualified by the namespace name, myStuff, or have a using declaration
that identifies that the name is from the myStuff namespace.

You can’t declare a namespace inside a function. It’s intended to be used the other way round; you use a
namespace to contain functions, global variables, and other named entities such as classes in your program.
You must not put the definition of main() in a namespace, though. The function main() is where execu-
tion starts and it must always be at global namespace scope, otherwise the compiler won’t recognize it.

You could put the variable value in the previous example in a namespace:

// Ex2_10.cpp
// Declaring a namespace
#include <iostream>

namespace myStuff
{

int value = 0;
}

int main()
{

std::cout << “enter an integer: “;
std::cin  >> myStuff::value;
std::cout << “\nYou entered “ << myStuff::value

<< std:: endl;
return 0;

}

The myStuff namespace defines a scope, and everything within the namespace scope is qualified with
the namespace name. To refer to a name declared within a namespace from outside, you must qualify it
with the namespace name. Inside the namespace scope any of the names declared within it can be referred
to without qualification — they are all part of the same family. Now you must qualify the name value
with myStuff, the name of our namespace. If not, the program will not compile. The function main()
now refers to names in two different namespaces, and in general you can have as many namespaces in
your program as you need. You could remove the need to qualify value by adding a using directive:

// Ex2_11.cpp
// Using a using directive
#include <iostream>

namespace myStuff
{

int value = 0;
}

using namespace myStuff;            // Make all the names in myStuff available

int main()

95

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 95



{
std::cout << “enter an integer: “;
std::cin  >> value;
std::cout << “\nYou entered “ << value

<< std:: endl;
return 0;

}

You could also have a using directive for std as well, so you wouldn’t need to qualify standard library
names either, but as I said, this defeats the whole purpose of namespaces. Generally, if you use namespaces
in your program, you should not add using directives all over your program; otherwise, you might as well
not bother with namespaces in the first place. Having said that, I will add a using directive for std in some
of our examples to keep the code less cluttered and easier for you to read. When you are starting out with a
new programming language, you can do without clutter, no matter how useful it is in practice.

Multiple Namespaces
A real-world program is likely to involve multiple namespaces. You can have multiple declarations of a
namespace with a given name and the contents of all namespace blocks with a given name are within
the same namespace. For example, you might have a program file with two namespaces:

namespace sortStuff
{

// Everything in here is within sortStuff namespace
}

namespace calculateStuff
{
// Everything in here is within calculateStuff namespace
// To refer to names from sortStuff they must be qualified

}

namespace sortStuff
{
// This is a continuation of the namespace sortStuff
// so from here you can refer to names in the first sortStuff namespace
// without qualifying the names

}

A second declaration of a namespace with a given name is just a continuation of the first, so you can ref-
erence names in the first namespace block from the second without having to qualify them. They are all
in the same namespace. Of course, you would not usually organize a source file in this way deliberately,
but in can arise quite naturally with header files that you include into a program. For example, you might
have something like this:

#include <iostream>       // Contents are in namespace std
#include “myheader.h”     // Contents are in namespace myStuff
#include <string>         // Contents are in namespace std

96

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 96



// and so on...

Here, <iostream> and string are ISO/ANSI C++ standard library headers, and myheader.h repre-
sents a header file that contains our program code. You have a situation with the namespaces that is an
exact parallel of the previous illustration.

This has given you a basic idea of how namespaces work. There is a lot more to namespaces than I have
discussed here, but if you grasp this bit you should be able to find out more about it without difficulty, if
the need arises.

Note that the two forms of #include directive in the previous code fragment cause the compiler to
search for the file in different ways. When you specify the file to be included between angled brackets,
you are indicating to the compiler that it should search for the file along the path specified by the /I
compiler option, and failing that along the path specified by the INCLUDE environment variable. These
paths locate the C+ library files, which is why this form is reserved for library headers. The INCLUDE
environment variable points to the folder holding the library header and the /I option allows an addi-
tional directory containing library headers to be specified. When the file name is between double quotes, 
the compiler will search the folder that contains the file in which the #include directive appears. 
If the file is not found it will search in any directories that #include the current file. If that fails to 
find the file it will search the library directories.

C++/CLI Programming
C++/CLI provides a number of extensions and additional capabilities to what I have discussed in this
chapter up to now. I’ll first summarize these additional capabilities before going into details. The addi-
tional C++/CLI capabilities are:

❑ All of the ISO/ANSI fundamental data types can be used as I have described in a C++/CLI 
program, but they have some extra properties in certain contexts that I’ll come to.

❑ C++/CLI provides its own mechanism for keyboard input and output to the command line in 
a console program.

❑ C++/CLI introduces the safe_cast operator that ensures that a cast operation results in verifi-
able code being generated.

❑ C++/CLI provides an alternative enumeration capability that is class-based and offers more
flexibility than the ISO/ANSI C++ enum declaration you have seen.

You’ll learn more about CLR reference class types beginning in Chapter 4, but because I have introduced
global variables for native C++ I’ll mention now that variables of CLR reference class types cannot be global
variables.

I want to begin by looking at fundamental data types in C++/CLI.

97

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 97



C++/CLI Specific: Fundamental Data Types
You can and should use the ISO/ANSI C++ fundamental data type names in your C++/CLI programs,
and with arithmetic operations they work exactly as you have seen in native C++. In addition C++/CLI
defines two additional integer types:

To specify literals of type long long you append LL or lowercase ll to the integer value. For example:

long long big = 123456789LL;

A literal of type unsigned long long you append ULL or ull to the integer value:

unsigned long long huge = 999999999999999ULL;

Although all the operations with fundamental types you have seen work in the same way in C++/CLI,
the fundamental type names in a C++/CLI program have a different meaning and introduce additional
capabilities in certain situations. A fundamental type in a C++/CLI program is a value class type and can
behave either as an ordinary value or as an object if the circumstances require it.

Within the C++/CLI language, each ISO/ANSI fundamental type name maps to a value class type that is
defined in the System namespace. Thus in a C++/CLI program the ISO/ANSI fundamental type names
are shorthand for the associated value class type. This enables the value of a fundamental type to be
treated simply as a value or be automatically converted to an object of its associated value class type when
necessary. The fundamental types, the memory they occupy, and the corresponding value class types are
shown in the following table:

Fundamental Type Size(bytes) CLI Value Class

bool 1 System::Boolean

char 1 System::SByte

signed char 1 System::SByte

unsigned char 1 System::Byte

short 2 System::Int16

unsigned short 2 System::UInt16

int 4 System::Int32

Type Size(bytes) Range of Values

long long 8 From -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long long 8 From 0 to 18,446,744,073,709,551,615

98

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 98



By default, type char is equivalent to signed char so the associated value class type is System::SByte.
Note that you can change the default for char to unsigned char by setting the compiler option /J, 
in which case the associated value class type will be System::Byte. System is the root namespace name in
which the C++/CLI value class types are defined. There are many other types defined within the System
namespace, such as the type String for representing strings that you’ll meet in Chapter 4. C++/CLI 
also defines the System::Decimal value class type within the System namespace and variables of 
type Decimal store exact decimal values with 28 decimal digits precision.

As I said, the value class type associated with each fundamental type name adds important additional
capabilities for such variables in C++/CLI. When necessary, the compiler will arrange for automatic 
conversions from the original value to an object of a value class type and vice versa; these processes are
referred to as boxing and unboxing, respectively. This allows a variable of any of these types to behave
as a simple value or as an object, depending on the circumstances. You’ll learn more about how and when
this happens in Chapter 9.

Because the ISO/ANSI C++ fundamental type names are aliases for the value class type names in a
C++/CLI program, in principle you can use either in your C++/CLI code. For example, you already
know you can write statements creating integer and floating-point variables like this:

int count = 10;
double value = 2.5;

You could use the value class names that correspond with the fundamental type names and have the
program compile without any problem, like this:

System::Int32 count = 10;
System::Double value = 2.5;

Fundamental Type Size(bytes) CLI Value Class

unsigned int 4 System::UInt32

long 4 System::Int32

unsigned long 4 System::UInt32

long long 8 System::Int64

unsigned long long 8 System::UInt64

float 4 System::Single

double 8 System::Double

long double 8 System::Double

wchar_t 2 System::Char

99

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 99



Note that this is not exactly the same as using the fundamental type names such as int and double in
your code, rather than the value class names System::Int32 and System::Double. The reason is that
the mapping between fundamental type names and value class types I have described applies to the
Visual C++ 2008 compiler; other compilers are not obliged to implement the same mapping. Type long
in Visual C++ 2008 maps to type Int32, but it is quite possible that it could map to type Int64 on some
other implementation. On the other hand, the representations of the value class type that are equivalents 
to the fundamental native C++ types are fixed; for example, type System::Int32 will always be a 32-bit
signed integer on any C++/CLI implementation.

Having data of the fundamental types being represented by objects of a value class type is an important
feature of C++/CLI. In ISO/ANSI C++ fundamental types and class types are quite different, whereas 
in C++/CLR all data is stored as objects of a class type, either as a value class type or as a reference class
type. You’ll learn about reference class types in Chapter 7.

Next, you’ll try a CLR console program.

Try It Out A Fruity CLR Console Program
Create a new project and select the project type as CLR and the template as CLR Console Application.
You can then enter the project name as Ex2_12, as shown in Figure 2-14.

Figure 2-14

When you click on the OK button, the Application Wizard will generate the project containing the fol-
lowing code:

// Ex2_12.cpp : main project file.

#include “stdafx.h”

100

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 100



using namespace System;

int main(array<System::String ^> ^args)
{

Console::WriteLine(L”Hello World”);
return 0;

}

I’m sure you noticed the extra stuff between the parentheses following main. This is concerned with
passing values to the function main() when you initiate execution of the program from the command
line, and you’ll learn more about this when you explore functions in detail. If you compile and execute
the default project it will write “Hello World” to the command line. Now, you’ll convert this program 
to a CLR version of Ex2_02 so you can see how similar it is. To do this you can modify the code in
Ex2_12.cpp as follows:

// Ex2_12.cpp : main project file.
#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{

int apples, oranges;                   // Declare two integer variables
int fruit;                             // ...then another one

apples = 5; oranges = 6;                 // Set initial values
fruit = apples + oranges;                // Get the total fruit

Console::WriteLine(L”\nOranges are not the only fruit...”);
Console::Write(L”- and we have “);
Console::Write(fruit);
Console::Write(L” fruits in all.\n”);
return 0;

}

The new lines are shown shaded and those in the lower block replace the two lines in the automatically
generated version of main(). You can now compile and execute the project. The program should produce
the following output:

Oranges are not the only fruit...
- and we have 11 fruits in all.

How It Works
The only significant difference is in how the output is produced. The definitions for the variables and the
computation are the same. Although you are using the same type names as in the ISO/ANSI C++ ver-
sion of the example, the effect is not the same. The variables apples, oranges, and fruit will be of the
C++/CLI type, System::Int32, that is specified by type int, and they have some additional capabilities
compared to the ISO/ANSI type. The variables here can act as objects in some circumstances or as simple
values as they do here. If you want to confirm that Int32 is the same as int in this case, you could replace
the int type name with Int32 and recompile the example. It should work in exactly the same way.

101

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 101



Evidently the following line of code produces the first line of output:

Console::WriteLine(L”\nOranges are not the only fruit...”);

The WriteLine() function is a C++/CLI function that is defined in the Console class in the System
namespace. You’ll learn about classes in detail in Chapter 6, but for now the Console class represents the
standard input and output streams that correspond to the keyboard and the command line in a command
line window. Thus the WriteLine() function writes whatever is between the parentheses following the
function name to the command line and then writes a newline character to move the cursor to the next line
ready for the next output operation. Thus the preceding statement writes the text “\nOranges are not
the only fruit...” between the double quotes to the command line. The L that precedes the string
indicates that it is a wide-character string where each character occupies two bytes.

The Write() function in the Console class is essentially the same as the WriteLine() function, the
only difference being that it does not automatically write a newline character following the output that
you specify. You can therefore use the Write() function when you want to write two or more items of
data to the same line in individual output statements.

Values that you place between the parentheses that follow the name of a function are called arguments.
Depending on how a function was written, it will accept zero, one, or more arguments when it is called.
When you need to supply more than one argument they must be separated by commas. There’s more 
to the output functions in the Console class, so I want to explore Write() and WriteLine() in a little
more depth.

C++/CLI Output to the Command Line
You saw in the previous example how you can use the Console::Write() and Console::WriteLine()
methods to write a string or other items of data to the command line. You can put a variable of any of the
types you have seen between the parentheses following the function name and the value will be written
to the command line. For example, you could write the following statements to output information about
a number of packages:

int packageCount = 25;                 // Number of packages
Console::Write(L”There are “);         // Write string - no newline
Console::Write(packageCount);          // Write value -no newline
Console::WriteLine(L” packages.”);     // Write string followed by newline

Executing these statements will produce the output:

There are 25 packages.

The output is all on the same line because the first two output statements use the Write() function, which
does not output a newline character after writing the data. The last statement uses the WriteLine() func-
tion, which does write a newline after the output so any subsequent output will be on the next line.

It looks a bit of a laborious process having to use three statements to write one line of output, and it will
be no surprise to you that there is a better way. That capability is bound up with formatting the output
to the command line in a .NET Framework program so you’ll explore that a little next.

102

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 102



C++/CLI Specific — Formatting the Output
Both the Console::Write() and Console::WriteLine() functions have a facility for you to control
the format of the output, and the mechanism works in exactly the same way with both. The easiest way
to understand it is through some examples. First look at how you can get the output that was produced
by the three output statements in the previous section with a single statement:

int packageCount = 25;
Console::WriteLine(L”There are {0} packages.”, packageCount);

The second statement here will output the same output as you saw in the previous section. The first
argument to the Console::WriteLine() function here is the string L”There are {0} packages.”,
and the bit that determines that the value of the second should be placed in the string is “{0}”. The
braces enclose a format string that applies to the second argument to the function although in this
instance the format string is about as simple as it could get, being just a zero. The arguments that fol-
low the first argument to the Console::WriteLine() function are numbered in sequence starting
with zero, like this:

referenced by:                       0     1     2   etc.
Console::WriteLine(“Format string”, arg2, arg3, arg4,... );

Thus the zero between the braces in the previous code fragment indicates that the value of the
packageCount argument should replace the {0} in the string that is to be written to the command line.

If you want to output the weight as well as the number of packages, you could write this:

int packageCount = 25;
double packageWeight = 7.5;
Console::WriteLine(L”There are {0} packages weighing {1} pounds.”,

packageCount, packageWeight);

The output statement now has three arguments, and the second and third arguments are referenced by 
0 and 1, respectively, between the braces. So, this will produce the output:

There are 25 packages weighing 7.5 pounds.

You could also write the statement with the last two arguments in reverse sequence, like this:

Console::WriteLine(L”There are {1} packages weighing {0} pounds.”,
packageWeight, packageCount);

The packageWeight variable is now referenced by 0 and packageCount by 1 in the format string, and
the output will be the same as previously.

You also have the possibility to specify how the data is to be presented on the command line. Suppose
that you wanted the floating-point value packageWeight to be output with two places of decimals. You
could do that with the following statement:

Console::WriteLine(L”There are {0} packages weighing {1:F2} pounds.”,
packageCount, packageWeight);

103

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 103



In the substring {1:F2}, the colon separates the index value, 1, that identifies the argument to be selected
from the format specification that follows, F2. The F in the format specification indicates that the output
should be in the form “±ddd.dd…” (where d represents a digit) and the 2 indicates that you want to have
two decimal places after the point. The output produced by the statement will be:

There are 25 packages weighing 7.50 pounds.

In general you can write the format specification in the form {n,w : Axx} where the n is an index value
selecting the argument following the format string, w is an optional field width specification, the A is a
single letter specifying how the value should be formatted, and the xx is an optional one or two digits
specifying the precision for the value. The field width specification is a signed integer. The value will be
right-justified in the field if w is positive and left-justified when it is negative. If the value occupies less
than the number of positions specified by w the output is padded with spaces; if the value requires more
positions than that specified by w the width specification is ignored. Here’s another example:

Console::WriteLine(L”Packages:{0,3} Weight: {1,5:F2} pounds.”,
packageCount, packageWeight);

The package count is output with a field width of 3 and the weight in a field width of 5, so the output
will be:

Packages: 25 Weight:  7.50 pounds.

There are other format specifiers that enable you to present various types of data in different ways. Here
are some of the most useful format specifications:

Format Specifier Description

C or c Outputs the value as a currency amount. 

D or d Outputs an integer as a decimal value. If you specify the precision to be
more than the number of digits the number will be padded with zeroes to
the left.

E or e Outputs a floating-point value in scientific notation, that is, with an expo-
nent. The precision value will indicate the number of digits to be output fol-
lowing the decimal point.

F or f Outputs a floating-point value as a fixed-point number of the form
±dddd.dd. . . .

G or g Outputs the value in the most compact form depending on the type of the
value and whether you have specified the precision. If you don’t specify the
precision, a default precision value will be used.

N or n Outputs the value as a fixed-point decimal value using comma separators
between each group of three digits when necessary.

X or x Output an integer as a hexadecimal value. Upper or lowercase hexadecimal
digits will be output depending on whether you specify X or x.

104

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 104



That gives you enough of a toehold in output to continue with more C++/CLI examples. Now, you’ll
take a quick look at some of this in action.

Try It Out Formatted Output
Here’s an example that calculates the price of a carpet in order to demonstrate output in a CLR console
program:

// Ex2_13.cpp : main project file.
// Calculating the price of a carpet
#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
double carpetPriceSqYd = 27.95;
double roomWidth = 13.5;             // In feet
double roomLength = 24.75;           // In feet
const int feetPerYard = 3;
double roomWidthYds = roomWidth/feetPerYard;
double roomLengthYds = roomLength/feetPerYard;
double carpetPrice = roomWidthYds*roomLengthYds*carpetPriceSqYd;

Console::WriteLine(L”Room size is {0:F2} yards by {1:F2} yards”,
roomLengthYds, roomWidthYds);

Console::WriteLine(L”Room area is {0:F2} square yards”,
roomLengthYds*roomWidthYds);

Console::WriteLine(L”Carpet price is ${0:F2}”, carpetPrice);
return 0;

}

The output should be:

Room size is 8.25 yards by 4.50 yards
Room area is 37.13 square yards
Carpet price is $1037.64

How It Works
The dimensions of the room are specified in feet whereas the carpet is priced per square yard so you
have defined a constant, feetPerYard, to use in the conversion from feet to yards. In the expression
to convert each dimension you are dividing a value of type double by a value of type int. The compiler
will insert code to convert the value of type int to type double before carrying out the multiplication.
After converting the room dimensions to yards you calculate the price of the carpet by multiplying
the dimensions in yards to obtain the area in square yards and multiplying that by the price per
square yard.

The output statements use the F2 format specification to limit the output values to two decimal places.
Without this there would be more decimal places in the output that would be inappropriate, especially
for the price. You could try removing the format specification to see the difference.

105

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 105



Note that the statement to output the area has an arithmetic expression as the second argument to the
WriteLine() function. The compiler will arrange to first evaluate the expression, and then the result
will be passed as the actual argument to the function. In general you can always use an expression as 
an argument to a function as long as the result of evaluating the expression is of a type that is consistent
with the function parameter type.

C++/CLI Input from the Keyboard
The keyboard input capabilities that you have with a .NET Framework console program are somewhat
limited. You can read a complete line of input as a string using the Console::ReadLine() function, or
you can read a single character using the Console::Read() function. You can also read which key was
pressed using the Console::ReadKey() function.

You would use the Console::ReadLine() function like this:

String^ line = Console::ReadLine();

This reads a complete line of input text that is terminated when you press the Enter key. The 
variable line is of type String^ and stores a reference to the string that results from executing the
Console::ReadLine() function; the little hat character, ^, following the type name, String, indi-
cates that this is a handle that references an object of type String. You’ll learn more about type
String and handles for String objects in Chapter 4.

A statement that reads a single character from the keyboard looks like this:

char ch = Console::Read();

With the Read() function you could read input data character by character and then analyze the charac-
ters read and convert the input to a corresponding numeric value.

The Console::ReadKey() function returns the key that was pressed as an object of type ConsoleKeyInfo,
which is a value class type defined in the System namespace. Here’s a statement to read a key press:

ConsoleKeyInfo keyPress = Console::ReadKey(true);

The argument true to the ReadKey() function results in the key press not being displayed on the com-
mand line. An argument value of false (or omitting the argument) will cause the character corresponding
the key pressed being displayed. The result of executing the function will be stored in keyPress. To iden-
tify the character corresponding to the key (or keys) pressed, you use the expression keyPress.KeyChar.
Thus you could output a message relating to a key press with the following statement:

Console::WriteLine(L”The key press corresponds to the character: {0}”,
keyPress.KeyChar);

The key that was pressed is identified by the expression keyPress.Key. This expression refers to a
value of a C++/CLI enumeration (which you’ll learn about very soon) that identifies the key that was
pressed. There’s more to the ConsoleKeyInfo objects than I have described. You’ll meet them again
later in the book.

106

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 106



While not having formatted input in a C++/CLI console program is a slight inconvenience while you
are learning, in practice this is a minor limitation. Virtually all the real-world programs you are likely to
write will receive input through components of a window so you won’t typically have the need to read
data from the command line. However, if you do, the value classes that are the equivalents of the fun-
damental types can help.

Reading numerical values from the command line will involve using some facilities that I have not yet
discussed. You’ll learn about these later in the book so I’ll gloss over some of the detail at this point.

If you read a string containing an integer value using the Console::ReadLine() function, the Parse()
function in the Int32 class will convert it to a 32-bit integer for you. Here’s how you might read an inte-
ger using that:

Console::Write(L”Enter an integer: “);
int value = Int32::Parse(Console::ReadLine());
Console::WriteLine(L”You entered {0}”, value);

The first statement just prompts for the input that is required, and the second statement reads the
input. The string that the Console::ReadLine() function returns is passed as the argument to the
Parse() function that belongs to the Int32 class. This will convert the string to a 32-bit integer and
store it in value. The last statement outputs the value to show that all is well. Of course, if you enter
something that is not an integer, disaster will surely follow.

The other value classes that correspond to native C++ fundamental types also define a Parse() func-
tion so for example, when you want to read a floating-point value from the keyboard, you can pass 
the string that Console::ReadLine() returns to the Double::Parse() function. The result will be a
value of type double.

Using safe_cast
The safe_cast operation is for explicit casts in the CLR environment. In most instances you can use
static_cast to cast from one type to another in a C++/CLI program without problems, but because
there are exceptions that will result in an error message, it is better to use safe_cast. You use safe_cast
in exactly the same way as static_cast. For example:

double value1 = 10.5;
double value2 = 15.5;
int whole_number = safe_cast<int>(value1) + safe_cast<int>(value2);

The last statement casts each of the values of type double to type int before adding them together and
storing the result in whole_number.

C++/CLI Enumerations
Enumerations in a C++/CLI program are significantly different from those in an ISO/ANSI C++ program.
For a start you define an enumeration in C++/CLI like this:

enum class Suit{Clubs, Diamonds, Hearts, Spades};

107

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 107



This defines an enumeration type, Suit, and variables of type Suit can be assigned only one of the values
defined by the enumeration — Hearts, Clubs, Diamonds, or Spades. When you refer to the constants in 
a C++/CLI enumeration you must always qualify the constant you are using with the enumeration type
name. For example:

Suit suit = Suit::Clubs;

This statement assigns the value Clubs from the Suit enumeration to the variable with the name suit.
The :: operator that separates the type name, Suit, from the name of the enumeration constant, Clubs,
is the scope resolution operator that you have seen before, and it indicates that Clubs exists within the
scope of the Suit enumeration.

Note the use of the word class in the definition of the enumeration, following the enum keyword. This
does not appear in the definition of an ISO/ANSI C++ enumeration as you saw earlier, and it identifies
the enumeration as C++/CLI. In fact the two words combined, enum class, are a keyword in C++/CLI
that is different from the two keywords, enum and class. The use of the enum class keyword gives a
clue to another difference from an ISO/ANSI C++ enumeration; the constants here that are defined within
the enumeration — Hearts, Clubs, and so on — are objects, not simply values of a fundamental type as 
in the ISO/ANSI C++ version. In fact by default they are objects of type Int32, so they each encapsulate a
32-bit integer value; however, you must cast a constant to the fundamental type int before attempting to
use it as such.

You can use enum struct instead of enum class when you define an enumeration. These are equiv-
alent so it comes down to personal choice as to which you use. I will use enum class throughout.

Because a C++/CLI enumeration is a class type, you cannot define it locally, within a function for exam-
ple, so if you want to define such an enumeration for use in main(), for example, you would define it
at global scope.

This is easy to see with an example.

Try It Out Defining a C++/CLI Enumeration
Here’s a very simple example using an enumeration:

// Ex2_14.cpp : main project file.
// Defining and using a C++/CLI enumeration.
#include “stdafx.h”

using namespace System;

// Define the enumeration at global scope
enum class Suit{Clubs, Diamonds, Hearts, Spades};

int main(array<System::String ^> ^args)
{

Suit suit = Suit::Clubs;
int value = safe_cast<int>(suit);
Console::WriteLine(L”Suit is {0} and the value is {1} “, suit, value);
suit = Suit::Diamonds;

108

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 108



value = safe_cast<int>(suit);
Console::WriteLine(L”Suit is {0} and the value is {1} “, suit, value);
suit = Suit::Hearts;
value = safe_cast<int>(suit);
Console::WriteLine(L”Suit is {0} and the value is {1} “, suit, value);
suit = Suit::Spades;
value = safe_cast<int>(suit);
Console::WriteLine(L”Suit is {0} and the value is {1} “, suit, value);
return 0;

}

This example will produce the following output:

Suit is Clubs and the value is 0
Suit is Diamonds and the value is 1
Suit is Hearts and the value is 2
Suit is Spades and the value is 3

How It Works
Because it is a class type, the Suit enumeration cannot be defined within the function main(), so its defini-
tion appears before the definition of main() and is therefore defined at global scope. The example defines a
variable, suit, of type Suit and allocates the value Suit::Clubs to it initially with the statement:

Suit suit = Suit::Clubs;

The qualification of the constant name Clubs with the type name Suit is essential; without it Clubs
would not be recognized by the compiler.

If you look at the output, the value of suit is displayed as the name of the corresponding constant —
”Clubs” in the first instance. This is quite different from what happens with native enums. To obtain
the constant value that corresponds to the object in a C++/CLI enum, you must explicitly cast the value
to the underlying type, type int in this instance:

value = safe_cast<int>(suit);

You can see from the output that the enumeration constants have been assigned values starting from 0.
In fact you can change the type that is used for the enumeration constants. The next section looks at how
that’s done.

Specifying a Type for Enumeration Constants
The constants in a C++/CLI enumeration can be any of the following types:

short       int         long         long long     signed char    char

unsigned    unsigned    unsigned     unsigned      unsigned       bool
short       int         long         long long     char

109

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 109



To specify the type for the constants in an enumeration, you write the type after the enumeration type
name, but separated from it by a colon, just as with the native C++ enum. For example, to specify the
enumeration constant type as char, you could write:

enum class Face : char {Ace, Two, Three, Four, Five, Six, Seven,
Eight, Nine, Ten, Jack, Queen, King};

The constants in this enumeration will be of type System::Sbyte and the underlying fundamental type
will be type char. The first constant will correspond to code value 0 by default, and the subsequent values
will be assigned in sequence. To get at the underlying value you must explicitly cast the value to the type.

Specifying Values for Enumeration Constants
You don’t have to accept the default for the underlying values. You can explicitly assign values to any or
all of the constants defined by an enumeration. For example:

enum class Face : char {Ace = 1, Two, Three, Four, Five, Six, Seven,
Eight, Nine, Ten, Jack, Queen, King};

This will result in Ace having the value 1, Two having the value 2, an so on with King having the value 13.
If you wanted the values to reflect the relative face card values with Ace high, you could write the enu-
meration as:

enum class Face : char {Ace = 14, Two = 2, Three, Four, Five, Six, Seven,
Eight, Nine, Ten, Jack, Queen, King};

In this case Two will have the value 2, and successive constants will have values in sequence so King will
still be 13. Ace will be 14, the value you have explicitly assigned.

The values you assign to enumeration constants do not have to be unique. This provides the possibility
of using the values of the constants to convey some additional property. For example:

enum class WeekDays : bool { Mon =true, Tues = true, Wed = true,
Thurs = true, Fri = true, Sat = false, Sun = false };

This defines the enumeration WeekDays where the enumeration constants are of type bool. The under-
lying values have been assigned to identify which represent work days as opposed to rest days. In the
particular case of enumerators of type bool, you must supply all enumerators with explicit values.

Operations on Enumeration Constants
You can increment or decrement variables of an enum type using ++ or --, providing the enumeration
constants are of an integral type other than bool. For example, consider this fragment using the Face
type from the previous section:

Face card = Face::Ten;
++card;
Console::WriteLine(L”Card is {0}”, card);

Here you initialize the card variable to Face::Ten and then increment it. The output from the last state-
ment will be:

Card is Jack

110

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 110



Incrementing or decrementing an enum variable does not involve any validation of the result, so it is up
to you to ensure that the result corresponds to one of the enumerators so that it makes sense.

You can also use the + or – operators with enum values:

card = card – Face::Two;

This is not a very likely statement in practice but the effect is to reduce the value of card by 2 because
that is the value of Face::Two. Note that you cannot write:

card = card – 2;                       // Wrong! Will not compile.

This will not compile because the operands for the subtraction operator are of different types and there
is no automatic conversion here. To make this work you must use a cast:

card = card - safe_cast<Face>(2);      //OK!

Casting the integer to type Face allows card to be decremented by 2.

You can also use the bitwise operators ^, |, &, and ~ with enum values but these are typically used with
enums that represent flags, which I’ll discuss in the next section. As with the arithmetic operations, the
enum type must have enumeration constants of an integral type other than bool.

Finally you can compare enum values using the relational operators:

== != < <= > >=

I’ll be discussing the relational operators in the next chapter. For now these operators compare two
operands and result in a value of type bool. This allows you to use expressions such as card ==
Face::Eight, which will result in the value true if card is equal to Face::Eight.

Using Enumerators as Flags
It is possible to use an enumeration in quite a different way from what you have seen up to now. You can
define an enumeration such that the enumeration constants represent flags or status bits for something.
Most hardware storage devices use status bits to indicate the status of the device before or after an I/O
operation for example and you can also use status bits or flags in your programs to record events of one
kind or another.

Defining an enumeration to represent flags involves using an attribute. Attributes are additional infor-
mation that you add to program statements to instruct the compiler to modify the code in some way or
to insert code. This is rather an advanced topic for this book so I won’t discuss attributes in general but
I’ll make an exception in this case. Here’s an example of an enum defining flags:

[Flags] enum class FlagBits{ Ready = 1, ReadMode = 2, WriteMode = 4,
EOF = 8, Disabled = 16};

The [Flags] part of this statement is the attribute and it tells the compiler that the enumeration constants
are single bit values; note the choice of explicit values for the constants. It also tells the compiler to treat a
variable of type FlagBits as a collection of flag bits rather than a single value, for example:

FlagBits status = FlagBits::Ready | FlagBits::ReadMode | FlagBits::EOF;

111

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 111



The status variable will have the value

0000 0000 0000 0000 0000 0000 0000 1011

with bits set to 1 corresponding to the enumerations constants that have been ORed together. This corre-
sponds to the decimal value 11. If you now output the value of status with the following statement:

Console::WriteLine(L”Current status: {0}”, status);

the output will be:

Current status: Ready, ReadMode, EOF

The conversion of the value of status to a string is not considering status as an integer value, but as a
collection of bits, and the output is the names of the flags that have been set in the variable separated by
commas.

To reset one of the bits in a FlagBits variable, you use the bitwise operators. Here’s how you could
switch off the Ready bit in status:

status = status & ~ FlagBits::Ready;

The expression ~FlagBits::Ready results in a value with all bits set to 1 except the bit corresponding
to FlagBits::Ready. When you AND this with status only the FlagBits::Ready bit in status will be
set to 0; all other bits in status will be left at their original setting.

Note that the op= operators are not defined for enum values so you cannot write:

status &= ~ FlagBits::Ready;           // Wrong! Will not compile.

Native Enumerations in a C++/CLI Program
You can use the same syntax as native C++ enumerations in a C++/CLI program and they will behave the
same as they do in a native C++ program. The syntax for native C++ enums is extended in a C++/CLI pro-
gram to allow you to specify the type for the enumeration constants explicitly. I recommend that you stick
to C++/CLI enums in your code, unless you have a good reason to do otherwise.

Summary
In this chapter, I have covered the basics of computation in C++. You have learned about all of the ele-
mentary types of data provided for in the language, and all the operators that manipulate these types
directly. The essentials of what I have discussed up to now are as follows:

❑ A program in C++ consists of at least one function called main().

❑ The executable part of a function is made up of statements contained between braces.

❑ A statement in C++ is terminated by a semicolon.

112

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 112



❑ Named objects in C++, such as variables or functions, can have names that consist of a sequence
of letters and digits, the first of which is a letter, and where an underscore is considered to be a
letter. Upper and lower case letters are distinguished.

❑ All the objects, such as variables, that you name in your program must not have a name that
coincides with any of the reserved words in C++. The full set of reserved words in C++ appears
in Appendix A.

❑ All constants and variables in C++ are of a given type. The fundamental types in ISO/ANSI
C++ are char, signed char, unsigned char, wchar_t, short, unsigned short, int,
unsigned int, long, unsigned long, bool, float, double, and long double. C++/
CLI also defines the types long long and unsigned long long.

❑ The name and type of a variable is defined in a declaration statement ending with a semicolon.
Variables may also be given initial values in a declaration.

❑ You can protect the value of a variable of a basic type by using the modifier const. This will
prevent direct modification of the variable within the program and give you compiler errors
everywhere that a constant’s value is altered.

❑ By default, a variable is automatic, which means that it exists only from the point at which it is
declared to the end of the scope in which it is defined, indicated by the corresponding closing
brace after its declaration.

❑ A variable may be declared as static, in which case it continues to exist for the life of the pro-
gram. It can be accessed only within the scope in which it was defined.

❑ Variables can be declared outside of all blocks within a program, in which case they have global
namespace scope. Variables with global namespace scope are accessible throughout a program,
except where a local variable exists with the same name as the global variable. Even then, they
can still be reached by using the scope resolution operator.

❑ A namespace defines a scope where each of the names declared within it are qualified by the name-
space name. Referring to names from outside a namespace requires the names to be qualified.

❑ The ISO/ANSI C++ Standard Library contains functions and operators that you can use in your
program. They are contained in the namespace std. The root namespace for C++/CLI libraries
has the name System. Individual objects in a namespace can be accessed by using namespace name
to qualify the object name by using the scope resolution operator, or you can supply a using decla-
ration for a name from the namespace.

❑ An lvalue is an object that can appear on the left-hand side of an assignment. Non-const vari-
ables are examples of lvalues.

❑ You can mix different types of variables and constants in an expression, but they will be automat-
ically converted to a common type where necessary. Conversion of the type of the right-hand side
of an assignment to that of the left-hand side will also be made where necessary. This can cause
loss of information when the left-hand side type can’t contain the same information as the right-
hand side: double converted to int, or long converted to short, for example.

❑ You can explicitly cast the value of an expression to another type. You should always make an
explicit cast to convert a value when the conversion may lose information. There are also situa-
tions where you need to specify an explicit cast in order to produce the result that you want.

❑ The keyword typedef allows you to define synonyms for other types.

113

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 113



Although I have discussed all the fundamental types, don’t be misled into thinking that’s all there is.
There are more complex types based on the basic set as you’ll see, and eventually you will be creating
original types of your own.

From this chapter you can see there are three coding strategies you can adopt when writing a C++/CLI
program:

❑ You should use the fundamental type names for variables but keep in mind that they are really
synonyms for the value class type names in a C++/CLI program. The significance of this will be
more apparent when you learn more about classes.

❑ You should use safe_cast and not static_cast in your C++/CLI code. The difference will be
much more important in the context of casting class objects, but if you get into the habit of using
safe_cast, generally you can be sure you will avoid problems.

❑ You should use enum class to declare enumeration types in C++/CLI.

Exercises
1. Write an ISO/ANSI C++ program that asks the user to enter a number and then prints it out,

using an integer as a local variable.

2. Write a program which reads an integer value from the keyboard into a variable of type int,
and uses one of the bitwise operators (i.e. not the % operator!) to determine the positive remain-
der when divided by 8. For example, 29 = (3x8)+5 and -14 = (-2x8)+2 have positive remainder 
5 and 2 respectively when divided by 8.

3. Fully parenthesize the following expressions, in order to show the precedence and associativity:

1 + 2 + 3 + 4

16 * 4 / 2 * 3

a > b? a: c > d? e: f

a & b && c & d

4. Create a program that will calculate the aspect ratio of your computer screen, given the width
and height in pixels, using the following statements:

int width = 1280;
int height = 1024;

double aspect = width / height;

When you output the result, what answer will you get? Is it satisfactory — and if not, how could
you modify the code, without adding any more variables?

114

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 114



5. (Advanced) Without running it, can you work out what value the following code is going to
output, and why?

unsigned s = 555;

int i = (s >> 4) & ~(~0 << 3);
cout << i;

6. Write a C++/CLI  console program that uses an enumeration to identify months in the year
with the values associated with the months running from 1 to 12. The program should output
each enumeration constants and its underlying value.

7. Write a C++/CLI program that will calculate the areas of three rooms to the nearest number of
whole square feet that have the following dimensions in feet:

Room1: 10.5 by 17.6  Room2:  12.7 by 18.9  Room3: 16.3 by 15.4

The program should also calculate and output the average area of the three rooms and the total
area; in each case the result should be to the nearest whole number of square feet.

115

Chapter 2: Data, Variables, and Calculations

25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 115



25905c02.qxd:WroxPro  2/21/08  8:38 AM  Page 116



3
Decisions and Loops

In this chapter, you will look at how to add decision-making capabilities to your C++ programs. You’ll
also learn how to make your programs repeat a set of actions until a specific condition is met. This will
enable you to handle variable amounts of input, as well as make validity checks on the data that you
read in. You will also be able to write programs that can adapt their actions depending on the input
data and to deal with problems where logic is fundamental to the solution. By the end of this chapter,
you will have learned:

❑ How to compare data values

❑ How to alter the sequence of program execution based on the result

❑ How to apply logical operators and expressions

❑ How to deal with multiple choice situations

❑ How to write and use loops in your programs

I’ll start with one of the most powerful and fundamental tools in programming: the ability to
compare variables and expressions with other variables and expressions and, based on the out-
come, execute one set of statements or another.

Comparing Values
Unless you want to make decisions on a whim, you need a mechanism for comparing things. This
involves some new operators called relational operators. Because all information in your com-
puter is ultimately represented by numerical values (in the last chapter you saw how character

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 117



information is represented by numeric codes), comparing numerical values is the essence of practically
all decision making. You have six fundamental operators for comparing two values available:

The “equal to” comparison operator has two successive ‘=’ signs. This is not the same as the assignment
operator, which consists only of a single ‘=’ sign. It’s a common mistake to use the assignment operator
instead of the comparison operator, so watch out for this potential cause of confusion.

Each of these operators compares the values of two operands and returns one of the two possible values
of type bool: true if the comparison is true, or false if it is not. You can see how this works by having
a look at a few simple examples of comparisons. Suppose you have created integer variables i and j with
the values 10 and –5, respectively. The expressions,

i > j i != j   j > -8 i <= j + 15

all return the value true.

Further assume that you have defined the following variables:

char first = ‘A’, last = ‘Z’;

Here are some examples of comparisons using these character variables:

first == 65   first < last    ‘E’ <= first   first != last

All four expressions involve comparing ASCII code values. The first expression returns true because first
was initialized with ‘A’, which is the equivalent of decimal 65. The second expression checks whether the
value of first, which is ‘A’, is less than the value of last, which is ‘Z’. If you check the ASCII codes for
these characters in Appendix B, notice that the capital letters are represented by an ascending sequence of
numerical values from 65 to 90, 65 representing ‘A’ and 90 representing ‘Z’, so this comparison also returns
the value true. The third expression returns the value false because ‘E’ is greater than the value of first.
The last expression returns true because ‘A’ is definitely not equal to ‘Z’.

Consider some slightly more complicated numerical comparisons. With variables defined by the statements

int i = -10, j = 20;
double x = 1.5, y = -0.25E-10;

take a look at the following:

-1 < y      j < (10 - i)     2.0*x >= (3 + y)

As you can see, you can use expressions that result in a numerical value as operands in comparisons. If
you check with the precedence table for operators that you saw in Chapter 2, you see that none of the

< less than <= less than or equal to

> greater than >= greater than or equal to

== equal to != not equal to

118

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 118



parentheses are strictly necessary, but they do help to make the expressions clearer. The first comparison is
true and so returns the bool value true. The variable y has a very small negative value, -0.000000000025,
and so is greater than -1. The second comparison returns the value false. The expression 10 - i has
the value 20 which is the same as j. The third expression returns true because the expression 3 + y is
slightly less than 3.

You can use relational operators to compare values of any of the fundamental types, or of the enumera-
tion types as I mentioned in Chapter 2, so all you need now is a practical way of using the results of a
comparison to modify the behavior of a program.

The if Statement
The basic if statement allows your program to execute a single statement, or a block of statements enclosed
within braces, if a given condition expression evaluates to the value true, or skip the statement or block of
statements if the condition evaluates to false. This is illustrated in Figure 3-1.

Figure 3-1

A simple example of an if statement is:

if(letter == ‘A’)
cout << “The first capital, alphabetically speaking.”;

The condition to be tested appears in parentheses immediately following the keyword, if, and this is
followed by the statement to be executed when the condition is true. Note the position of the semicolon
here. It goes after the statement following the if and the condition between parentheses; there shouldn’t
be a semicolon after the condition in parentheses because the two lines essentially make up a single state -
ment. You also can see how the statement following the if is indented, to indicate that it is only exe-
cuted when the if condition returns the value true. The indentation is not necessary for the program
to execute, but it helps you to recognize the relationship between the if condition and the statement
that depends on it. The output statement in the code fragment is executed only if the variable letter
has the value ‘A’.

{

 // Statements

}

if( condition )

condition
evaluates to true

// More statements

condition
evaluates to false

119

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 119



You could extend this example to change the value of letter if it contains the value ‘A’:

if(letter == ‘A’)
{

cout << “The first capital, alphabetically speaking.”;
letter = ‘a’;

}

The block of statements that is controlled by the if statement is delimited by the curly braces. Here you
execute the statements in the block only if the condition (letter == ‘A’) evaluates to true. Without
the braces, only the first statement would be the subject of the if, and the statement assigning the value
‘a’ to letter would always be executed. Note that there is a semicolon after each of the statements in
the block, not after the closing brace at the end of the block. There can be as many statements as you like
within the block. Now, as a result of letter having the value ‘A’, you change its value to ‘a’ after out-
putting the same message as before. If the condition returns false, neither of these statements is executed.

Nested if Statements
The statement to be executed when the condition in an if statement is true can also be an if. This
arrangement is called a nested if. The condition for the inner if is only tested if the condition for the
outer if is true. An if that is nested inside another can also contain a nested if. You can generally
continue nesting ifs one inside the other like this for as long as you know what you are doing.

Try It Out Using Nested Ifs
The following is the nested if with a working example.

// Ex3_01.cpp
// A nested if demonstration
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

char letter = 0;                      // Store input in here

cout << endl
<< “Enter a letter: “;           // Prompt for the input

cin >> letter;                        // then read a character

if(letter >= ‘A’)                     // Test for ‘A’ or larger
if(letter <= ‘Z’)                  // Test for ‘Z’ or smaller
{

cout << endl
<< “You entered a capital letter.”
<< endl;

return 0;
}

120

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 120



if(letter >= ‘a’)                     // Test for ‘a’ or larger
if(letter <= ‘z’)                  // Test for ‘z’ or smaller
{

cout << endl
<< “You entered a small letter.”
<< endl;

return 0;
}

cout << endl << “You did not enter a letter.” << endl;
return 0;

}

How It Works
This program starts with the usual comment lines; then the #include statement for the header
file supporting input/output and the using declarations for cin, cout, and endl that are the
std namespace. The first action in the body of main() is to prompt for a letter to be entered.
This is stored in the char variable with the name letter.

The if statement that follows the input checks whether the character entered is ‘A’ or larger.
Because the ASCII codes for lowercase letters (97 to 122) are greater than those for uppercase
letters (65 to 90), entering a lowercase letter causes the program to execute the first if block,
as (letter >= ‘A’) returns true for all letters. In this case, the nested if, which checks for
an input of ‘Z’ or less, is executed. If it is ‘Z’ or less, you know that you have a capital letter,
the message is displayed, and you are done, so you execute a return statement to end the
program. Both statements are enclosed between braces, so they are both executed when the
nested if condition returns true.

The next if checks whether the character entered is lowercase, using essentially the same mech-
anism as the first if, displays a message and returns.

If the character entered is not a letter, the output statement following the last if block is executed.
This displays a message to the effect that the character entered was not a letter. The return is then
executed.

You can see that the relationship between the nested ifs and the output statement is much easier
to follow because of the indentation applied to each.

A typical output from this example is:

Enter a letter: T
You entered a capital letter.

You could easily arrange to change uppercase to lowercase by adding just one extra statement to
the if, checking for uppercase:

if(letter >= ‘A’)                   // Test for ‘A’ or larger
if(letter <= ‘Z’)                // Test for ‘Z’ or smaller
{

cout << endl
<< “You entered a capital letter.”;
<< endl;

letter += ‘a’ - ‘A’;          // Convert to lowercase
return 0;

}

121

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 121



This involves adding one additional statement. This statement for converting from uppercase to
lowercase increments the letter variable by the value ‘a’ - ‘A’. It works because the ASCII
codes for ‘A’ to ‘Z’ and ‘a’ to ‘z’ are two groups of consecutive numerical codes, decimal
65 to 90 and 97 to 122 respectively, so the expression ‘a’ - ‘A’ represents the value to be added
to an uppercase letter to get the equivalent lowercase letter and corresponds to 97 - 65, which 
is 32. Thus , if you add 32 to the code value for ‘K’, which is 75, you get 107, which is the code
value for ‘k’.

You could equally well use the equivalent ASCII values for the letters here, but by using the letters
you’ve ensured that this code would work on computers where the characters were not ASCII, as
long as both the upper- and lowercase sets are represented by a contiguous sequence of numeric
values.

There is an ISO/ANSI C++ library function to convert letters to uppercase, so you don’t normally 
need to program for this yourself. It has the name toupper() and appears in the standard library file
<ctype>. You will see more about standard library facilities when you get to look specifically at how
functions are written.

The Extended if Statement
The if statement that you have been using so far executes a statement if the condition specified returns
true. Program execution then continues with the next statement in sequence. You also have a version of
the if that allows one statement to be executed if the condition returns true, and a different statement
to be executed if the condition returns false. Execution then continues with the next statement in sequence.
As you saw in Chapter 2, a block of statements can always replace a single statement, so this also applies to
these ifs.

Try It Out Extending the If
Here’s an extended if example.

// Ex3_02.cpp
// Using the extended if
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

long number = 0;               // Store input here
cout << endl

<< “Enter an integer number less than 2 billion: “;
cin >> number;

if(number % 2L)                // Test remainder after division by 2
cout << endl                // Here if remainder 1

122

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 122



<< “Your number is odd.” << endl;
else

cout << endl                // Here if remainder 0
<< “Your number is even.” << endl;

return 0;
}

Typical output from this program is:

Enter an integer less than 2 billion: 123456
Your number is even,

How It Works
After reading the input value into number, the value is tested by taking the remainder after division by
two (using the remainder operator % that you saw in the last chapter) and using that as the condition for
the if. In this case, the condition of the if statement returns an integer, not a Boolean. The if statement
interprets a non-zero value returned by the condition as true, and interprets zero as false. In other words,
the condition expression for the if statement

(number % 2L)

is equivalent to

(number % 2L != 0)

If the remainder is 1, the condition is true, and the statement immediately following the if is executed. If
the remainder is 0, the condition is false, and the statement following the else keyword is executed. It’s
obvious here what the if expression is doing, but with more complicated expressions it’s better to add the
extra few characters needed for the comparison with zero to ensure that the code is easily understood.

In an if statement, the condition can be an expression that results in a value of any of the funda-
mental data types that you saw in Chapter 2. When the condition expression evaluates to a numerical
value rather than the bool value required by the if statement, the compiler inserts an automatic cast of
the result of the expression to type bool. A non-zero value that is cast to type bool results in true, and
a zero value results in false.

Because the remainder from the division of an integer by two can only be one or zero, I have commented
the code to indicate this fact. After either outcome, the return statement is executed to end the program.

The else keyword is written without a semicolon, similar to the if part of the statement. Again, inden-
tation is used as a visible indicator of the relationship between various statements. You can clearly see
which statement is executed for a true or non-zero result, and which for a false or zero result. You
should always indent the statements in your programs to show their logical structure.

The if-else combination provides a choice between two options. The general logic of the if-else is
shown in Figure 3-2.

123

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 123



Figure 3-2

The arrows in the diagram indicate the sequence in which statements are executed, depending on
whether the if condition returns true or false.

Nested if-else Statements
As you have seen, you can nest if statements within if statements. You can also nest if-else statements
within ifs, ifs within if-else statements, and if-else statements within if-else statements. This pro-
vides considerable room for confusion, so take a look at a few examples. The following is an example of an
if-else nested within an if.

if(coffee == ‘y’)
if(donuts == ‘y’)

cout << “We have coffee and donuts.”;
else

cout << “We have coffee, but not donuts”;

{

 // Statements

}

if( condition )

condition
evaluates to true

else

// Even more
statements

condition
evaluates to false

{

 // More statements

}

124

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 124



The test for donuts is executed only if the result of the test for coffee returns true, so the messages
reflect the correct situation in each case; however, it is easy to get this confused. If you write much the
same thing with incorrect indentation, you can be trapped into the wrong conclusion:

if(coffee == ‘y’)
if(donuts == ‘y’)

cout << “We have coffee and donuts.”;
else                                  // This else is indented incorrectly

cout << “We have no coffee...”;    // Wrong!

The mistake is easy to see here, but with more complicated if structures you need to keep in mind the
rule about which if owns which else.

An else always belongs to the nearest preceding if that is not already spoken for by another else.

Whenever things look a bit complicated, you can apply this rule to sort things out. When you are writing
your own programs you can always use braces to make the situation clearer. It isn’t really necessary in
such a simple case, but you could write the last example as follows:

if(coffee == ‘y’)
{

if(donuts == ‘y’)
cout << “We have coffee and donuts.”;

else
cout << “We have coffee, but not donuts”;

}

and it should be absolutely clear. Now that you know the rules, understanding the case of an if nested
within an if-else becomes easy.

if(coffee == ‘y’)
{

if(donuts == ‘y’)
cout << “We have coffee and donuts.”;

}
else

if(tea == ‘y’)
cout << “We have tea, but not coffee”;

Here the braces are essential. If you leave them out, the else would belong to the second if, which is
looking out for donuts. In this kind of situation, it is easy to forget to include them and create an error
that may be hard to find. A program with this kind of error compiles fine and even produces the right
results some of the time.

If you removed the braces in this example, you get the correct results only as long as coffee and donuts
are both equal to ‘y’ so that the if(tea == ‘y’) check wouldn’t be executed.

125

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 125



Here you’ll look at if-else statements nested in if-else statements. This can get very messy, even with
just one level of nesting.

if(coffee == ‘y’)
if(donuts == ‘y’)

cout << “We have coffee and donuts.”;
else

cout << “We have coffee, but not donuts”;
else

if(tea == ‘y’)
cout << “We have no coffee, but we have tea, and maybe donuts...”;

else
cout << “No tea or coffee, but maybe donuts...”;

The logic here doesn’t look quite so obvious, even with the correct indentation. No braces are necessary,
as the rule you saw earlier verifies that this is correct, but it would look a bit clearer if you included them.

if(coffee == ‘y’)
{

if(donuts == ‘y’)
cout << “We have coffee and donuts.”;

else
cout << “We have coffee, but not donuts”;

}
else
{

if(tea == ‘y’)
cout << “We have no coffee, but we have tea, and maybe donuts...”;

else
cout << “No tea or coffee, but maybe donuts...”;

}

There are much better ways of dealing with this kind of logic in a program. If you put enough nested
ifs together, you can almost guarantee a mistake somewhere. The following section will help to sim-
plify things.

Logical Operators and Expressions
As you have just seen, using ifs where you have two or more related conditions can be a bit cumber-
some. We have tried our iffy talents on looking for coffee and donuts, but in practice you may want to
check much more complex conditions.

Logical operators provide a neat and simple solution. Using logical operators, you can combine a series
of comparisons into a single logical expression, so you end up needing just one if, virtually regardless
of the complexity of the set of conditions, as long as the decision ultimately boils down to a choice between
two possibilities — true or false.

126

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 126



You have just three logical operators:

Logical AND
You would use the AND operator, &&, where you have two conditions that must both be true for a true
result. You want to be rich and healthy. For example, you could use the && operator when you are testing
a character to determine whether it’s an uppercase letter; the value being tested must be both greater than
or equal to ‘A’AND less than or equal to ‘Z’. Both conditions must return true for the value to be a capi-
tal letter.

As before, the conditions you combine using logical operators may return numerical values. Remember
that in this case a non-zero value casts to the value true; zero casts to false.

Taking the example of a value stored in a char variable letter, you could replace the test using two
ifs for one that uses only a single if and the && operator:

if((letter >= ‘A’) && (letter <= ‘Z’))
cout << “This is a capital letter.”;

The parentheses inside the expression that is the if condition ensure that there is no doubt that the com-
parison operations are executed first, which makes the statement clearer. Here, the output statement is
executed only if both of the conditions that are combined by the && operator are true.

Just as with binary operators in the last chapter, you can represent the effect of a particular logical opera-
tor using a truth table. The truth table for && is as follows:

The row headings of the left and the column headings at the top represent the value of the logical expres-
sions to be combined by the operator &&. Thus, to determine the result of combining a true condition
with a false condition, select the row with true at the left and the column with false at the top and look
at the intersection of the row and column for the result (false). Actually, you don’t really need a truth table
because it’s very simple; the && operation results in the value true only if both operands are true.

&& false true

false false false

true false true

&& Logical AND

|| Logical OR

! Logical negation (NOT)

127

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 127



Logical OR
The OR operator, ||, applies when you have two conditions and you want a true result if either or both of
them are true. For example, you might be considered creditworthy for a loan from the bank if your income
was at least $100,000 a year, or you had $1,000,000 in cash. This could be tested using the following if.

if((income >= 100000.00) || (capital >= 1000000.00))
cout << “How much would you like to borrow, Sir (grovel, grovel)?”;

The ingratiating response emerges when either or both of the conditions are true. (A better response
might be, “Why do you want to borrow?” It’s strange how banks lend you money only if you don’t
need it.)

You can also construct a truth table for the || operator:

The result here can also be stated very simply: you only get a false result with the || operator when
both operands are false.

Logical NOT
The third logical operator, !, takes one operand of type bool and inverts its value. So if the value of a
variable test is true, !test is false; and if test is false, !test is true. To take the example of a
simple expression, if x has the value 10, the expression

!(x > 5)

is false, because x > 5 is true.

You could also apply the ! operator in an expression that was a favorite of Charles Dickens:

!(income > expenditure)

If this expression is true, the result is misery, at least as soon as the bank starts bouncing your checks.

Finally, you can apply the ! operator to other basic data types. Suppose you have a variable, rate, that
is of type float and has the value 3.2. For some reason you might want to test to verify that the value of
rate is non-zero, in which case you could use the expression:

!(rate)

The value 3.2 is non-zero and thus converts to the bool value true so the result of this expression is
false.

|| false true

false false true

true true true

128

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 128



Try It Out Combining Logical Operators
You can combine conditional expressions and logical operators to any degree that you feel comfortable
with. For example, you could construct a test for whether a variable contained a letter just using a single
if. Let’s write it as a working example:

// Ex3_03.cpp
// Testing for a letter using logical operators
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

char letter = 0;                                 // Store input in here

cout << endl
<< “Enter a character: “;

cin >> letter;

if(((letter >= ‘A’) && (letter <= ‘Z’)) ||
((letter >= ‘a’) && (letter <= ‘z’)))         // Test for alphabetic
cout << endl

<< “You entered a letter.” << endl;
else

cout << endl
<< “You didn’t enter a letter.” << endl;

return 0;
}

How It Works
This example starts out in the same way as Ex3_01.cpp by reading a character after a prompt for input.
The interesting part of the program is in the if statement condition. This consists of two logical expres-
sions combined with the || (OR) operator, so that if either is true, the condition returns true and the
message

You entered a letter.

is displayed. If both logical expressions are false, the else statement is executed, which displays the
message

You didn’t enter a letter.

Each of the logical expressions combines a pair of comparisons with the operator && (AND), so both
comparisons must return true if the logical expression is to be true. The first logical expression returns
true if the input is an uppercase letter, and the second returns true if the input is a lowercase letter.

129

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 129



The Conditional Operator
The conditional operator is sometimes called the ternary operator because it involves three operands.
It is best understood by looking at an example. Suppose you have two variables, a and b, and you want to
assign the maximum of a and b to a third variable c. You can do this with the following statement:

c = a > b ? a : b;           // Set c to the maximum of a or b

The first operand for the conditional operator must be an expression that results in a bool value, true or
false, and in this case it is a > b. If this expression returns true, the second operand — in this case a — is
selected as the value resulting from the operation. If the first argument returns false, the third operand —
in this case b — is selected as the value that results from the operation. Thus, the result of the conditional
expression a > b ? a : b is a if a is greater than b, and b otherwise. This value is stored in c as a result of
the assignment operation. The use of the conditional operator in this assignment statement is equivalent
to the if statement:

if(a > b)
c = a;

else
c = b;

The conditional operator can be written generally as:

condition ? expression1 : expression2

If the condition evaluates as true, the result is the value of expression1, and if it evaluates to false, the
result is the value of expression2.

Try It Out Using the Conditional Operator with Output
A common use of the conditional operator is to control output, depending on the result of an expression
or the value of a variable. You can vary a message by selecting one text string or another, depending on
the condition specified.

// Ex3_04.cpp
// The conditional operator selecting output
#include <iostream>

using std::cout;
using std::endl;

int main()
{

int nCakes = 1;           // Count of number of cakes

cout << endl
<< “We have “ << nCakes << “ cake” << ((nCakes > 1) ? “s.” : “.”)
<< endl;

130

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 130



++nCakes;

cout << endl
<< “We have “ << nCakes << “ cake” << ((nCakes > 1) ? “s.” : “.”)
<< endl;

return 0;
}

The output from this program is:

We have 1 cake.
We have 2 cakes.

How It Works
You first initialize the nCakes variable with the value 1; then you have an output statement that shows
the number of cakes. The part that uses the conditional operator simply tests the variable to determine
whether you have a singular cake or several cakes:

((nCakes>1) ? “s.” : “.”)

This expression evaluates to “s.” if nCakes is greater than 1, or “.” otherwise. This enables you to use
the same output statement for any number of cakes and get grammatically correct output. You show this
in the example by incrementing the nCakes variable and repeating the output statement.

There are many other situations where you can apply this sort of mechanism; selecting between “is”
and “are”, for example.

The switch Statement
The switch statement enables you to select from multiple choices based on a set of fixed values for a
given expression. It operates like a physical rotary switch in that you can select one of a fixed number of
choices; some makes of washing machine provide a means of choosing an operation for processing your
laundry in this way. There are a given number of possible positions for the switch, such as cotton, wool,
synthetic fiber, and so on, and you can select any one of them by turning the knob to point to the option
you want.

In the switch statement, the selection is determined by the value of an expression that you specify. You
define the possible switch positions by one or more case values, a particular one being selected if the
value of the switch expression is the same as the particular case value. There is one case value for each
possible choice in the switch and all the case values must be distinct.

If the value of the switch expression does not match any of the case values, the switch automatically
selects the default case. You can, if you want, specify the code for the default case, as you will do below;
otherwise, the default is to do nothing.

131

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 131



Try It Out The Switch Statement
You can examine how the switch statement works with the following example.

// Ex3_05.cpp
// Using the switch statement
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

int choice = 0;                     // Store selection value here

cout << endl
<< “Your electronic recipe book is at your service.” << endl
<< “You can choose from the following delicious dishes: “
<< endl
<< endl << “1 Boiled eggs”
<< endl << “2 Fried eggs”
<< endl << “3 Scrambled eggs”
<< endl << “4 Coddled eggs”
<< endl << endl << “Enter your selection number: “;

cin >> choice;

switch(choice)
{

case 1: cout << endl << “Boil some eggs.” << endl;
break;

case 2: cout << endl << “Fry some eggs.” << endl;
break;

case 3: cout << endl << “Scramble some eggs.” << endl;
break;

case 4: cout << endl << “Coddle some eggs.” << endl;
break;

default: cout << endl <<”You entered a wrong number, try raw eggs.”
<< endl;

}

return 0;
}

How It Works
After defining your options in the stream output statement and reading a selection number into the vari-
able choice, the switch statement is executed with the condition specified as simply choice in paren-
theses, immediately following the keyword switch. The possible options in the switch are enclosed
between braces and are each identified by a case label. A case label is the keyword case, followed by
the value of choice that corresponds to this option, and terminated by a colon.

As you can see, the statements to be executed for a particular case are written following the colon at the
end of the case label, and are terminated by a break statement. The break transfers execution to the

132

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 132



statement after the switch. The break isn’t mandatory, but if you don’t include it, execution continues
with the statements for the case that follows, which isn’t usually what you want. You can demonstrate
this by removing the break statements from this example and seeing what happens.

If the value of choice doesn’t correspond with any of the case values specified, the statements preceded
by the default label are executed. A default case isn’t essential. In its absence, if the value of the test
expression doesn’t correspond to any of the cases, the switch is exited and the program continues with
the next statement after the switch.

Try It Out Sharing a Case
Each of the expressions that you specify to identify the cases must be constant so that the value can be
determined at compile time, and must evaluate to a unique integer value. The reason that no two case
constants can be the same is that the compiler would have no way of knowing which case statement
should be executed for that particular value; however, different cases don’t need to have a unique action.
Several cases can share the same action, as shown here.

// Ex3_06.cpp
// Multiple case actions
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

char letter = 0;
cout << endl

<< “Enter a small letter: “;
cin >> letter;

switch(letter*(letter >= ‘a’ && letter <= ‘z’))
{

case ‘a’:
case ‘e’:
case ‘i’:
case ‘o’:
case ‘u’: cout << endl << “You entered a vowel.”;

break;

case 0: cout << endl << “That is not a small letter.”;
break;

default: cout << endl << “You entered a consonant.”;
}

cout << endl;
return 0;

}

133

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 133



How It Works
In this example, you have a more complex expression in the switch. If the character entered isn’t a lower-
case letter, the expression

(letter >= ‘a’ && letter <= ‘z’)

results in the value false; otherwise it evaluates to true. Because letter is multiplied by this expres-
sion, the value of the logical expression is cast to an integer — 0 if the logical expression is false and 1 
if it is true. Thus the switch expression evaluates to 0 if a lowercase letter was not entered and to the
value of letter if it was. The statements following the case label case 0 are executed whenever the
character code stored in letter does not represent a lowercase case letter.

If a lowercase letter was entered, the switch expression evaluates to the same value as letter so for 
all values corresponding to vowels, the output statement following the sequence of case labels that have
case values that are vowels. The same statement executes for any vowel because when any of these case
labels is chosen successive statements are executed until the break statement is reached. You can see
that a single action can be taken for a number of different cases by writing each of the case labels one
after the other before the statements to be executed. If a lowercase letter that is a consonant is entered as
program input, the default case label statement is executed.

Unconditional Branching
The if statement provides you with the flexibility to choose to execute one set of statements or another,
depending on a specified condition, so the statement execution sequence is varied depending on the val-
ues of the data in the program. The goto statement, in contrast, is a blunt instrument. It enables you to
branch to a specified program statement unconditionally. The statement to be branched to must be iden-
tified by a statement label which is an identifier defined according to the same rules as a variable name.
This is followed by a colon and placed before the statement requiring labeling. Here is an example of a
labeled statement.

myLabel: cout << “myLabel branch has been activated” << endl;

This statement has the label myLabel, and an unconditional branch to this statement would be written
as follows:

goto myLabel;

Whenever possible, you should avoid using gotos in your program. They tend to encourage convoluted
code that can be extremely difficult to follow.

Because the goto is theoretically unnecessary in a program — there’s always an alternative approach to
using goto — a significant cadre of programmers say you should never use it. I don’t subscribe to such
an extreme view. It is a legal statement after all, and there are occasions when it can be convenient such
as when you must exit from a deeply nested set of loops (you learn about loops in the next section). I do,
however, recommend that you only use it where you can see an obvious advantage over other options
that are available; otherwise, you may end up with convoluted error-prone code that is hard to under-
stand and even harder to maintain.

134

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 134



Repeating a Block of Statements
The capability to repeat a group of statements is fundamental to most applications. Without this capabil-
ity, an organization would need to modify the payroll program every time an extra employee was hired,
and you would need to reload Halo 2 every time you wanted to play another game. So let’s first under-
stand how a loop works.

What Is a Loop?
A loop executes a sequence of statements until a particular condition is true (or false). You can actually
write a loop with the C++ statements that you have met so far. You just need an if and the dreaded goto.
Look at the following example.

// Ex3_07.cpp
// Creating a loop with an if and a goto
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

int i = 0, sum = 0;
const int max = 10;

i = 1;
loop:

sum += i;             // Add current value of i to sum
if(++i <= max)

goto loop;         // Go back to loop until i = 11

cout << endl
<< “sum = “ << sum
<< endl
<< “i = “ << i
<< endl;

return 0;
}

This example accumulates the sum of integers from 1 to 10. The first time through the sequence of state-
ments, i is 1 and is added to sum which starts out as zero. In the if, i is incremented to 2 and, as long 
as it is less than or equal to max, the unconditional branch to loop occurs and the value of i, now 2, is
added to sum. This continues with i being incremented and added to sum each time, until finally, when 
i is incremented to 11 in the if, the branch back is not executed. If you run this example, you get the 
following output:

sum = 55
i = 11

This shows quite clearly how the loop works; however, it uses a goto and introduces a label into the
program, both of which you should avoid if possible. You can achieve the same thing, and more, with
the next statement, which is specifically for writing a loop.

135

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 135



Try It Out Using the for Loop
You can rewrite the last example using what is known as a for loop.

// Ex3_08.cpp
// Summing integers with a for loop
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

int i = 0, sum = 0;
const int max = 10;

for(i = 1; i <= max; i++)       // Loop specification
sum += i;                    // Loop statement

cout << endl
<< “sum = “ << sum
<< endl
<< “i = “ << i
<< endl;

return 0;
}

How It Works
If you compile and run this, you get exactly the same output as the previous example, but the code is
much simpler here. The conditions determining the operation of the loop appear in parentheses after the
keyword for. There are three expressions that appear within the parentheses separated by semicolons:

❑ The first expression executes once at the outset and sets the initial conditions for the loop. In this
case, it sets i to 1.

❑ The second expression is a logical expression that determines whether the loop statement (or
block of statements) should continue to be executed. If the second expression is true, the loop
continues to execute; when it is false, the loop ends and execution continues with the statement
that follows the loop. In this case the loop statement on the following line is executed as long as
i is less than or equal to max.

❑ The third expression is evaluated after the loop statement (or block of statements) executes,
and in this case increments i each iteration. After this expression has been evaluated the sec-
ond expression is evaluated once more to see whether the loop should continue.

Actually, this loop is not exactly the same as the version in Ex3_07.cpp. You can demonstrate this if you
set the value of max to 0 in both programs and run them again; then, you will find that the value of sum
is 1 in Ex3_07.cpp and 0 in Ex3_08.cpp, and the value of i differs too. The reason for this is that the 
if version of the program always executes the loop at least once because you don’t check the condition
until the end. The for loop doesn’t do this, because the condition is actually checked at the beginning.

136

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 136



The general form of the for loop is:

for (initializing_expression ; test_expression ; increment_expression)
loop_statement;

Of course, loop_statement can be a single statement or a block of statements between braces. The sequence
of events in executing the for loop is shown in Figure 3-3.

As I have said, the loop statement shown in Figure 3-3 can also be a block of statements. The expres-
sions controlling the for loop are very flexible. You can even write two or more expressions separated
by the comma operator for each control expression. This gives you a lot of scope in what you can do
with a for loop.

Figure 3-3

Execute
initializing_expression

No

Yes

test_expression
evaluates to

true?

Execute
loop_statement

Execute
increment_expression

Continue with next statement

137

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 137



Variations on the for Loop
Most of the time, the expressions in a for loop are used in a fairly standard way: the first for initializing
one or more loop counters, the second to test if the loop should continue, and the third to increment or
decrement one or more loop counters. You are not obliged to use these expressions in this way, however,
and quite a few variations are possible.

The initialization expression in a for loop can also include a declaration for a loop variable. In the previ-
ous example you could have written the loop to include the declaration for the loop counter i in the first
control expression.

for(int i = 1; i <= max; i++)       // Loop specification
sum += i;                        // Loop statement

Naturally, the original declaration for i would need to be omitted in the program. If you make this change
to the last example, you will find that it now does not compile because the loop variable, i, ceases to exist
after the loop so you cannot refer to it in the output statement. A loop has a scope which extends from the
for expression to the end of the body of the loop, which of course can be a block of code between braces,
as well as just a single statement. The counter i is now declared within the loop scope, so you cannot refer
to it in the output statement because this is outside the scope of the loop. By default the C++ compiler
enforces the ISO/ANSI C++ standard by insisting that a variable defined within a loop condition cannot
be reference outside the loop. If you need to use the value in the counter after the loop has executed, you
must declare the counter variable outside the scope of the loop.

You can omit the initialization expression altogether from the loop. If you initialize i appropriately in the
declaration statement for it, you can write the loop as:

int i = 1;
for(; i <= max; i++)                  // Loop specification

sum += i;                          // Loop statement

You still need the semicolon that separates the initialization expression from the test condition for the loop.
In fact, both semicolons must always be present regardless of whether any or all of the control expressions
are omitted. If you omit the first semicolon, the compiler is unable to decide which expression has been
omitted or even which semicolon is missing.

The loop statement can be empty. For example, you could place the loop statement in for loop from the
previous example inside the increment expression; in this case the loop becomes

for(i = 1; i <= max; sum += i++);     // The whole loop

You still need the semicolon after the closing parentheses, to indicate that the loop statement is now
empty. If you omit this, the statement immediately following this line is interpreted as the loop state-
ment. Sometimes you’ll see the empty loop statement written on a separate line like the following:

for(i = 1; i <= max; sum += i++)     // The whole loop
;

138

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 138



Try It Out Using Multiple Counters
You can use the comma operator to include multiple counters in a for loop. You can see this in operation
in the following program.

// Ex3_09.cpp
// Using multiple counters to show powers of 2
#include <iostream>
#include <iomanip>

using std::cin;
using std::cout;
using std::endl;
using std::setw;

int main()
{

long i = 0, power = 0;
const int max = 10;

for(i = 0, power = 1; i <= max; i++, power += power)
cout << endl

<< setw(10) << i << setw(10) << power;     // Loop statement

cout << endl;
return 0;

}

How It Works
You initialize two variables in the initialization section of the for loop, separated by the comma opera-
tor, and increment each of them in the increment section. Clearly, you can put as many expressions as
you like in each position.

You can even specify multiple conditions, separated by commas, in second expression that represents the
test part of the for loop that determines whether it should continue; but only the right-most condition
affects when the loop ends.

Note that the assignments defining the initial values for i and power are expressions, not statements. A
statement always ends with a semicolon.

For each increment of i, the value of the variable power is doubled by adding it to itself. This produces
the powers of two that we are looking for and so the program produces the following output.

0         1
1         2
2         4
3         8
4        16

139

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 139



5        32
6        64
7       128
8       256
9       512
10      1024

The setw() manipulator that you saw in the previous chapter is used to align the output nicely. You
have included <iomanip> header file and added a using declaration for the name in the std namespace
so you can use setw() without qualifying the name.

Try It Out The Indefinite for Loop
If you omit the second control expression that specifies the test condition for a for loop, the value is
assumed to be true, so the loop continues indefinitely unless you provide some other means of exiting
from it. In fact, if you like, you can omit all the expressions in the parentheses after for. This may not
seem to be useful; in fact, however, quite the reverse is true. You will often come across situations where
you want to execute a loop a number of times, but you do not know in advance how many iterations you
will need. Have a look at the following:

// Ex3_10.cpp
// Using an infinite for loop to compute an average
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

double value = 0.0;              // Value entered stored here
double sum = 0.0;                // Total of values accumulated here
int i = 0;                       // Count of number of values
char indicator = ‘n’;            // Continue or not?

for(;;)                          // Infinite loop
{

cout << endl
<< “Enter a value: “;

cin >> value;                 // Read a value
++i;                          // Increment count
sum += value;                 // Add current input to total

cout << endl
<< “Do you want to enter another value (enter n to end)? “;

cin >> indicator;             // Read indicator
if ((indicator == ‘n’) || (indicator == ‘N’))

break;                     // Exit from loop
}

140

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 140



cout << endl
<< “The average of the “ << i
<< “ values you entered is “ << sum/i << “.”
<< endl;

return 0;
}

How It Works
This program computes the average of an arbitrary number of values. After each value is entered, you
need to indicate whether you want to enter another value, by entering a single character y or n. Typical
output from executing this example is:

Enter a value: 10

Do you want to enter another value (enter n to end)? y

Enter a value: 20

Do you want to enter another value (enter n to end)? y

Enter a value: 30

Do you want to enter another value (enter n to end)? n

The average of the 3 values you entered is 20.

After declaring and initializing the variables that you’re going to use, you start a for loop with no expres-
sions specified, so there is no provision for ending it here. The block immediately following is the subject
of the loop that is to be repeated.

The loop block performs three basic actions:

❑ It reads a value

❑ It adds the value read from cin to sum

❑ It checks whether you want to continue to enter values

The first action within the block is to prompt you for input and then read a value into the variable
value. The value that you enter is added to sum and the count of the number of values, i, is incre-
mented. After accumulating the value in sum, you are asked if you want to enter another value and
prompted to enter ‘n’ if you have finished. The character that you enter is stored in the variable
indicator for testing against ‘n’ or ‘N’ in the if statement. If neither is found, the loop continues;
otherwise, a break is executed. The effect of break in a loop is similar to its effect in the context of 
the switch statement. In this instance, it exits the loop immediately by transferring control to the
statement following the closing brace of the loop block.

Finally, you output the count of the number of values entered and their average, which is calculated by
dividing sum by i. Of course, i is promoted to type double before the calculation, as you remember
from the casting discussion in Chapter 2.

141

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 141



Using the continue Statement
There is another statement, besides break, used to affect the operation of a loop: the continue statement.
This is written simply as:

continue;

Executing continue within a loop starts the next loop iteration immediately, skipping over any statements
remaining in the current iteration. I can demonstrate how this works with the following code:

#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

int i = 0, value = 0, product = 1;

for(i = 1; i <= 10; i++)
{
cout << “Enter an integer: “;
cin >> value;

if(value == 0)                    // If value is zero
continue;                      // skip to next iteration

product *= value;
}

cout << “Product (ignoring zeros): “ << product
<< endl;

return 0;                            // Exit from loop
}

This loop reads 10 values with the intention of producing the product of the values entered. The if checks
each value entered, and if it is zero, the continue statement skips to the next iteration. This is so that you
don’t end up with a zero product if one of the values is zero. Obviously, if a zero value occurred on the last
iteration, the loop would end. There are clearly other ways of achieving the same result, but continue pro-
vides a very useful capability, particularly with complex loops where you may need to skip to the end of
the current iteration from various points in the loop.

The effect of the break and continue statements on the logic of a for loop is illustrated in Figure 3-4.

Obviously, in a real situation, you would use the break and continue statements with some condition-
testing logic to determine when the loop should be exited, or when an iteration of the loop should be
skipped. You can also use the break and continue statements with the other kinds of loop, which I’ll
discuss later on in this chapter, where they work in exactly the same way.

142

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 142



Figure 3-4

Try It Out Using Other Types in Loops
So far, you have only used integers to count loop iterations. You are in no way restricted as to what type
of variable you use to count iterations. Look at the following example:

// Ex3_11.cpp
// Display ASCII codes for alphabetic characters
#include <iostream>
#include <iomanip>

Execute
initializing_expression

test_expression
evaluates to true?

continue;

break;

Execute
increment_expression

Continue 
with next statement

Succeeding statements 
in the loop are omitted 

The loop is 
exited directly 

No 

Yes 

143

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 143



using std::cout;
using std::endl;
using std::hex;
using std::dec;
using std::setw;

int main()
{

for(char capital = ‘A’, small = ‘a’; capital <= ‘Z’; capital++, small++)
cout << endl

<< “\t” << capital                      // Output capital as a character
<< hex << setw(10) << static_cast<int>(capital)   // and as hexadecimal
<< dec << setw(10) << static_cast<int>(capital)   // and as decimal
<< “    “ << small                      // Output small as a character
<< hex << setw(10) << static_cast<int>(small)     // and as hexadecimal
<< dec << setw(10) << static_cast<int>(small);    // and as decimal

cout << endl;
return 0;

}

How It Works
You have using declarations for the names of some new manipulators that are used in the program to
affect how the output is presented.

The loop in this example is controlled by the char variable capital, which you declare along with the
variable small in the initializing expression. You also increment both variables in the third control expres-
sion for the loop so that the value of capital varies from ‘A’ to ‘Z’, and the value of small correspond-
ingly varies from ‘a’ to ‘z’.

The loop contains just one output statement spread over seven lines. The first line is:

cout << endl

This starts a new line on the screen.

The next three lines are:

<< “\t” << capital                      // Output capital as a character
<< hex << setw(10) << static_cast<int>(capital)   // and as hexadecimal
<< dec << setw(10) << static_cast<int>(capital)   // and as decimal

On each iteration, after outputting a tab character, the value of capital is displayed three times: as a
character, as a hexadecimal value, and as a decimal value.

When you insert the manipulator hex into the cout stream, this causes subsequent data values to be dis-
played as hexadecimal values rather than the default decimal representation for integer values so the sec-
ond output of capital is as a hexadecimal representation of the character code.

You then insert the dec manipulator into the stream to cause succeeding values to be output as decimal
once more. By default a variable of type char is interpreted by the stream as a character, not a numerical

144

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 144



value. You get the char variable capital to output as a numerical value by casting its value to type
int, using the static_cast<>() operator that you saw in the previous chapter in the discussion fol-
lowing the Try It Out – Exercising Basic Arithmetic example.

The value of small is output in a similar way by the next three lines of the output statement:

<< “    “ << small                      // Output small as a character
<< hex << setw(10) << static_cast<int>(small)     // and as hexadecimal
<< dec << setw(10) << static_cast<int>(small);    // and as decimal

As a result, the program generates the following output:

A        41        65    a        61        97
B        42        66    b        62        98
C        43        67    c        63        99
D        44        68    d        64       100
E        45        69    e        65       101
F        46        70    f        66       102
G        47        71    g        67       103
H        48        72    h        68       104
I        49        73    i        69       105
J        4a        74    j        6a       106
K        4b        75    k        6b       107
L        4c        76    l        6c       108
M        4d        77    m        6d       109
N        4e        78    n        6e       110
O        4f        79    o        6f       111
P        50        80    p        70       112
Q        51        81    q        71       113
R        52        82    r        72       114
S        53        83    s        73       115
T        54        84    t        74       116
U        55        85    u        75       117
V        56        86    v        76       118
W        57        87    w        77       119
X        58        88    x        78       120
Y        59        89    y        79       121
Z        5a        90    z        7a       122

Floating-Point Loop Counters
You can also use a floating-point value as a loop counter. Here’s an example of a for loop with this kind
of counter:

double a = 0.3, b = 2.5;
for(double x = 0.0; x <= 2.0; x += 0.25)

cout << “\n\tx = “ << x
<< “\ta*x + b = “ << a*x + b;

This code fragment calculates the value of a*x+b for values of x from 0.0 to 2.0 in steps of 0.25; however, you
need to take care when using a floating-point counter in a loop. Many decimal values cannot be represented

145

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 145



exactly in binary floating-point form, so discrepancies can build up with accumulative values. This means
that you should not code a for loop such that ending the loop depends on a floating-point loop counter
reaching a precise value. For example, the following poorly designed loop never ends.

for(double x = 0.0 ; x != 1.0 ; x += 0.2)
cout << x;

The intention with this loop is to output the value of x as it varies from 0.0 to 1.0; however, 0.2 has no
exact representation as a binary floating-point value so the value of x is never exactly 1. Thus the second
loop control expression is always false and so the loop continues indefinitely.

The while Loop
A second kind of loop in C++ is the while loop. Where the for loop is primarily used to repeat a state-
ment or a block for a prescribed number of iterations, the while loop is used to execute a statement or
block of statements as long as a specified condition is true. The general form of the while loop is:

while(condition)
loop_statement;

Here loop_statement is executed repeatedly as long as the condition expression has the value true. After
the condition becomes false, the program continues with the statement following the loop. As always,
a block of statements between braces could replace the single loop_statement.

The logic of the while loop can be represented, as shown in Figure 3-5.

Figure 3-5

loop condition
evaluates to true?

loop_statement;

while loop logic

Continue 
with next statement

No 

Yes 

146

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 146



Try It Out Using the while Loop
You could rewrite the earlier example that computes averages (Ex3_10.cpp) to use the while loop.

// Ex3_12.cpp
// Using a while loop to compute an average
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

double value = 0.0;              // Value entered stored here
double sum = 0.0;                // Total of values accumulated here
int i = 0;                       // Count of number of values
char indicator = ‘y’;            // Continue or not?

while(indicator == ‘y’)          // Loop as long as y is entered
{

cout << endl
<< “Enter a value: “;

cin >> value;                 // Read a value
++i;                          // Increment count
sum += value;                 // Add current input to total

cout << endl
<< “Do you want to enter another value (enter n to end)? “;

cin >> indicator;             // Read indicator
}

cout << endl
<< “The average of the “ << i
<< “ values you entered is “ << sum/i << “.”
<< endl;

return 0;
}

How It Works
For the same input, this version of the program produces the same output as before. One statement has
been updated, and another has been added — they are highlighted in the previous code. The for loop
statement has been replaced by the while statement, and the test for indicator in the if has been deleted,
as this function is performed by the while condition. You have to initialize indicator with ‘y’ in place of
the ‘n’ which appeared previously — otherwise the while loop terminates immediately. As long as the
condition in the while returns true, the loop continues.

You can put any expression resulting in true or false as a while loop condition. The example would
be a better program if the loop condition were extended to allow ‘Y’ to be entered to continue the loop
as well as ‘y’. You could modify the while to the following to do the trick.

while((indicator == ‘y’) || (indicator == ‘Y’))

147

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 147



You can also create a while loop that potentially executes indefinitely by using a condition that is
always true. This can be written as follows:

while(true)
{
...
}

You could also write the loop control expression as the integer value 1, which would be converted to the
bool value true. Naturally, the same requirement applies here as in the case of the infinite for loop:
namely, that you must provide some way of exiting the loop within the loop block. You’ll see other ways
to use the while loop in Chapter 4.

The do-while Loop
The do-while loop is similar to the while loop in that the loop continues as long as the specified loop
condition remains true. The main difference is that the condition is checked at the end of the loop —
which contrasts with the while loop and the for loop where the condition is checked at the beginning
of the loop. Consequently, the do-while loop statement is always executed at least once. The general
form of the do-while loop is:

do
{

loop_statements;
}while(condition);

The logic of this form of loop is shown in Figure 3-6.

Figure 3-6

loop condition
evaluates to true?

loop_statement;

Continue 
with next statement

No 

Yes 

148

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 148



You could replace the while loop in the last version of the program to calculate an average with a 
do-while loop:

do
{

cout << endl
<< “Enter a value: “;

cin >> value;                 // Read a value
++i;                          // Increment count
sum += value;                 // Add current input to total

cout << “Do you want to enter another value (enter n to end)?”;
cin >> indicator;             // Read indicator

} while((indicator == ‘y’) || (indicator == ‘Y’));

There’s little to choose between the two versions of the loop, except that this version doesn’t depend on
the initial value set in indicator for correct operation. As long as you want to enter at least one value,
which is not unreasonable for the calculation in question, this version of the loop is preferable.

Nested Loops
You can nest one loop inside another. In Chapter 4, the usual application of this will become more
apparent — it’s typically applied to repeating actions at different levels of classification. An example
might be calculating the total marks for each student in a class and then repeating the process for each
class in a school.

Try It Out Nested Loops
You can see the effects of nesting one loop inside another by calculating the values of a simple formula.
A factorial of an integer is the product of all the integers from 1 to the integer in question; so the factorial
of 3, for example, is 1 times 2 times 3, which is 6. The following program computes the factorial of integers
that you enter (until you’ve had enough):

// Ex3_13.cpp
// Demonstrating nested loops to compute factorials
#include <iostream>

using std::cin;
using std::cout;
using std::endl;

int main()
{

char indicator = ‘n’;
long value = 0,

factorial = 0;

do
{

cout << endl
<< “Enter an integer value: “;

cin >> value;

149

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 149



factorial = 1;
for(int i = 2; i <= value; i++)

factorial *= i;

cout << “Factorial “ << value << “ is “ << factorial;
cout << endl

<< “Do you want to enter another value (y or n)? “;
cin >> indicator;

} while((indicator == ‘y’) || (indicator == ‘Y’));

return 0;
}

If you compile and execute this example, the typical output produced is:

Enter an integer value: 5
Factorial 5 is 120
Do you want to enter another value (y or n)? y

Enter an integer value: 10
Factorial 10 is 3628800
Do you want to enter another value (y or n)? y

Enter an integer value: 13
Factorial 13 is 1932053504
Do you want to enter another value (y or n)? y

Enter an integer value: 22
Factorial 22 is -522715136
Do you want to enter another value (y or n)? n

How It Works
Factorial values grow very fast. In fact, 12 is the largest input value for which this example produces a cor-
rect result. The factorial of 13 is actually 6,227,020,800, not 1,932,053,504 as the program tells you. If you
run it with even larger input values, leading digits are lost in the result stored in the variable factorial,
and you may well get negative values for the factorial as you do when you ask for the factorial of 22.

This situation doesn’t cause any error messages, so it is of paramount importance that you are sure that
the values you’re dealing with in a program can be contained in the permitted range of the type of vari-
able you’re using. You also need to consider the effects of incorrect input values. Errors of this kind,
which occur silently, can be very hard to find.

The outer of the two nested loops is the do-while loop, which controls when the program ends. As long
as you keep entering y or Y at the prompt, the program continues to calculate factorial values. The facto-
rial for the integer entered is calculated in the inner for loop. This is executed value times to multiply
the variable factorial (with an initial value of 1) with successive integers from 2 to value.

150

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 150



Try It Out Another Nested Loop
Nested loops can be a little confusing, so let’s try another example. This program generates a multiplica-
tion table of a given size.

// Ex3_14.cpp
// Using nested loops to generate a multiplication table
#include <iostream>
#include <iomanip>

using std::cout;
using std::endl;
using std::setw;

int main()
{

const int size = 12;              // Size of table
int i = 0, j = 0;                 // Loop counters

cout << endl                        // Output table title
<< size << “ by “ << size
<< “ Multiplication Table” << endl << endl;

cout << endl << “    |”;

for(i = 1; i <= size; i++)          // Loop to output column headings
cout << setw(3) << i << “  “;

cout << endl;                       // Newline for underlines

for(i = 0; i <= size; i++)
cout << “_____”;                 // Underline each heading

for(i = 1; i <= size; i++)          // Outer loop for rows
{

cout << endl
<< setw(3) << i << “ |”;    // Output row label

for(j = 1; j <= size; j++)           // Inner loop for the rest of the row
cout << setw(3) << i*j << “  “;   // End of inner loop

}                                   // End of outer loop
cout << endl;

return 0;
}

151

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 151



The output from this example is:

12 by 12 Multiplication Table

|  1    2    3    4    5    6    7    8    9   10   11   12
_________________________________________________________________
1 |  1    2    3    4    5    6    7    8    9   10   11   12
2 |  2    4    6    8   10   12   14   16   18   20   22   24
3 |  3    6    9   12   15   18   21   24   27   30   33   36
4 |  4    8   12   16   20   24   28   32   36   40   44   48
5 |  5   10   15   20   25   30   35   40   45   50   55   60
6 |  6   12   18   24   30   36   42   48   54   60   66   72
7 |  7   14   21   28   35   42   49   56   63   70   77   84
8 |  8   16   24   32   40   48   56   64   72   80   88   96
9 |  9   18   27   36   45   54   63   72   81   90   99  108

10 | 10   20   30   40   50   60   70   80   90  100  110  120
11 | 11   22   33   44   55   66   77   88   99  110  121  132
12 | 12   24   36   48   60   72   84   96  108  120  132  144

How It Works
The table title is produced by the first output statement in the program. The next output statement, com-
bined with the loop following it, generates the column headings. Each column is five characters wide, so
the heading value is displayed in a field width of three specified by the setw(3) manipulator, followed
by two blanks. The output statement preceding the loop outputs four spaces and a vertical bar above the
first column which contains the row headings. A series of underline characters is then displayed beneath
the column headings.

The nested loop generates the main table contents. The outer loop repeats once for each row, so i is the
row number. The output statement

cout << endl
<< setw(3) << i << “ |”;    // Output row label

goes to a new line for the start of a row and then outputs the row heading given by the value of i in a
field width of three, followed by a space and a vertical bar.

A row of values is generated by the inner loop:

for(j = 1; j <= size; j++)           // Inner loop for the rest of the row
cout << setw(3) << i*j << “  “;   // End of inner loop

This loop outputs values i*j corresponding to the product of the current row value i, and each of the
column values in turn by varying j from 1 to size. So for each iteration of the outer loop, the inner loop
executes size iterations. The values are positioned in the same way as the column headings.

When the outer loop is completed, the return is executed to end the program.

152

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 152



C++/CLI Programming
Everything I have discussed in this chapter applies equally well in a C++/CLI program. Just to illustrate
the point we can look at some examples of CLR console programs that demonstrate some of what you
have learned so far in this chapter. The following is a CLR program that’s a slight variation on Ex3_01.

Try It Out A CLR Program Using Nested if Statements
Create a CLR console program with the default code and modify the main() function like this:

// Ex3_15.cpp : main project file.

#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
wchar_t letter;                      // Corresponds to the C++/CLI Char type
Console::Write(L”Enter a letter: “);
letter = Console::Read();

if(letter >= ‘A’)                    // Test for ‘A’ or larger
if(letter <= ‘Z’)                  // Test for ‘Z’ or smaller
{
Console::WriteLine(L”You entered a capital letter.”);
return 0;

}

if(letter >= ‘a’)                    // Test for ‘a’ or larger
if(letter <= ‘z’)                  // Test for ‘z’ or smaller
{
Console::WriteLine(L”You entered a small letter.”);
return 0;

}

Console::WriteLine(L”You did not enter a letter.”);
return 0;

}

As always, the shaded lines are the new code you should add.

How It Works
The logic is exactly the same as in the Ex3_01 example — in fact all the statements are the same except
for those producing the output and the declaration of letter. I changed the type to wchar_t because
type System::Char has some extra facilities that I’ll mention. The Console::Read() function reads a
single character from the keyboard. Because you use the Console::Write() function to output the ini-
tial prompt there is no newline character issued so you can enter the letter on the same line as the prompt.

153

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 153



The .NET Framework provides its own functions for converting character codes to upper- or lowercase
within the Char class. These are the functions Char::ToUpper() and Char::ToLower() and you put
the character to be converted between the parentheses as the argument to the function. For example:

wchar_t uppcaseLetter = Char::ToUpper(letter);

Of course, you could store the result of the conversion back in the original variable, similar to the following:

letter = Char::ToUpper(letter);

The Char class also provides IsUpper() and IsLower() functions that test whether a letter is upper- 
or lowercase. You pass the letter to be tested as the argument to the function and the function returns a
bool value as a result. You could use these to code the main() function quite differently.

wchar_t letter;                      // Corresponds to the C++/CLI Char type
Console::Write(L”Enter a letter: “);
letter = Console::Read();
wchar_t upper = Char::ToUpper(letter);
if(upper >= ‘A’ && upper <= ‘Z’)     // Test for between ‘A’ and ‘Z’
Console::WriteLine(L”You entered a {0} letter.”,

Char::IsUpper(letter) ? “capital” : “small”);
else
Console::WriteLine(L”You did not enter a letter.”);

return 0;

This simplifies the code considerably. After converting a letter to uppercase, you test the uppercase value
to check whether it’s ‘A’ to ‘Z’. If it is, you output a message that depends on the result of the conditional
operator expression that forms the second argument to the WriteLine() function. The conditional opera-
tor expression evaluates to “capital” if letter is uppercase and “small” if it is not, and this result is
inserted in the output as determined by the position of the format string {0}.

Try another CLR example that uses the Console::ReadKey() function in a loop and explores the
ConsoleKeyInfo class a little more.

Try It Out Reading Key Presses
Create a CLR console program and add the following code to main():

// Ex3_16.cpp : main project file.
// Testing key presses in a loop.

#include “stdafx.h”
using namespace System;

int main(array<System::String ^> ^args)
{
Console::WriteLine(L”Press a key combination - press Escape to quit.”);

154

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 154



ConsoleKeyInfo keyPress;

do
{
keyPress = Console::ReadKey(true);
Console::Write(L”You pressed”);
if(safe_cast<int>(keyPress.Modifiers)>0)
Console::Write(L” {0},”, keyPress.Modifiers);

Console::WriteLine(L” {0} which is the {1} character”,
keyPress.Key, keyPress.KeyChar);

}while(keyPress.Key != ConsoleKey::Escape);
return 0;

}

The following is some sample output from this program:

Press a key combination - press Escape to quit.
You pressed Shift, B which is the B character
You pressed Shift, Control, N which is the ? character
You pressed Shift, Control, Oem1 which is the   character
You pressed Oem1 which is the ; character
You pressed Oem3 which is the ‘ character
You pressed Shift, Oem3 which is the @ character
You pressed Shift, Oem7 which is the ~ character
You pressed Shift, Oem6 which is the } character
You pressed D3 which is the 3 character
You pressed Shift, D3 which is the ? character
You pressed Shift, D5 which is the % character
You pressed Oem8 which is the ` character
You pressed Escape which is the ? character

Of course, there are key combinations that do not represent a displayable character so in these cases
there is no character in the output. The program also ends if you press Ctrl+C because the operating
system recognizes this as the command to end the program.

How It Works
Key presses are tested in the do-while loop and this loop continues until the Escape key is pressed. Within
the loop the Console::ReadKey() function is called and the result is stored in the variable keyPress,
which is of type ConsoleKeyInfo. The ConsoleKeyInfo class has three properties that you can access 
to help identify the key or keys that were pressed — the Key property identifies the key that was pressed,
the KeyChar property represents the Unicode character code for the key, and the Modifiers property 
is a bitwise combination of ConsoleModifiers constants that represent the Shift, Alt, and Ctrl keys.
ConsoleModifiers is an enumeration that is defined in the System library and the constants defined in 
the enumeration have the names Alt, Shift, and Control.

As you can see from the arguments to the WriteLine() function in the last output statement, to access 
a property for an object you place the property name following the object name, separated by a period;
the period is referred to as the member access operator. To access the KeyChar property for the object
keyPress, you write keyPress.KeyChar.

155

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 155



The operation of the program is very simple. Within the loop you call the ReadKey() function to read a
key press and the result is stored in the variable keyPress. Next you write the initial part of the output
to the command line using the Write() function; because no newline is written in this case, the next
output statement writes to the same line. You then test whether the Modifiers property is greater than
zero. If it is, modifier keys were pressed and you output them; otherwise, you skip the output for modi-
fier keys. You will probably remember that a C++/CLI enumeration constant is an object that you must
explicitly cast to an integer type before you can use it as a numerical value — hence the cast to type int
in the if expression.

The output of the Modifiers value is interesting. As you can see from the output, when more than one
modifier key was pressed, you get all the modifier keys from the single output statement. This is because
the Modifiers enumeration is defined with bit flags. As you saw in Chapter 2, this allows a variable
of the enumeration type to consist of several flags ORed together, and the individual flags recognized
and output by the Write() or WriteLine() functions.

The loop continues as long as the condition keyPress.Key != ConsoleKey::Escape is true. It is
false when the keyPress.Key property is equal to ConsoleKey::Escape, which is when the Escape
key is pressed.

The for each Loop
All the loop statements I have discussed apply equally well to C++/CLI programs and the C++/CLI 
language provides you with the luxury of an additional kind of loop called the for each loop. This
loop is specifically for iterating through all the objects in a particular kind of set of objects and because
you haven’t learned about these yet, I’ll just introduce the for each loop briefly here, and elaborate on
it some more a bit later in the book.

One thing that you do know a little about is a String object which represents a set of characters, so you
can use a for each loop to iterate through all the characters in a string. Let’s try an example of that.

Try It Out Using a for each Loop to Access the Characters in a String
Create a new CLR console program project with the name Ex3_17 and modify the code to the following:

// Ex3_17.cpp : main project file.
// Analyzing a string using a for each loop

#include “stdafx.h”
using namespace System;

int main(array<System::String ^> ^args)
{
int vowels = 0;
int consonants = 0;
String^ proverb = L”A nod is as good as a wink to a blind horse.”;

156

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 156



for each(wchar_t ch in proverb)
{
if(Char::IsLetter(ch))
{
ch = Char::ToLower(ch);      // Convert to lowercase
switch(ch)
{
case ‘a’: case ‘e’: case ‘i’:
case ‘o’: case ‘u’:
++vowels;
break;

default:
++consonants;
break;

}
}

}

Console::WriteLine(proverb);
Console::WriteLine(L”The proverb contains {0} vowels and {1} consonants.”,

vowels, consonants);

return 0;
}

This example produces the following output:

A nod is as good as a wink to a blind horse.
The proverb contains 14 vowels and 18 consonants.

How It Works
The program counts the number of vowels and consonants in the string referenced by the proverb
variable. The program does this by iterating over each character in the string using a for each loop.
You first define two variables used to accumulate the total number of vowels and the total number of
consonants.

int vowels = 0;
int consonants = 0;

Under the covers, both are of the C++/CLI Int32 type, which stores a 32-bit integer.

Next you define the string to analyze.

String^ proverb = L”A nod is as good as a wink to a blind horse.”;

The proverb variable is of type String^ that is described as type “handle to String”; a handle is used
to store the location of an object on the garbage-collected heap that is managed by the CLR. You’ll learn
more about handles and type String^ when we get into C++/CLI class types; for now, just take it that
this is the type you use for C++/CLI variables that store strings.

157

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 157



The for each loop that iterates over the characters in the string referenced by proverb is of this form:

for each(wchar_t ch in proverb)
{
// Process the current character stored in ch…

}

The characters in the proverb string are Unicode characters so you use a variable of type wchar_t
(equivalent to type Char) to store them. The loop successively stores characters from the proverb string
in the loop variable ch, which is of the C++/CLI type Char. This variable is local to the loop — in other
words, it exists only within the loop block. On the first iteration ch contains the first character from the
string, on the second iteration it contains the second character, on the third iteration the third character,
and so on until all the characters have been processed and the loop ends.

Within the loop you determine whether the character is a letter in the if expression:

if(Char::IsLetter(ch))

The Char::IsLetter() function returns the value true if the argument — ch in this case — is a letter,
and false otherwise. Thus the block following the if only executes if ch contains a letter. This is neces-
sary because you don’t want punctuation characters to be processed as though they were letters.

Having established that ch is indeed a letter you convert it to lowercase with the following statement:

ch = Char::ToLower(ch);      // Convert to lowercase

This uses the Char::ToLower() function from the .NET Framework library, which returns the lower-
case equivalent of the argument — ch in this case. If the argument is already lowercase, the function just
returns the same character code. By converting the character to lowercase, you avoid having to test sub-
sequently for both upper- and lowercase vowels.

You determine whether ch contains a vowel or a consonant within the switch statement.

switch(ch)
{
case ‘a’: case ‘e’: case ‘i’:
case ‘o’: case ‘u’:

++vowels;
break;

default:
++consonants;
break;

}

For any of the five cases where ch is a vowel, you increment the value stored in vowels; otherwise, you
increment the value stored in consonants. This switch is executed for each character in proverb so
when the loop finishes, vowels contain the number of vowels in the string and consonants contain
the number of consonants. You then output the result with the following statements:

Console::WriteLine(proverb);
Console::WriteLine(L”The proverb contains {0} vowels and {1} consonants.”,

vowels, consonants);

158

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 158



In the last statement, the value of vowels replaces the “{0}” in the string and the value of consonants
replaces the “{1}”. This is because the arguments that follow the first format string argument are refer-
enced by index values starting from 0.

Summary
In this chapter, you learned all of the essential mechanisms for making decisions in C++ programs. You
have also gone through all the facilities for repeating a group of statements. The essentials of what I’ve
discussed are as follows:

❑ The basic decision-making capability is based on the set of relational operators, which allow
expressions to be tested and compared, and yield a bool value as the result — true or false.

❑ You can also make decisions based on conditions that return non-bool values. Any non-zero
value is cast to true when a condition is tested; zero casts to false.

❑ The primary decision-making capability in C++ is provided by the if statement. Further flexi-
bility is provided by the switch statement, and by the conditional operator.

❑ There are three basic methods provided in ISO/ANSI C++ for repeating a block of statements:
the for loop, the while loop and the do-while loop. The for loop allows the loop to repeat a
given number of times. The while loop allows a loop to continue as long as a specified condi-
tion returns true. Finally, do-while executes the loop at least once and allows continuation of
the loop as long as a specified condition returns true.

❑ C++/CLI has the for each loop statement in addition to the three loop statements defined in
ISO/ANSI C++.

❑ Any kind of loop may be nested within any other kind of loop.

❑ The keyword continue allows you to skip the remainder of the current iteration in a loop and
go straight to the next iteration.

❑ The keyword break provides an immediate exit from a loop. It also provides an exit from a
switch at the end of the statements for a case.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from http://www.wrox.com.

1. Write a program that reads numbers from cin and then sums them, stopping when 0 has been
entered. Construct three versions of this program, using the while, do-while, and for loops.

2. Write an ISO/ANSI C++ program to read characters from the keyboard and count the vowels.
Stop counting when a Q (or a q) is encountered. Use a combination of an indefinite loop to get
the characters, and a switch statement to count them.

159

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 159



3. Write a program to print out the multiplication tables from 2 to 12 in columns.

4. Imagine that in a program you want to set a ‘file open mode’ variable based on two attributes:
the file type, which can be text or binary, and the way in which you want to open the file to read
or write it or append data to it. Using the bitwise operators (& and |) and a set of flags, devise
a method to allow a single integer variable to be set to any combination of the two attributes.
Write a program that sets such a variable and then decodes it, printing out its setting, for all
possible combinations of the attributes.

5. Repeat Ex3_2 as a C++/CLI program — you can use Console::ReadKey() to read characters
from the keyboard.

6. Write a CLR console program that defines a string (as type String^) and then analyzes the
characters in the string to discover the number of uppercase letters, the number of lowercase
letters, the number of non-alphabetic characters, and the total number of characters in the
string.

160

Chapter 3: Decisions and Loops

25905c03.qxd:WroxPro  2/21/08  8:46 AM  Page 160



4
Arrays, Strings, 

and Pointers

So far, you have covered all the fundamental data types of consequence and you have a basic knowl-
edge of how to perform calculations and make decisions in a program. This chapter is about broad-
ening the application of the basic programming techniques that you have learned so far, from using
single items of data to working with whole collections of data items. In this chapter, you will learn
about:

❑ Arrays and how you use them

❑ How to declare and initialize arrays of different types

❑ How to declare and use multidimensional arrays

❑ Pointers and how you use them

❑ How to declare and initialize pointers of different types

❑ The relationship between arrays and pointers

❑ References, how they are declared, and some initial ideas on their uses

❑ How to allocate memory for variables dynamically in a native C++ program

❑ How dynamic memory allocation works in a Common Language Runtime (CLR) program

❑ Tracking handles and tracking references and why you need them in a CLR program

❑ How to work with strings and arrays in C++/CLI programs

❑ What interior pointers are and how you can create and use them

In this chapter you’ll be using objects more extensively although you have not yet explored the
details of how they are created so don’t worry if everything is not completely clear. You’ll learn
about classes and objects in detail starting in Chapter 7.

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 161



Handling Multiple Data Values 
of the Same Type

You already know how to declare and initialize variables of various types that each holds a single item
of information; I’ll refer to single items of data as data elements. You know how to create a single char-
acter in a variable of type char or type wchar_t, a single integer in a variable of type short, type int,
type long, or a single floating point number in a variable of type float or of type double. The most
obvious extension to these ideas is to be able to reference several data elements of a particular type with
a single variable name. This would enable you to handle applications of a much broader scope.

Here’s an example of where you might need this. Suppose that you needed to write a payroll program.
Using a separately named variable for each individual’s pay, their tax liability, and so on, would be an
uphill task to say the least. A much more convenient way to handle such a problem would be to refer-
ence an employee by some kind of generic name — employeeName to take an imaginative example —
and to have other generic names for the kinds of data related to each employee, such as pay, tax, and 
so on. Of course, you would also need some means of picking out a particular employee from the whole
bunch, together with the data from the generic variables associated with them. This kind of requirement
arises with any collection of like entities that you want to handle in your program, whether they’re base-
ball players or battleships. Naturally, C++ provides you with a way to deal with this.

Arrays
The basis for the solution to all of these problems is provided by the array in ISO/ANSI C++. An array is
simply a number of memory locations called array elements or simply elements, each of which can store
an item of data of the same given data type and which are all referenced through the same variable name.
The employee names in a payroll program could be stored in one array, the pay for each employee in
another, and the tax due for each employee could be stored in a third array.

Individual items in an array are specified by an index value which is simply an integer representing the
sequence number of the elements in the array, the first having the sequence number 0, the second 1, and so
on. You can also envisage the index value of an array element as being an offset from the first element in an
array. The first element has an offset of 0 and therefore an index of 0, and an index value of 3 will refer to
the fourth element of an array. For the payroll, you could arrange the arrays so that if an employee’s name
was stored in the employeeName array at a given index value, then the arrays pay and tax would store the
associated data on pay and tax for the same employee in the array positions referenced by the same index
value.

The basic structure of an array is illustrated in Figure 4-1.

Figure 4-1 shows an array. The name height has six elements, each storing a different value. These might
be the heights of the members of a family, for instance, recorded to the nearest inch. Because there are six ele-
ments, the index values run from 0 through 5. To refer to a particular element, you write the array name, fol-
lowed by the index value of the particular element between square brackets. The third element is referred to
as height[2], for example. If you think of the index as being the offset from the first element, it’s easy to see
that the index value for the fourth element will be 3, for example.

The amount of memory required to store each element is determined by its type, and all the elements of
an array are stored in a contiguous block of memory.

162

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 162



Figure 4-1

Declaring Arrays
You declare an array in essentially the same way as you declared the variables that you have seen up 
to now, the only difference being that the number of elements in the array is specified between square
brackets immediately following the array name. For example, you could declare the integer array height,
shown in the previous figure, with the following declaration statement:

long height[6];

Because each long value occupies 4 bytes in memory, the whole array requires 24 bytes. Arrays can be 
of any size, subject to the constraints imposed by the amount of memory in the computer on which your
program is running.

You can declare arrays to be of any type. For example, to declare arrays intended to store the capacity and
power output of a series of engines, you could write the following:

double cubic_inches[10];     // Engine size
double horsepower[10];       // Engine power output

If auto mechanics are your thing, this would enable you to store the cubic capacity and power output of
up to 10 engines, referenced by index values from 0 to 9. As you have seen before with other variables,
you can declare multiple arrays of a given type in a single statement, but in practice it is almost always
better to declare variables in separate statements.

Try It Out Using Arrays
As a basis for an exercise in using arrays, imagine that you have kept a record of both the amount of
gasoline you have bought for the car and the odometer reading on each occasion. You can write a pro-
gram to analyze this data to see how the gas consumption looks on each occasion that you bought gas:

// Ex4_01.cpp
// Calculating gas mileage
#include <iostream>

73 

height[0] 

62 

height[1] 

The height array has 6 elements. 

Index value 
for the 2nd element 

Array name 

Index value 
for the 5th element 

Array name 

51 42 41 34 

height[2] height[3] height[4] height[5] 

163

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 163



#include <iomanip>

using std::cin;
using std::cout;
using std::endl;
using std::setw;

int main()
{

const int MAX = 20;                     // Maximum number of values
double gas[ MAX ];                      // Gas quantity in gallons
long miles[ MAX ];                      // Odometer readings
int count = 0;                          // Loop counter
char indicator = ‘y’;                   // Input indicator

while( (indicator == ‘y’ || indicator == ‘Y’) && count < MAX )
{

cout << endl
<< “Enter gas quantity: “;

cin >> gas[count];                   // Read gas quantity
cout << “Enter odometer reading: “;
cin >> miles[count];                 // Read odometer value

++count;
cout << “Do you want to enter another(y or n)? “;
cin >> indicator;

}

if(count <= 1)                     // count = 1 after 1 entry completed
{                                  // ... we need at least 2

cout << endl
<< “Sorry - at least two readings are necessary.”;

return 0;
}

// Output results from 2nd entry to last entry
for(int i = 1; i < count; i++)
cout << endl

<< setw(2) << i << “.”             // Output sequence number
<< “Gas purchased = “ << gas[i] << “ gallons” // Output gas
<< “ resulted in “                 // Output miles per gallon
<< (miles[i] - miles[i - 1])/gas[i] << “ miles per gallon.”;

cout << endl;
return 0;

}

The program assumes that you fill the tank each time so the gas bought was the amount consumed by
driving the distance recorded. Here’s an example of the output produced by this example:

Enter gas quantity: 12.8
Enter odometer reading: 25832
Do you want to enter another(y or n)? y

164

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 164



Enter gas quantity: 14.9
Enter odometer reading: 26337
Do you want to enter another(y or n)? y

Enter gas quantity: 11.8
Enter odometer reading: 26598
Do you want to enter another(y or n)? n

1.Gas purchased = 14.9 gallons resulted in 33.8926 miles per gallon.
2.Gas purchased = 11.8 gallons resulted in 22.1186 miles per gallon.

How It Works
Because you need to take the difference between two odometer readings to calculate the miles covered
for the gas used, you use the odometer reading only from the first pair of input values — you ignore the
gas bought in the first instance as that would have been consumed during miles driven earlier.

During the second period shown in the output, the traffic must have been really bad — or maybe the
parking brake was always on.

The dimensions of the two arrays gas and miles used to store the input data are determined by the value
of the constant with the name MAX. By changing the value of MAX, you can change the program to accom-
modate a different maximum number of input values. This technique is commonly used to make a pro-
gram flexible in the amount of information that it can handle. Of course, all the program code must be
written to take account of the array dimensions, or of any other parameters being specified by const
variables. This presents little difficulty in practice, however, so there’s no reason why you should not
adopt this approach. You’ll also see later how to allocate memory for storing data as the program exe-
cutes, so that you don’t need to fix the amount of memory allocated for data storage in advance.

Entering the Data
The data values are read in the while loop. Because the loop variable count can run from 0 to MAX - 1,
we haven’t allowed the user of our program to enter more values than the array can handle. You initial-
ize the variables count and indicator to 0 and ‘y’ respectively, so that the while loop is entered at
least once. There’s a prompt for each input value required and the value is read into the appropriate array
element. The element used to store a particular value is determined by the variable count, which is 0 for
the first input. The array element is specified in the cin statement by using count as an index, and count
is then incremented ready for the next value.

After you enter each value, the program prompts for confirmation that another value is to be entered.
The character entered is read into the variable indicator and then tested in the loop condition. The
loop will terminate unless ‘y’ or ‘Y’ is entered and the variable count is less than the specified maxi-
mum value, MAX.

After the input loop ends (by whatever means), the value of count contains one more than the index
value of the last element entered in each array. (Remember, you increment it after you enter each new
element). This is checked in order to verify that at least two pairs of values were entered. If this wasn’t
the case, the program ends with a suitable message because two odometer values are necessary to cal-
culate a mileage value.

165

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 165



Producing the Results
The output is generated in the for loop. The control variable i runs from 1 to count-1, allowing
mileage to be calculated as the difference between the current element, miles[i] and the previous
element, miles[i - 1]. Note that an index value can be any expression evaluating to an integer that
represents a legal index for the array in question, which is an index value from 0 to one less than the
number of elements in the array.

If the value of an index expression lies outside of the range corresponding to legitimate array elements,
you will reference a spurious data location that may contain other data, garbage, or even program code.
If the reference to such an element appears in an expression, you will use some arbitrary data value in
the calculation, which certainly produces a result that you did not intend. If you are storing a result in 
an array element using an illegal index value, you will overwrite whatever happens to be in that loca-
tion. When this is part of your program code, the results are catastrophic. If you use illegal index values,
there are no warnings produced either by the compiler or at runtime. The only way to guard against this
is to code your program to prevent it happening.

The output is generated by a single cout statement for all values entered, except for the first. A line
number is also generated for each line of output using the loop control variable i. The miles per gallon
are calculated directly in the output statement. You can use array elements in exactly the same way as
any other variables in an expression.

Initializing Arrays
To initialize an array in its declaration, you put the initializing values separated by commas between
braces, and you place the set of initial values following an equals sign after the array name. Here’s an
example of how you can declare and initialize an array:

int cubic_inches[5] = { 200, 250, 300, 350, 400 };

The array has the name cubic_inches and has five elements that each store a value of type int. The
values in the initializing list between the braces correspond to successive index values of the array, so in
this case cubic_inches[0] has the value 200, cubic_inches[1] the value 250, cubic_inches[2] the
value 300, and so on.

You must not specify more initializing values than there are elements in the array, but you can include
fewer. If there are fewer, the values are assigned to successive elements, starting with the first element —
which is the one corresponding to the index value 0. The array elements for which you didn’t provide an
initial value are initialized with zero. This isn’t the same as supplying no initializing list. Without an ini-
tializing list, the array elements contain junk values. Also, if you include an initializing list, there must
be at least one initializing value in it; otherwise the compiler generates an error message. I can illustrate
this with the following rather limited example.

Try It Out Initializing an Array
// Ex4_02.cpp
// Demonstrating array initialization
#include <iostream>
#include <iomanip>

166

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 166



using std::cout;
using std::endl;
using std::setw;

int main()
{

int value[5] = { 1, 2, 3 };
int junk [5];

cout << endl;
for(int i = 0; i < 5; i++)

cout << setw(12) << value[i];

cout << endl;
for(int i = 0; i < 5; i++)

cout << setw(12) << junk[i];

cout << endl;
return 0;

}

In this example, you declare two arrays, the first of which, value, you initialize in part, and the second,
junk, you don’t initialize at all. The program generates two lines of output, which on my computer look
like this:

1           2           3           0         0
-858993460  -858993460  -858993460  -858993460  -858993460

The second line (corresponding to values of junk[0] to junk[4]) may well be different on your computer.

How It Works
The first three values of the array value are the initializing values and the last two have the default value
of 0. In the case of junk, all the values are spurious because you didn’t provide any initial values at all.
The array elements contain whatever values were left there by the program that last used these memory
locations.

A convenient way to initialize a whole array to zero is simply to specify a single initializing value as 0.
For example:

long data[100] = {0};        // Initialize all elements to zero

This statement declares the array data, with all one hundred elements initialized with 0. The first ele-
ment is initialized by the value you have between the braces and the remaining elements are initialized
to zero because you omitted values for these.

You can also omit the dimension of an array of numeric type, providing you supply initializing values.
The number of elements in the array is determined by the number of initializing values you specify. For
example, the array declaration

int value[] = { 2, 3, 4 };

defines an array with three elements that have the initial values 2, 3, and 4.

167

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 167



Character Arrays and String Handling
An array of type char is called a character array and is generally used to store a character string. A char-
acter string is a sequence of characters with a special character appended to indicate the end of the string.
The string terminating character indicates the end of the string and this character is defined by the escape
sequence ‘\0’, and is sometimes referred to as a null character, being a byte with all bits as zero. A string
of this form is often referred to as a C-style string because defining a string in this way was introduced 
in the C language from which C++ was developed by Bjarne Stroustrup (you can find his home page at
www.research.att.com/~bs/). This is not the only representation of a string that you can use — you’ll
meet others later in the book. In particular, C++/CLI programs use a different representation of a string
and the MFC defines a CString class to represent strings.

The representation of a C-style string in memory is shown in Figure 4-2.

Figure 4-2

Figure 4-2 illustrates how a string looks in memory and shows a form of declaration for a string that I’ll
get to in a moment.

Each character in the string occupies one byte, so together with the terminating null character, a string
requires a number of bytes that is one greater than the number of characters contained in the string.

You can declare a character array and initialize it with a string literal. For example:

char movie_star[15] = “Marilyn Monroe”;

Note that the terminating ‘\0’is supplied automatically by the compiler. If you include one explicitly in
the string literal, you end up with two of them. You must, however, allow for the terminating null in the
number of elements that you allot to the array.

You can let the compiler work out the length of an initialized array for you, as you saw in Figure 4-1.
Here’s another example:

char president[] = “Ulysses Grant”;

Because the dimension is unspecified, the compiler allocates space for enough elements to hold the initializ-
ing string, plus the terminating null character. In this case it allocates 14 elements for the array president.
Of course, if you want to use this array later for storing a different string, its length (including the terminat-
ing null character) must not exceed 14 bytes. In general, it is your responsibility to ensure that the array is
large enough for any string you might subsequently want to store.

Each character in a string occupies 
one byte 

name[4] String termination 
character 

char name[] = “Albert Einstein”; 

A l b e r t E i n s t e i n \0

168

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 168



You can also create strings that comprise Unicode characters, the characters in the string being of type
wchar_t. Here’s a statement that creates a Unicode string:

wchar_t president[] = L”Ulysses Grant”;

The L prefix indicates that the string literal is a wide character string, so each character in the string, includ-
ing the terminating null character, will occupy two bytes. Of course, indexing the string references charac-
ters, not bytes, so president[2] corresponds to the character L’y’.

String Input
The <iostream> header file contains definitions of a number of functions for reading characters from
the keyboard. The one that you’ll look at here is the function getline(), which reads a sequence of
characters entered through the keyboard and stores it in a character array as a string terminated by \0.
You typically use the getline() function statements like this:

const int MAX = 80;               // Maximum string length including \0
char name[MAX];                   // Array to store a string
cin.getline(name, MAX, ‘\n’);     // Read input line as a string

These statements first declare a char array name with MAX elements and then read characters from cin
using the function getline(). The source of the data, cin, is written as shown, with a period separating
it from the function name. The period indicates that the getline() function you are calling is the one
belonging to the cin object. The significance of the arguments to the getline() function is shown in
Figure 4-3.

Because the last argument to the getline() function is ‘\n’(newline or end line character) and the sec-
ond argument is MAX, characters are read from cin until the ‘\n’ character is read, or when MAX - 1
characters have been read, whichever occurs first. The maximum number of characters read is MAX - 1
rather than MAX to allow for the ‘\0’ character to be appended to the sequence of characters stored in
the array. The ‘\n’ character is generated when you press the Return key on your keyboard and is there-
fore usually the most convenient character to end input. You can, however, specify something else by
changing the last argument. The ‘\n’ isn’t stored in the input array name, but as I said, a ‘\0’ is added
at the end of the input string in the array.

You will learn more about this form of syntax when classes are discussed later on. Meanwhile, you’ll just
take it for granted and use it in an example.

Figure 4-3

The maximum number of characters
to be read. When the specified
maximum has been read, input stops.

The character that is to stop the
input process. You can specify
any character here, and the first
occurance of that character will
stop the input process.

The name of the array of type
char[] in which the characters
read from cin are to be stored.

cin.getline( name , MAX, ‘\n’ ); 

169

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  10:02 AM  Page 169



Try It Out Programming with Strings
You now have enough knowledge to write a simple program to read a string and then count how many
characters it contains.

// Ex4_03.cpp
// Counting string characters
#include <iostream>
using std::cin;
using std::cout;
using std::endl;

int main()
{

const int MAX = 80;                // Maximum array dimension
char buffer[MAX];                  // Input buffer
int count = 0;                     // Character count

cout << “Enter a string of less than 80 characters:\n”;
cin.getline(buffer, MAX, ‘\n’);    // Read a string until \n

while(buffer[count] != ‘\0’)       // Increment count as long as
count++;                        // the current character is not null

cout << endl
<< “The string \”” << buffer
<< “\” has “ << count << “ characters.”;

cout << endl;
return 0;

}

Typical output from this program is as follows:

Enter a string of less than 80 characters:
Radiation fades your genes
The string “Radiation fades your genes” has 26 characters.

How It Works
This program declares a character array buffer and reads a character string into the array from the key-
board after displaying a prompt for the input. Reading from the keyboard ends when the user presses
Return, or when MAX-1 characters have been read.

A while loop is used to count the number of characters read. The loop continues as long as the current
character referenced with buffer[count] is not ‘\0’. This sort of checking on the current character
while stepping through an array is a common technique in native C++. The only action in the loop is to
increment count for each non-null character.

There is a library function, strlen() that will do what this loop does and you’ll learn about it later in
this chapter.

170

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  10:09 AM  Page 170



Finally in the example, the string and the character count is displayed with a single output statement.
Note the use of the escape character ‘\”’ to output a double quote.

Multidimensional Arrays
The arrays that you have defined so far with one index are referred to as one-dimensional arrays. An
array can also have more than one index value, in which case it is called a multidimensional array.
Suppose you have a field in which you are growing bean plants in rows of 10, and the field contains 
12 such rows (so there are 120 plants in all). You could declare an array to record the weight of beans
produced by each plant using the following statement:

double beans[12][10];

This declares the two-dimensional array beans, the first index being the row number, and the second index
the number within the row. To refer to any particular element requires two indices. For example, you could
set the value of the element reflecting the fifth plant in the third row with the following statement:

beans[2][4] = 10.7;

Remember that the index values start from zero, so the row index value is 2 and the index for the fifth
plant within the row is 4.

Being a successful bean farmer, you might have several identical fields planted with beans in the same
pattern. Assuming that you have eight fields, you could use a three-dimensional array to record data
about these, declared thus:

double beans[8][12][10];

This records production for all of the plants in each of the fields, the leftmost index referencing a particu-
lar field. If you ever get to bean farming on an international scale, you are able to use a four-dimensional
array, with the extra dimension designating the country. Assuming that you’re as good a salesman as you
are a farmer, growing this quantity of beans to keep up with the demand may well start to affect the
ozone layer.

Arrays are stored in memory such that the rightmost index value varies most rapidly. Thus the array
data[3][4] is three one-dimensional arrays of four elements each. The arrangement of this array is
illustrated in Figure 4-4.

The elements of the array are stored in a contiguous block of memory, as indicated by the arrows in
Figure 4-4. The first index selects a particular row within the array and the second index selects an ele-
ment within the row.

Note that a two-dimensional array in native C++ is really a one-dimensional array of one-dimensional arrays.
A native C++ array with three dimensions is actually a one-dimensional array of elements where each ele-
ment is a one-dimensional array of one-dimensional arrays. This is not something you need to worry about
most of the time, but as you will see later, C++/CLI arrays are not the same as this. It also implies that for the
array in Figure 4-4 the expressions data[0], data[1], and data[2], represent one-dimensional arrays.

171

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 171



Figure 4-4

Initializing Multidimensional Arrays
To initialize a multidimensional array, you use an extension of the method used for a one-dimensional
array. For example, you can initialize a two-dimensional array, data, with the following declaration:

long data[2][4] = {
{ 1,  2,  3,  5 },
{ 7, 11, 13, 17 }

};

Thus, the initializing values for each row of the array are contained within their own pair of braces. Because
there are four elements in each row, there are four initializing values in each group, and because there are
two rows, there are two groups between braces, each group of initializing values being separated from the
next by a comma.

You can omit initializing values in any row, in which case the remaining array elements in the row are
zero. For example:

long data[2][4] = {
{ 1,  2,  3       },
{ 7, 11           }

};

I have spaced out the initializing values to show where values have been omitted. The elements
data[0][3], data[1][2], and data[1][3] have no initializing values and are therefore zero.

If you wanted to initialize the whole array with zeros you could simply write:

long data[2][4] = {0};

data[0][0] data[0][1] data[0][2] data[0][3] 

data[1][0] data[1][1] data[1][2] data[1][3] 

data[2][0] data[2][1] 

The array elements are stored in contiguous locations in memory. 

data[2][2] data[2][3] 

172

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 172



If you are initializing arrays with even more dimensions, remember that you need as many nested braces
for groups of initializing values as there are dimensions in the array.

Try It Out Storing Multiple Strings
You can use a single two-dimensional array to store several C-style strings. You can see how this works
with an example:

// Ex4_04.cpp
// Storing strings in an array.
#include <iostream>
using std::cout;
using std::cin;
using std::endl;

int main()
{

char stars[6][80] = { “Robert Redford”,
“Hopalong Cassidy”,
“Lassie”,
“Slim Pickens”,
“Boris Karloff”,
“Oliver Hardy”

};
int dice = 0;

cout << endl
<< “ Pick a lucky star!”
<< “ Enter a number between 1 and 6: “;

cin >> dice;

if(dice >= 1 && dice <= 6)                  // Check input validity
cout << endl                             // Output star name

<< “Your lucky star is “ << stars[dice - 1];
else

cout << endl                             // Invalid input
<< “Sorry, you haven’t got a lucky star.”;

cout << endl;
return 0;

}

How It Works
Apart from its incredible inherent entertainment value, the main point of interest in this example is the
declaration of the array stars. It is a two-dimensional array of elements of type char that can hold up
to six strings, each of which can be up to 80 characters long (including the terminating null character
that is automatically added by the compiler). The initializing strings for the array are enclosed between
braces and separated by commas.

One disadvantage of using arrays in this way is the memory that is almost invariably left unused. All of
the strings are fewer than 80 characters and the surplus elements in each row of the array are wasted.

173

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 173



You can also let the compiler work out how many strings you have by omitting the first array dimension
and declaring it as follows:

char stars[][80] = { “Robert Redford”,
“Hopalong Cassidy”,
“Lassie”,
“Slim Pickens”,
“Boris Karloff”,
“Oliver Hardy”

};

This causes the compiler to define the first dimension to accommodate the number of initializing strings
that you have specified. Because you have six, the result is exactly the same, but it avoids the possibility
of an error. Here you can’t omit both array dimensions. With an array of two or more dimensions the
rightmost dimension must always be defined.

Note the semicolon at the end of the declaration. It’s easy to forget it when there are initializing values
for an array.

Where you need to reference a string for output in the following statement, you need only specify the
first index value:

cout << endl                             // Output star name
<< “Your lucky star is “ << stars[dice - 1];

A single index value selects a particular 80-element sub-array, and the output operation displays the con-
tents up to the terminating null character. The index is specified as dice - 1 as the dice values are from
1 to 6, whereas the index values clearly need to be from 0 to 5.

Indirect Data Access
The variables that you have dealt with so far provide you with the ability to name a memory location in
which you can store data of a particular type. The contents of a variable are either entered from an exter-
nal source, such as the keyboard, or calculated from other values that are entered. There is another kind
of variable in C++ that does not store data that you normally enter or calculate, but greatly extends the
power and flexibility of your programs. This kind of variable is called a pointer.

What Is a Pointer?
Each memory location that you use to store a data value has an address. The address provides the means
for your PC hardware to reference a particular data item. A pointer is a variable that stores an address of
another variable of a particular type. A pointer has a variable name just like any other variable and also
has a type that designates what kind of variables its contents refer to. Note that the type of a pointer vari-
able includes the fact that it’s a pointer. A variable that is a pointer that can contain addresses of locations
in memory containing values of type int, is of type ‘pointer to int’.

174

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 174



Declaring Pointers
The declaration for a pointer is similar to that of an ordinary variable, except that the pointer name has
an asterisk in front of it to indicate that it’s a variable that is a pointer. For example, to declare a pointer
pnumber of type long, you could use the following statement:

long* pnumber;

This declaration has been written with the asterisk close to the type name. If you want, you can also
write it as:

long *pnumber;

The compiler won’t mind at all; however, the type of the variable pnumber is ‘pointer to long’, which 
is often indicated by placing the asterisk close to the type name. Whichever way you choose to write a
pointer type, be consistent.

You can mix declarations of ordinary variables and pointers in the same statement. For example:

long* pnumber, number = 99;

This declares the pointer pnumber of type ‘pointer to long’ as before, and also declares the variable
number, of type long. On balance, it’s probably better to declare pointers separately from other vari-
ables; otherwise, the statement can appear misleading as to the type of the variables declared, particu-
larly if you prefer to place the * adjacent to the type name. The following statements certainly look
clearer and putting declarations on separate lines enables you to add comments for them individually,
making for a program that is easier to read.

long number = 99;    // Declaration and initialization of long variable
long* pnumber;       // Declaration of variable of type pointer to long

It’s a common convention in C++ to use variable names beginning with p to denote pointers. This makes it
easier to see which variables in a program are pointers, which in turn can make a program easier to follow.

Let’s take an example to see how this works, without worrying about what it’s for. I will get to how you
use pointers very shortly. Suppose you have the long integer variable number because you declared it
above containing the value 99. You also have the pointer, pnumber, of type pointer to long, which you
could use to store the address of the variable number. But how do you obtain the address of a variable?

The Address-Of Operator
What you need is the address-of operator, &. This is a unary operator that obtains the address of a vari-
able. It’s also called the reference operator, for reasons I will discuss later in this chapter. To set up the
pointer that I have just discussed, you could write this assignment statement:

pnumber = &number;            // Store address of number in pnumber

The result of this operation is illustrated in Figure 4-5.

175

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 175



Figure 4-5

You can use the operator & to obtain the address of any variable, but you need a pointer of the appropri-
ate type to store it. If you want to store the address of a double variable for example, the pointer must
have been declared as type double*, which is type ‘pointer to double’.

Using Pointers
Taking the address of a variable and storing it in a pointer is all very well, but the really interesting aspect
is how you can use it. Fundamental to using a pointer is accessing the data value in the variable to which
a pointer points. This is done using the indirection operator, *.

The Indirection Operator
You use the indirection operator, *, with a pointer to access the contents of the variable that it points to.
The name ‘indirection operator’ stems from the fact that the data is accessed indirectly. It is also called
the dereference operator, and the process of accessing the data in the variable pointed to by a pointer is
termed de-referencing the pointer.

One aspect of this operator that can seem confusing is the fact that you now have several different uses
for the same symbol, *. It is the multiply operator, it also serves as the indirection operator, and it is used
in the declaration of a pointer. Each time you use *, the compiler is able to distinguish its meaning by the
context. When you multiply two variables, A*B for instance, there’s no meaningful interpretation of this
expression for anything other than a multiply operation.

Why Use Pointers?
A question that usually springs to mind at this point is, “Why use pointers at all?” After all, taking the
address of a variable you already know and sticking it in a pointer so that you can dereference it seems
like an overhead you can do without. There are several reasons why pointers are important.

As you will see shortly, you can use pointer notation to operate on data stored in an array, which often
executes faster than if you use array notation. Also, when you get to define your own functions later in
the book, you will see that pointers are used extensively for enabling access within a function to large
blocks of data, such as arrays, that are defined outside the function. Most importantly, however, you will
also see later that you can allocate space for variables dynamically, that is, during program execution.
This sort of capability allows your program to adjust its use of memory depending on the input to the

pnumber 

&number 

pnumber = &number; 

Address: 1008 

1008 
number 

99 

176

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 176



program. Because you don’t know in advance how many variables you are going to create dynamically,
a primary way you have for doing this is by using pointers — so make sure you get the hang of this bit.

Try It Out Using Pointers
You can try out various aspects of pointer operations with an example:

//Ex4_05.cpp
// Exercising pointers
#include <iostream>
using std::cout;
using std::endl;
using std::hex;
using std::dec;

int main()
{

long* pnumber = NULL;           // Pointer declaration & initialization
long number1 = 55, number2 = 99;

pnumber = &number1;             // Store address in pointer
*pnumber += 11;                 // Increment number1 by 11
cout << endl

<< “number1 = “ << number1
<< “   &number1 = “ << hex << pnumber;

pnumber = &number2;             // Change pointer to address of number2
number1 = *pnumber*10;          // 10 times number2

cout << endl
<< “number1 = “ << dec << number1
<< “   pnumber = “ << hex << pnumber
<< “   *pnumber = “ << dec << *pnumber;

cout << endl;
return 0;

}

On my computer, this example generates the following output:

number1 = 66   &number1 = 0012FEC8
number1 = 990   pnumber = 0012FEBC   *pnumber = 99

How It Works
There is no input to this example. All operations are carried out with the initializing values for the vari-
ables. After storing the address of number1 in the pointer pnumber, the value of number1 is incremented
indirectly through the pointer in this statement:

*pnumber += 11;                       // Increment number1 by 11

Note that when you first declared the pointer pnumber, you initialized it to NULL. I’ll discuss pointer
initialization in the next section.

177

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 177



The indirection operator determines that you are adding 11 to the contents of the variable pointed to by
pnumber, which is number1. If you forgot the * in this statement, you would be attempting to add 11 to
the address stored in the pointer.

The values of number1, and the address of number1 that is stored in pnumber, are displayed. You use the
hex manipulator to generate the address output in hexadecimal notation.

You can obtain the value of ordinary integer variables as hexadecimal output by using the manipulator
hex. You send it to the output stream in the same way that you have applied endl, with the result that all
following output is in hexadecimal notation. If you want the following output to be decimal, you need to
use the manipulator dec in the next output statement to switch the output back to decimal mode again.

After the first line of output, the contents of pnumber are set to the address of number2. The variable
number1 is then changed to the value of 10 times number2:

number1 = *pnumber*10;                // 10 times number2

This is calculated by accessing the contents of number2 indirectly through the pointer. The second line of
output shows the results of these calculations.

The address values you see in your output may well be different from those shown in the output here since
they reflect where the program is loaded in memory, which depends on how your operating system is
configured. The 0x prefixing the address values indicates that they are hexadecimal numbers. Note that
the addresses &number1 and pnumber (when it contains &number2) differ by four bytes. This shows that
number1 and number2 occupy adjacent memory locations, as each variable of type long occupies four
bytes. The output demonstrates that everything is working as you would expect.

Initializing Pointers
Using pointers that aren’t initialized is extremely hazardous. You can easily overwrite random areas of
memory through an uninitialized pointer. The resulting damage just depends on how unlucky you are,
so it’s more than just a good idea to initialize your pointers. It’s very easy to initialize a pointer to the
address of a variable that has already been defined. Here you can see that I have initialized the pointer
pnumber with the address of the variable number just by using the operator & with the variable name:

int number = 0;                  // Initialized integer variable
int* pnumber = &number;          // Initialized pointer

When initializing a pointer with the address of another variable, remember that the variable must already
have been declared prior to the pointer declaration.

Of course, you may not want to initialize a pointer with the address of a specific variable when you declare
it. In this case, you can initialize it with the pointer equivalent of zero. For this, Visual C++ provides the
symbol NULL that is already defined as 0, so you can declare and initialize a pointer using the following
statement, rather like you did in the last example:

int* pnumber = NULL;             // Pointer not pointing to anything

178

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 178



This ensures that the pointer doesn’t contain an address that will be accepted as valid and provides the
pointer with a value that you can check in an if statement, such as:

if(pnumber == NULL)
cout << endl << “pnumber is null.”;

Of course, you can also initialize a pointer explicitly with 0, which also ensures that it is assigned a value
that doesn’t point to anything. No object can be allocated the address 0, so in effect 0 used as an address
indicates that the pointer has no target. In spite of it being arguably somewhat less legible, if you expect
to run your code with other compilers, it is preferable to use 0 as an initializing value for a pointer that
you want to be null. I’ll use 0 rather than NULL in ISO/ANSI C++ examples.

This is also more consistent with the current ‘good practice’ in ISO/ANSI C++, the argument being
that if you have an object with a name in C++, it should have a type; however, NULL does not have a
type — it’s an alias for 0. As you’ll see later in this chapter, things are a little different in C++/CLI.

To use 0 as the initializing value for a pointer you simply write:

int* pnumber = 0;                // Pointer not pointing to anything

To check whether a pointer contains a valid address, you could use the statement:

if(pnumber == 0)
cout << endl << “pnumber is null.”;

Equally well, you could use the statement:

if(!pnumber)
cout << endl << “pnumber is null.”;

This statement does exactly the same as the previous example.

Of course, you can also use the form:

if(pnumber != 0)
// Pointer is valid, so do something useful

The address pointed to by the NULL pointer contains a junk value. You should never attempt to derefer-
ence a null pointer, because it will cause your program to end immediately.

Pointers to char
A pointer of type char* has the interesting property that it can be initialized with a string literal. For
example, you can declare and initialize such a pointer with the statement:

char* proverb = “A miss is as good as a mile.”;

This looks similar to initializing a char array, but it’s slightly different. This creates a string literal (actu-
ally an array of type const char) with the character string appearing between the quotes and terminat-
ing with /0, and stores the address of the literal in the pointer proverb. The address of the literal will be
the address of its first character. This is shown in Figure 4-6.

179

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 179



Figure 4-6

Try It Out Lucky Stars With Pointers
You could rewrite the lucky stars example using pointers instead of an array to see how that would work:

// Ex4_06.cpp
// Initializing pointers with strings
#include <iostream>
using std::cin;
using std::cout;
using std::endl;

int main()
{

char* pstr1 = “Robert Redford”;
char* pstr2 = “Hopalong Cassidy”;
char* pstr3 = “Lassie”;
char* pstr4 = “Slim Pickens”;
char* pstr5 = “Boris Karloff”;
char* pstr6 = “Oliver Hardy”;
char* pstr  = “Your lucky star is “;

int dice = 0;

cout << endl
<< “ Pick a lucky star!”
<< “ Enter a number between 1 and 6: “;

cin >> dice;

cout << endl;
switch(dice)
{

case 1: cout << pstr << pstr1;
break;

case 2: cout << pstr << pstr2;
break;

Address: 1000 

proverb 

1. The pointer proverb is created. 

2. The constant string is created, terminated with \0. 

3. The address of the string is stored in the pointer. 

1000 

A m i s s a si s g o o d a s a m i l e . \0

180

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 180



case 3: cout << pstr << pstr3;
break;

case 4: cout << pstr << pstr4;
break;

case 5: cout << pstr << pstr5;
break;

case 6: cout << pstr << pstr6;
break;

default: cout << “Sorry, you haven’t got a lucky star.”;
}

cout << endl;
return 0;

}

How It Works
The array in Ex4_04.cpp has been replaced by the six pointers, pstr1 to pstr6, each initialized with a
name. You also have declared an additional pointer, pstr, initialized with the phrase that you want to
use at the start of a normal output line. Because you have discrete pointers, it is easier to use a switch
statement to select the appropriate output message than to use an if as you did in the original version.
Any incorrect values entered are all taken care of by the default option of the switch.

Outputting the string pointed to by a pointer couldn’t be easier. As you can see, you simply write the
pointer name. It may cross your mind at this point that in Ex4_05.cpp you wrote a pointer name in
the output statement and the address that it contained was displayed. Why is it different here? The
answer is in the way the output operation views a pointer of type ‘pointer to char’. It treats a pointer 
of this type in a special way in that it regards it as a string (which is an array of char), and so outputs
the string itself, rather than its address.

Using pointers in the example has eliminated the waste of memory that occurred with the array version
of this program, but the program seems a little long-winded now — there must be a better way. Indeed
there is — using an array of pointers.

Try It Out Arrays of Pointers
With an array of pointers of type char, each element can point to an independent string, and the lengths
of each of the strings can be different. You can declare an array of pointers in the same way that you declare
a normal array. Let’s go straight to rewriting the previous example using a pointer array:

// Ex4_07.cpp
// Initializing pointers with strings
#include <iostream>
using std::cin;
using std::cout;
using std::endl;

181

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 181



int main()
{

char* pstr[] =  { “Robert Redford”,      // Initializing a pointer array
“Hopalong Cassidy”,
“Lassie”,
“Slim Pickens”,
“Boris Karloff”,
“Oliver Hardy”

};
char* pstart = “Your lucky star is “;

int dice = 0;

cout << endl
<< “ Pick a lucky star!”
<< “ Enter a number between 1 and 6: “;

cin >> dice;

cout << endl;
if(dice >= 1 && dice <= 6)                    // Check input validity

cout << pstart << pstr[dice - 1];          // Output star name

else
cout << “Sorry, you haven’t got a lucky star.”; // Invalid input

cout << endl;
return 0;

}

How It Works
In this case, you are nearly getting the best of all possible worlds. You have a one-dimensional array of
pointers to type char declared such that the compiler works out what the dimension should be from the
number of initializing strings. The memory usage that results from this is illustrated in Figure 4-7.

Compared to using a ‘normal’ array, the pointer array normally carries less overhead in terms of space.
With an array, you would need to make each row the length of the longest string, and six rows of seventeen
bytes each is 102 bytes, so by using a pointer array you have saved a whole -1 bytes! What’s gone wrong?
The simple truth is that for this small number of relatively short strings, the size of the extra array of point-
ers is significant. You would make savings if you were dealing with more strings that were longer and had
more variable lengths.

Space saving isn’t the only advantage that you get by using pointers. In a lot of circumstances you save
time too. Think of what happens if you want to move “Oliver Hardy” to the first position and “Robert
Redford” to the end. With the pointer array as above you just need to swap the pointers — the strings
themselves stay where they are. If you had stored these simply as strings, as you did in Ex4_04.cpp, a
great deal of copying would be necessary — you need to copy the whole string “Robert Redford” to a
temporary location while you copied “Oliver Hardy” in its place, and then you need to copy “Robert
Redford” to the end position. This requires significantly more computer time to execute.

Because you are using pstr as the name of the array, the variable holding the start of the output message
needs to be different; it is called pstart. You select the string that you want to output by means of a very
simple if statement, similar to that of the original version of the example. You either display a star selec-
tion or a suitable message if the user enters an invalid value.

182

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 182



Figure 4-7

One weakness of the way the program is written is that the code assumes there are six options, even
though the compiler is allocating the space for the pointer array from the number of initializing strings
that you supply. So if you add a string to the list, you have to alter other parts of the program to take
account of this. It would be nice to be able to add strings and have the program automatically adapt to
however many strings there are.

The sizeof Operator
A new operator can help us here. The sizeof operator produces an integer value of type size_t that
gives the number of bytes occupied by its operand where size_t is a type defined by the standard
library. Many standard library functions return a value of type size_t and the size_t type is defined
within the standard library using a typedef statement to be equivalent to one of the fundamental types,
usually unsigned int. The reason for using size_t rather than a fundamental type directly is that it
allows flexibility in what the actual type is in different C++ implementations. The C++ standard permits
the range of values accommodated by a fundamental type to vary to make the best of a given hardware
architecture, and size_t can be defined to be the equivalent of the most suitable fundamental type in the
current machine environment.

Look at this statement that refers to the variable dice from the previous example:

cout << sizeof dice;

15 bytes 

pstr[0] 
pstr[1] 
pstr[2] 
pstr[3] 
pstr[4] 
pstr[5] 

Pointer array 24 bytes 

Total Memory is 103 bytes 

17 bytes 

7 bytes 

13 bytes 

14 bytes 

13 bytes 

R o b e r t R e d f o r d \0

H o p a l o n g C a s s i d y \0

L a s s i e \0

S l i m P i c k e n s \0

B o r i s K a r l o f f \0

O l i v e r H a r d y \0

183

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 183



The value of the expression sizeof dice is 4 because dice was declared as type int and therefore
occupies 4 bytes. Thus this statement outputs the value 4.

The sizeof operator can be applied to an element in an array or to the whole array. When the operator is
applied to an array name by itself, it produces the number of bytes occupied by the whole array, whereas
when it is applied to a single element with the appropriate index value or values, it results in the number
of bytes occupied by that element. Thus, in the last example, you could output the number of elements in
the pstr array with the expression:

cout << (sizeof pstr)/(sizeof pstr[0]);

The expression (sizeof pstr)/(sizeof pstr[0]) divides the number of bytes occupied by the whole
pointer array by the number of bytes occupied by the first element of the array. Because each element in
the array occupies the same amount of memory, the result is the number of elements in the array.

Remember that pstr is an array of pointers — using the sizeof operator on the array or on individ-
ual elements will not tell us anything about the memory occupied by the text strings.

You can also apply the sizeof operator to a type name rather than a variable, in which case the result 
is the number of bytes occupied by a variable of that type. In this case the type name should be enclosed
between parentheses. For example, after executing the statement,

size_t long_size = sizeof(long);

the variable long_size will have the value 4. The variable long_size is declared to be of type size_t
to match the type of the value produced by the sizeof operator. Using a different integer type for
long_size may result in a warning message from the compiler.

Try It Out Using the sizeof Operator
You can amend the last example to use the sizeof operator so that the code automatically adapts to an
arbitrary number of string values from which to select:

// Ex4_08.cpp
// Flexible array management using sizeof
#include <iostream>
using std::cin;
using std::cout;
using std::endl;

int main()
{

char* pstr[] = { “Robert Redford”,       // Initializing a pointer array
“Hopalong Cassidy”,
“Lassie”,
“Slim Pickens”,
“Boris Karloff”,
“Oliver Hardy”

};
char* pstart = “Your lucky star is “;

184

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 184



int count = (sizeof pstr)/(sizeof pstr[0]);  // Number of array elements

int dice = 0;

cout << endl
<< “ Pick a lucky star!”
<< “ Enter a number between 1 and “ << count << “: “;

cin >> dice;

cout << endl;
if(dice >= 1 && dice <= count)               // Check input validity

cout << pstart << pstr[dice - 1];         // Output star name
else

cout << “Sorry, you haven’t got a lucky star.”; // Invalid input

cout << endl;
return 0;

}

How It Works
As you can see, the changes required in the example are very simple. You just calculate the number of
elements in the pointer array pstr and store the result in count. Then, wherever the total number of ele-
ments in the array was referenced as 6, you just use the variable count. You could now just add a few
more names to the list of lucky stars and everything affected in the program is adjusted automatically.

Constant Pointers and Pointers to Constants
The array pstr in the last example is clearly not intended to be modified in the program, and nor are the
strings being pointed to, nor the variable count. It would be a good idea to ensure that these didn’t get
modified by mistake in the program. You could very easily protect the variable count from accidental
modification by writing this:

const int count = (sizeof pstr)/(sizeof pstr[0]);

However, the array of pointers deserves closer examination. You declared the array like this:

char* pstr[] = { “Robert Redford”,   // Initializing a pointer array
“Hopalong Cassidy”,
“Lassie”,
“Slim Pickens”,
“Boris Karloff”,
“Oliver Hardy”

};

Each pointer in the array is initialized with the address of a string literal, “Robert Redford”, “Hopalong
Cassidy”, and so on. The type of a string literal is ‘array of const char’ so you are storing the address
of a const array in a non-const pointer. The reason the compiler allows us to use a string literal to ini-
tialize an element of an array of char* is for reasons of backward compatibility with existing code.

185

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 185



If you try to alter the character array with a statement like this:

*pstr[0] = “Stan Laurel”;

the program does not compile.

If you were to reset one of the elements of the array to point to a character using a statement like this:

*pstr[0] = ‘X’;

the program compiles but crashes when this statement is executed.

You don’t really want to have unexpected behavior like the program crashing at run time, and you can
prevent it. A far better way of writing the declaration is as follows:

const char* pstr[] = { “Robert Redford”,    // Array of pointers
“Hopalong Cassidy”,  // to constants
“Lassie”,
“Slim Pickens”,
“Boris Karloff”,
“Oliver Hardy”

};

In this case, there is no ambiguity about the const-ness of the strings pointed to by the elements of the
pointer array. If you now attempt to change these strings, the compiler flags this as an error at compile time.

However, you could still legally write this statement:

pstr[0] = pstr[1];

Those lucky individuals due to be awarded Mr. Redford would get Mr. Cassidy instead because both
pointers now point to the same name. Note that this isn’t changing the values of the objects pointed to
by the pointer array element — it is changing the value of the pointer stored in pstr[0]. You should
therefore inhibit this kind of change as well because some people may reckon that good old Hoppy 
may not have the same sex appeal as Robert. You can do this with the following statement:

// Array of constant pointers to constants
const char* const pstr[] = { “Robert Redford”,

“Hopalong Cassidy”,
“Lassie”,
“Slim Pickens”,
“Boris Karloff”,
“Oliver Hardy”

};

To summarize, you can distinguish three situations relating to const, pointers and the objects to which
they point:

❑ A pointer to a constant object

❑ A constant pointer to an object

❑ A constant pointer to a constant object

186

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 186



In the first situation, the object pointed to cannot be modified, but you can set the pointer to point to
something else:

const char* pstring = “Some text”;

In the second, the address stored in the pointer can’t be changed, but the object pointed to can be:

char* const pstring = “Some text”;

Finally, in the third situation, both the pointer and the object pointed to have been defined as constant
and, therefore, neither can be changed:

const char* const pstring = “Some text”;

Of course, all this applies to pointers to any type. A pointer to type char is used here purely for illustra-
tive purposes.

Pointers and Arrays
Array names can behave like pointers under some circumstances. In most situations, if you use the name
of a one-dimensional array by itself, it is automatically converted to a pointer to the first element of the
array. Note that this is not the case when the array name is used as the operand of the sizeof operator.

If you have these declarations,

double* pdata;
double data[5];

you can write this assignment:

pdata = data;       // Initialize pointer with the array address

This is assigning the address of the first element of the array data to the pointer pdata. Using the array
name by itself refers to the address of the array. If you use the array name data with an index value, 
it refers to the contents of the element corresponding to that index value. So, if you want to store the
address of that element in the pointer, you have to use the address-of operator:

pdata = &data[1];

Here, the pointer pdata contains the address of the second element of the array.

Pointer Arithmetic
You can perform arithmetic operations with pointers. You are limited to addition and subtraction in terms of
arithmetic, but you can also perform comparisons of pointer values to produce a logical result. Arithmetic
with a pointer implicitly assumes that the pointer points to an array, and that the arithmetic operation is on
the address contained in the pointer. For the pointer pdata for example, you could assign the address of the
third element of the array data to a pointer with this statement:

pdata = &data[2];

187

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 187



In this case, the expression pdata+1 would refer to the address of data[3], the fourth element of the
data array, so you could make the pointer point to this element by writing this statement:

pdata += 1;          // Increment pdata to the next element

This statement increments the address contained in pdata by the number of bytes occupied by one ele-
ment of the array data. In general, the expression pdata+n, where n can be any expression resulting 
in an integer, adds n*sizeof(double) to the address contained in the pointer pdata because it was
declared to be of type pointer to double. This is illustrated in Figure 4-8.

Figure 4-8

In other words, incrementing or decrementing a pointer works in terms of the type of the object pointed
to. Increasing a pointer to long by one changes its contents to the next long address and so increments
the address by four. Similarly, incrementing a pointer to short by one increments the address by two.
The more common notation for incrementing a pointer is using the increment operator. For example:

pdata++;            // Increment pdata to the next element

This is equivalent to (and more common than) the += form. However, I used the preceding += form to
make it clear that although the increment value is actually specified as one, the effect is usually an incre-
ment greater than one, except in the case of a pointer to type char.

The address resulting from an arithmetic operation on a pointer can be a value ranging from the address
of the first element of the array to the address that is one beyond the last element. Outside of these limits,
the behavior of the pointer is undefined.

You can, of course, dereference a pointer on which you have performed arithmetic (there wouldn’t be
much point to it otherwise). For example, assuming that pdata is still pointing to data[2], this statement,

*(pdata + 1) = *(pdata + 2);

data[0] 

pdata+1 

pdata = &data[2]; 

pdata+2 

Each element 
occupies 8 bytes Address 

data[1] data[2] 

double data[5]; 

data[3] data[4] 

188

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 188



is equivalent to this:

data[3] = data[4];

When you want to dereference a pointer after incrementing the address it contains, the parentheses are nec-
essary because the precedence of the indirection operator is higher than that of the arithmetic operators,
+ or -. If you write the expression *pdata + 1, instead of *(pdata + 1), this adds one to the value
stored at the address contained in pdata, which is equivalent to executing data[2] + 1. Because this isn’t
an lvalue, its use in the previous assignment statement causes the compiler to generate an error message.

You can use an array name as though it were a pointer for addressing elements of an array. If you have
the same one-dimensional array as before, declared as

long data[5];

using pointer notation, you can refer to the element data[3] for example as *(data + 3). This kind of
notation can be applied generally so that, corresponding to the elements data[0], data[1], data[2],
you can write *data, *(data + 1), *(data+2), and so on.

Try It Out Array Names as Pointers
You could exercise this aspect of array addressing with a program to calculate prime numbers (a prime
number is divisible only by itself and one).

// Ex4_09.cpp
// Calculating primes
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using std::setw;

int main()
{

const int MAX = 100;           // Number of primes required
long primes[MAX] = { 2,3,5 };  // First three primes defined
long trial = 5;                // Candidate prime
int count = 3;                 // Count of primes found
int found = 0;                 // Indicates when a prime is found

do
{

trial += 2;                      // Next value for checking
found = 0;                       // Set found indicator

for(int i = 0; i < count; i++)   // Try division by existing primes
{

found = (trial % *(primes + i)) == 0;// True for exact division
if(found)                          // If division is exact

break;                          // it’s not a prime
}

if (found == 0)                  // We got one...

189

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 189



*(primes + count++) = trial;  // ...so save it in primes array
}while(count < MAX);

// Output primes 5 to a line
for(int i = 0; i < MAX; i++)
{

if(i % 5 == 0)                 // New line on 1st, and every 5th line
cout << endl;

cout << setw(10) << *(primes + i);
}
cout << endl;

return 0;
}

If you compile and execute this example, you should get the following output:

2         3         5         7        11
13        17        19        23        29
31        37        41        43        47
53        59        61        67        71
73        79        83        89        97
101       103       107       109       113
127       131       137       139       149
151       157       163       167       173
179       181       191       193       197
199       211       223       227       229
233       239       241       251       257
263       269       271       277       281
283       293       307       311       313
317       331       337       347       349
353       359       367       373       379
383       389       397       401       409
419       421       431       433       439
443       449       457       461       463
467       479       487       491       499
503       509       521       523       541

How It Works
You have the usual #include statements for the <iostream> header file for input and output and for
<iomanip> because you will use a stream manipulator to set the field width for output.

You use the constant MAX to define the number of primes that you want the program to produce. The
primes array, which stores the results, has the first three primes already defined to start the process off.
All the work is done in two loops: the outer do-while loop, which picks the next value to be checked and
adds the value to the primes array if it is prime, and the inner for loop that actually checks the value to
see whether it’s prime or not.

The algorithm in the for loop is very simple and is based on the fact that if a number is not a prime, it
must be divisible by one of the primes found so far — all of which are less than the number in question
because all numbers are either prime or a product of primes. In fact, only division by primes less than or
equal to the square root of the number in question need to be checked, so this example isn’t as efficient
as it might be.

190

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 190



found = (trial % *(primes + i)) == 0;   // True for exact division

This statement sets the variable found to be 1 if there’s no remainder from dividing the value in trial
by the current prime *(primes + i) (remember that this is equivalent to primes[i]), and 0 otherwise.
The if statement causes the for loop to be terminated if found has the value 1 because the candidate in
trial can’t be a prime in that case.

After the for loop ends (for whatever reason), it’s necessary to decide whether or not the value in trial
was prime. This is indicated by the value in the indicator variable found.

*(primes + count++) = trial;   // ...so save it in primes array

If trial does contain a prime, this statement stores the value in primes[count] and then increments
count through the postfix increment operator.

After MAX number of primes have been found, they are output with a field width of 10 characters, 5 to a
line, as a result of this statement:

if(i % 5 == 0)                 // New line on 1st, and every 5th line
cout << endl;

This starts a new line when i has the values 0, 5, 10, and so on.

Try It Out Counting Characters Revisited
To see how handling strings works in pointer notation, you could produce a version of the program you
looked at earlier for counting the characters in a string:

// Ex4_10.cpp
// Counting string characters using a pointer
#include <iostream>
using std::cin;
using std::cout;
using std::endl;

int main()
{

const int MAX = 80;                 // Maximum array dimension
char buffer[MAX];                   // Input buffer
char* pbuffer = buffer;             // Pointer to array buffer

cout << endl                        // Prompt for input
<< “Enter a string of less than “
<< MAX << “ characters:”
<< endl;

cin.getline(buffer, MAX, ‘\n’);     // Read a string until \n

while(*pbuffer)                     // Continue until \0
pbuffer++;

191

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 191



cout << endl
<< “The string \”” << buffer
<< “\” has “ << pbuffer - buffer << “ characters.”;

cout << endl;

return 0;
}

Here’s an example of typical output from this example:

Enter a string of less than 80 characters:
The tigers of wrath are wiser than the horses of instruction.
The string “The tigers of wrath are wiser than the horses of instruction.” has 61
characters.

How It Works
Here the program operates using the pointer pbuffer rather than the array name buffer. You don’t need
the count variable because the pointer is incremented in the while loop until ‘\0’ is found. When the
‘\0’ character is found, pbuffer will contain the address of that position in the string. The count of the
number of characters in the string entered is therefore the difference between the address stored in the
pointer pbuffer and the address of the beginning of the array denoted by buffer.

You could also have incremented the pointer in the loop by writing the loop like this:

while(*pbuffer++);                   // Continue until \0

Now the loop contains no statements, only the test condition. This would work adequately, except for
the fact that the pointer would be incremented after ‘\0’ was encountered, so the address would be one
more than the last position in the string. You would therefore need to express the count of the number of
characters in the string as pbuffer – buffer - 1.

Note that you can’t use the array name here in the same way that you have used the pointer. The expres-
sion buffer++ is strictly illegal because you can’t modify the address value that an array name repre-
sents. Even though you can use an array name in an expression as though it is a pointer, it isn’t a pointer,
because the address value that it represents is fixed.

Using Pointers with Multidimensional Arrays
Using a pointer to store the address of a one-dimensional array is relatively straightforward, but with
multidimensional arrays, things can get a little complicated. If you don’t intend to do this, you can skip
this section as it’s a little obscure; however, if you have previous experience with C, this section is worth
a glance.

If you have to use a pointer with multidimensional arrays, you need to keep clear in your mind what is
happening. By way of illustration, you can use an array beans, declared as follows:

double beans[3][4];

192

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 192



You can declare and assign a value to the pointer pbeans as follows:

double* pbeans;
pbeans = &beans[0][0];

Here you are setting the pointer to the address of the first element of the array, which is of type double.
You could also set the pointer to the address of the first row in the array with the statement:

pbeans = beans[0];

This is equivalent to using the name of a one-dimensional array, which is replaced by its address. You
used this in the earlier discussion; however, because beans is a two-dimensional array, you cannot set 
an address in the pointer with the following statement:

pbeans = beans;           // Will cause an error!!

The problem is one of type. The type of the pointer you have defined is double*, but the array is of type
double[3][4]. A pointer to store the address of this array must be of type double*[4]. C++ associates
the dimensions of the array with its type and the statement above is only legal if the pointer has been
declared with the dimension required. This is done with a slightly more complicated notation than you
have seen so far:

double (*pbeans)[4];

The parentheses here are essential; otherwise, you would be declaring an array of pointers. Now the pre-
vious statement is legal, but this pointer can only be used to store addresses of an array with the dimen-
sions shown.

Pointer Notation with Multidimensional Arrays
You can use pointer notation with an array name to reference elements of the array. You can reference each
element of the array beans that you declared earlier, which had three rows of four elements, in two ways:

❑ Using the array name with two index values.

❑ Using the array name in pointer notation

Therefore, the following two statements are equivalent:

beans[i][j]
*(*(beans + i) + j)

Let’s look at how these work. The first line uses normal array indexing to refer to the element with offset
j in row i of the array.

You can determine the meaning of the second line by working from the inside, outwards. beans refers
to the address of the first row of the array, so beans + i refers to row i of the array. The expression
*(beans + i) is the address of the first element of row i, so *(beans + i) + j is the address of the
element in row i with offset j. The whole expression therefore refers to the value of that element.

193

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 193



If you really want to be obscure — and it isn’t recommended that you should be — the following two
statements, where you have mixed array and pointer notation, are also legal references to the same ele-
ment of the array:

*(beans[i] + j)
(*(beans + i))[j]

There is yet another aspect to the use of pointers that is really the most important of all: the ability to
allocate memory for variables dynamically. You’ll look into that next.

Dynamic Memory Allocation
Working with a fixed set of variables in a program can be very restrictive. The need often arises within an
application to decide the amount of space to be allocated for storing different types of variables at execu-
tion time, depending on the input data for the program. With one set of data it may be appropriate to use
a large integer array in a program, whereas with a different set of input data, a large floating-point array
may be required. Any program that involves reading and processing a number of data items that is not
known in advance can take advantage of the ability to allocate memory to store the data at run time. For
example, if you need to implement a program to store information about the students in a class, the
number of students is not fixed and their names will vary in length so to deal with the data most effi-
ciently, you’ll want to allocate space dynamically at execution time.

Obviously, because any dynamically allocated variables can’t have been defined at compile time, they can’t
be named in your source program. When they are created, they are identified by their address in memory,
which is contained within a pointer. With the power of pointers and the dynamic memory management
tools in Visual C++ 2008, writing your programs to have this kind of flexibility is quick and easy.

The Free Store, Alias the Heap
In most instances, when your program is executed, there is unused memory in your computer. This unused
memory is called the heap in C++, or sometimes the free store. You can allocate space within the free store
for a new variable of a given type using a special operator in C++ that returns the address of the space allo-
cated. This operator is new, and it’s complemented by the operator delete, which de-allocates memory
previously allocated by new.

You can allocate space in the free store for some variables in one part of a program, and then release the
allocated space and return it to the free store after you have finished with the variables concerned. This
makes the memory available for reuse by other dynamically allocated variables, later in the same program.

You would want to use memory from the free store whenever you need to allocate memory for items that
can only be determined at runtime. One example of this might be allocating memory to hold a string
entered by the user of your application. There is no way you can know in advance how large this string
needs to be, so you would allocate the memory for the string at run time, using the new operator. Later,
you’ll look at an example of using the free store to dynamically allocate memory for an array, where the
dimensions of the array are determined by the user at run time.

This can be a very powerful technique; it enables you to use memory very efficiently, and in many cases,
it results in programs that can handle much larger problems, involving considerably more data than other-
wise might be possible.

194

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 194



The new and delete Operators
Suppose that you need space for a double variable. You can define a pointer to type double and then
request that the memory be allocated at execution time. You can do this using the operator new with the
following statements:

double* pvalue = NULL;    // Pointer initialized with null
pvalue = new double;      // Request memory for a double variable

This is a good moment to recall that all pointers should be initialized. Using memory dynamically typically
involves a number of pointers floating around, so it’s important that they should not contain spurious
values. You should try to arrange that if a pointer doesn’t contain a legal address value, it is set to 0.

The new operator in the second line of code above should return the address of the memory in the free
store allocated to a double variable, and this address is stored in the pointer pvalue. You can then use
this pointer to reference the variable using the indirection operator as you have seen. For example:

*pvalue = 9999.0;

Of course, the memory may not have been allocated because the free store had been used up, or because
the free store is fragmented by previous usage, meaning that there isn’t a sufficient number of contigu-
ous bytes to accommodate the variable for which you want to obtain space. You don’t have to worry too
much about this, however. With ANSI standard C++, the new operator will throw an exception if the mem-
ory cannot be allocated for any reason, which terminates your program. Exceptions are a mechanism for
signaling errors in C++ and you learn about these in Chapter 6.

You can also initialize a variable created by new. Taking the example of the double variable that was allo-
cated by new and the address stored in pvalue, you could have set the value to 999.0 as it was created with
this statement:

pvalue = new double(999.0);   // Allocate a double and initialize it

When you no longer need a variable that has been dynamically allocated, you can free up the memory
that it occupies in the free store with the delete operator:

delete pvalue;                // Release memory pointed to by pvalue

This ensures that the memory can be used subsequently by another variable. If you don’t use delete,
and subsequently store a different address value in the pointer pvalue, it will be impossible to free up
the memory or to use the variable that it contains because access to the address is lost. In this situation,
you have what is referred to as a memory leak, especially when this situation recurs in your program.

Allocating Memory Dynamically for Arrays
Allocating memory for an array dynamically is very straightforward. If you wanted to allocate an array
of type char, assuming pstr is a pointer to char, you could write the following statement:

pstr = new char[20];     // Allocate a string of twenty characters

This allocates space for a char array of 20 characters and stores its address in pstr.

195

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 195



To remove the array that you have just created in the free store, you must use the delete operator. The
statement would look like this:

delete [] pstr;          // Delete array pointed to by pstr

Note the use of square brackets to indicate that what you are deleting is an array. When removing arrays
from the free store, you should always include the square brackets or the results are unpredictable. Note
also that you do not specify any dimensions here, simply [].

Of course, the pstr pointer now contains the address of memory that may already have been allocated
for some other purpose so it certainly should not be used. When you use the delete operator to discard
some memory that you previously allocated, you should always reset the pointer to 0, like this:

pstr = 0;                // Set pointer to null

Try It Out Using Free Store
You can see how dynamic memory allocation works in practice by rewriting the program that calculates
an arbitrary number of primes, this time using memory in the free store to store them.

// Ex4_11.cpp
// Calculating primes using dynamic memory allocation
#include <iostream>
#include <iomanip>
using std::cin;
using std::cout;
using std::endl;
using std::setw;

int main()
{

long* pprime = 0;              // Pointer to prime array
long trial = 5;                // Candidate prime
int count = 3;                 // Count of primes found
int found = 0;                 // Indicates when a prime is found
int max = 0;                   // Number of primes required

cout << endl
<< “Enter the number of primes you would like (at least 4): “;

cin >> max;                    // Number of primes required

if(max < 4)                    // Test the user input, if less than 4
max = 4;                    // ensure it is at least 4

pprime = new long[max];

*pprime = 2;                   // Insert three
*(pprime + 1) = 3;             // seed primes
*(pprime + 2) = 5;

do
{

trial += 2;                            // Next value for checking

196

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 196



found = 0;                             // Set found indicator

for(int i = 0; i < count; i++)         // Division by existing primes
{

found =(trial % *(pprime + i)) == 0;// True for exact division
if(found)                           // If division is exact

break;                           // it’s not a prime
}

if (found == 0)                  // We got one...
*(pprime + count++) = trial;  // ...so save it in primes array

} while(count < max);

// Output primes 5 to a line
for(int i = 0; i < max; i++)
{

if(i % 5 == 0)                   // New line on 1st, and every 5th line
cout << endl;

cout << setw(10) << *(pprime + i);
}

delete [] pprime;                         // Free up memory
pprime = 0;                               // and reset the pointer
cout << endl;
return 0;

}

Here’s an example of the output from this program:

Enter the number of primes you would like (at least 4): 20
2         3         5         7        11
13        17        19        23        29
31        37        41        43        47
53        59        61        67        71

How It Works
In fact, the program is similar to the previous version. After receiving the number of primes required in
the int variable max, you allocate an array of that size in the free store using the operator new. Note that
you have made sure that max can be no less than 4. This is because the program requires space to be
allocated in the free store for at least the three seed primes, plus one new one. You specify the size of the
array that is required by putting the variable max between the square brackets following the array type
specification:

pprime = new long[max];

You store the address of the memory area that is allocated by new in the pointer pprime. The program
would terminate at this point if the memory could not be allocated.

After the memory that stores the prime values has been successfully allocated, the first three array elements
are set to the values of the first three primes:

*pprime = 2;                   // Insert three

197

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 197



*(pprime + 1) = 3;             // seed primes
*(pprime + 2) = 5;

You are using the dereference operator to access the first three elements of the array. As you saw earlier,
the parentheses in the second and third statements are because the precedence of the * operators is higher
than that of the + operator.

You can’t specify initial values for elements of an array that you allocate dynamically. You have to use
explicit assignment statements if you want to set initial values for elements of the array.

The calculation of the prime numbers is exactly as before; the only change is that the name of the pointer
you have here, pprime, is substituted for the array name, primes, that you used in the previous version.
Equally, the output process is the same. Acquiring space dynamically is really not a problem at all. After
it has been allocated, it in no way affects how the computation is written.

After you finish with the array, you remove it from the free store using the delete operator, remembering
to include the square brackets to indicate that it is an array you are deleting.

delete [] pprime;             // Free up memory

Although it’s not essential here, you also set the pointer to 0:

pprime = 0;                               // and reset the pointer

All memory allocated in the free store is released when your program ends, but it is good to get into the
habit of resetting pointers to 0 when they no longer point to valid memory areas.

Dynamic Allocation of Multidimensional Arrays
Allocating memory in the free store for a multidimensional array involves using the new operator in a
slightly more complicated form than that for a one-dimensional array. Assuming that you have already
declared the pointer pbeans appropriately, to obtain the space for the array beans[3][4] that you used
earlier in this chapter, you could write this:

pbeans = new double [3][4];         // Allocate memory for a 3x4 array

You just specify both array dimensions between square brackets after the type name for the array elements.

Allocating space for a three-dimensional array simply requires that you specify the extra dimension with
new, as in this example:

pBigArray = new double [5][10][10]; // Allocate memory for a 5x10x10 array

However many dimensions there are in the array that has been created, to destroy it and release the
memory back to the free store you write the following:

delete [] pBigArray;                // Release memory for array

198

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 198



You always use just one pair of square brackets following the delete operator, regardless of the dimen-
sionality of the array with which you are working.

You have already seen that you can use a variable as the specification of the dimension of a one-dimensional
array to be allocated by new. This extends to two or more dimensions but with the restriction that only the
leftmost dimension may be specified by a variable. All the other dimensions must be constants or constant
expressions. So you could write this:

pBigArray = new double[max][10][10];

where max is a variable; however, specifying a variable for any dimension other than the left most causes
an error message to be generated by the compiler.

Using References
A reference appears to be similar to a pointer in many respects, which is why I’m introducing it here,
but it really isn’t the same thing at all. The real importance of references becomes apparent only when
you get to explore their use with functions, particularly in the context of object-oriented programming.
Don’t be misled by its simplicity and what might seem to be a trivial concept. As you will see later, ref-
erences provide some extraordinarily powerful facilities and in some contexts enable you to achieve
results that would be impossible without using them.

What Is a Reference?
A reference is an alias for another variable. It has a name that can be used in place of the original variable
name. Because it is an alias and not a pointer, the variable for which it is an alias has to be specified when
the reference is declared, and unlike a pointer, a reference can’t be altered to represent another variable.

Declaring and Initializing References
Suppose that you have declared a variable as follows:

long number = 0;

You can declare a reference for this variable using the following declaration statement:

long& rnumber = number;     // Declare a reference to variable number

The ampersand following the type name long and preceding the variable name rnumber, indicates that
a reference is being declared and the variable name it represents, number, is specified as the initializing
value following the equals sign; therefore, the variable rnumber is of type ‘reference to long’. You can
now use the reference in place of the original variable name. For example, this statement,

rnumber += 10;

has the effect of incrementing the variable number by 10.

199

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 199



Let’s contrast the reference rnumber with the pointer pnumber, declared in this statement:

long* pnumber = &number;      // Initialize a pointer with an address

This declares the pointer pnumber, and initializes it with the address of the variable number. This then
allows the variable number to be incremented with a statement such as:

*pnumber += 10;               // Increment number through a pointer

There is a significant distinction between using a pointer and using a reference. The pointer needs to be
dereferenced and whatever address it contains is used to access the variable to participate in the expres-
sion. With a reference, there is no need for de-referencing. In some ways, a reference is like a pointer that
has already been dereferenced, although it can’t be changed to reference another variable. The reference
is the complete equivalent of the variable for which it is a reference. A reference may seem like just an
alternative notation for a given variable, and here it certainly appears to behave like that. However,
you’ll see when I discuss functions in C++ that this is not quite true and that it can provide some very
impressive extra capabilities.

Native C++ Librar y Functions for Strings
The standard library provides the <cstring> header that contains functions that operate on null-terminated
strings. These are a set of functions that are specified to the C++ standard. There are also alternatives to
some of these that are not standard, but which provide a more secure implementation of the function
than the original versions. In general I’ll mention both where they exist in the <cstring> header but I’ll
use the more secure versions in examples. Let’s explore some of the most useful functions provided by
the <cstring> header.

Note that the <string> standard header for native C++ defines the string and wstring classes
that represent character strings. The string class represents strings of characters of type char and the
wstring class represents strings of characters of type wchar_t. Both are defined in the <string>
header as template classes that are instances of the basic_string<T> class template. A class template
is a parameterized class (with parameter T in this case) that you can use to create new classes to handle
different types of data.  I won’t be discussing templates and the string and wstring classes until
Chapter 8, but I thought I’d mention them here because there have some features in common with the
functions provided by the String type that you’ll be using in C++/CLI programs later in this chapter. 
If you are really interested to see how they compare, you could always have a quick look at the section in
Chapter 8 that has the same title as this section. It should be reasonably easy to follow at this point, even
without knowledge of templates and classes.

Finding the Length of a Null-Terminated String
The strlen() function returns the length of the argument string of type char* as a value of type size_t.
The type size_t is an implementation defined type that corresponds to an unsigned integer type that is
used generally to represent the lengths of sequences of various kinds. The wcslen() function does the
same thing for strings of type wchar_t*.

200

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 200



Here’s how you use the strlen() function:

char * str(“A miss is as good as a mile.”);
cout << “The string contains “ <<  strlen(str) << “ characters.” << endl;

The output produced when this fragment executes is:

The string contains 28 characters.

As you can see from the output, the length value that is returned does not include the terminating null. It
is important to keep this in mind, especially when you are using the length of one string to create another
of the same length.

Both strlen() and wcslen() find the length by looking for the null at the end. If there isn’t one, the
functions will happily continue beyond the end of the string checking throughout memory in the hope
of finding a null. For this reason these functions represent a security risk when you are working with
data from an untrusted external source. In this situation you can use the strnlen() and wcsnlen()
functions, both of which require a second argument that specifies the length of the buffer in which the
string specified by the first argument is stored.

Joining Null-Terminated Strings
The strcat() function concatenates two null-terminated strings. The string specified by the second
argument is appended to the string specified by the first argument. Here’s an example of how you
might use it:

char str1[30]= “Many hands”;
char* str2(“ make light work.”);
strcat(str1, str2);
cout << str1 << endl;

Note that the first string is stored in the array str1 of 30 characters, which is far more than the length 
of the initializing string, “Many hands”. The string specified by the first argument must have sufficient
space to accommodate the two strings when they are joined. If it doesn’t, disaster will surely result because
the function will then try to overwrite the area beyond the end of the first string.

Figure 4-9

w  o  r  k

char str1[30] = "Many hands";

strcat(str1, str2)

char* str2( " make light work.");

M  a  n  y h  a  n  d  s  \ 0

m  a  k  e l  i  g  h  t .  \ 0

201

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 201



As Figure 4-9 shows, the first character of the string specified by the second argument overwrites the ter-
minating null of the first argument and all the remaining characters of the second string are copied across,
including the terminating null. Thus the output from the fragment will be:

Many hands make light work.

The strcat() function returns the pointer that is the first argument so you could combine the last two
statements in the fragment above into one:

cout << strcat(str1, str2) << endl;

The wcscat() function concatenates wide-character strings but otherwise works exactly the same as the
strcat() function.

With the strncat() function you can append part of one null-terminated string to another. The first
two arguments are the destination and source strings respectively, and the third argument is a count of
the number of characters from the source string that are to be appended. With the strings as defined in
Figure 4-9, here’s an example of using strncat():

cout << strncat(str1, str2, 11) << endl;

After executing this statement, str1 contains the string “Many hands make light”. The operation
appends 11 characters from str2 to str1, overwriting the terminating ‘\0’ in str1, and then appends a
final ‘\0’ character. The wcsncat() provides the same capability as strncat() but for wide-character
strings.

All the functions for concatenating strings that I have introduced up to now rely on finding the terminat-
ing nulls in the strings to work properly so they are also insecure when it comes to dealing with untrusted
data. The strcat_s(), wcscat_s(), strncat_s(), and wcsncat_s() functions in <cstring> provide
secure alternatives. Just to take one example, here’s how you could use strcat_s() to carry out the oper-
ation shown in Figure 4-9:

const size_t count = 30;
char str1[count]= “Many hands”;
char* str2(“ make light work.”);

errno_t error = strcat_s(str1, count, str2);

if(error == 0)
cout << “ Strings joined successfully.” << endl;

else if(error == EINVAL)
cout << “Error” Source or destination string is NULL.” << endl;

else if(error == ERANGE)
cout << “ Error! Destination string too small.” << endl;

For convenience I defined the array size as the constant, count. The first argument to strcat_s() is the
destination string to which the source string specified by the third argument is to be appended. The second
argument is the total number of bytes available at the destination. The function returns an integer value of

202

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 202



type errno_t to indicate how things went. The error return value will be zero if the operation is successful,
EINVAL if the source or destination is NULL, or ERANGE if destination length is too small. In the event of
an error occurring, the destination will be left unchanged. The error code values EINVAL and ERANGE are
defined in the <cerrno> header so you need an #include directive for this as well as for <cstring> to
compile the fragment above correctly. Of course, you are not obliged to test for the error codes that the
function might return and if you don’t, you won’t need the #include directive for <cerrno>.

Copying Null-Terminated Strings
The standard library function, strcpy(), copies a string from a source location to a destination. The first
argument is a pointer to the destination location and the second argument is a pointer to the source string;
both arguments are of type char*. The function returns a pointer to the destination string. Here’s an
example of how you use it:

const size_t LENGTH = 22;
const char source[LENGTH] =”The more the merrier!”;
char destination[LENGTH];
cout << “The destination string is: “ << strcpy(destination, source) << endl;

The source string and the destination buffer can each accommodate a string containing 21 characters
plus the terminating null. You copy the source string to destination in the last statement. The output
statement makes use of the fact that the strcpy() function returns a pointer to the destination string so
the output is:

The destination string is: The more the merrier!

You must ensure that the destination string has sufficient space to accommodate the source string. If you
don’t, something will get overwritten in memory and disaster is the likely result.

The strcpy_s() function is a more secure version of strcpy(). It requires an extra argument between
the destination and source arguments that specifies the size of the destination string buffer. The strcpy_s()
function returns an integer value of type errno_t that indicates whether an error occurred. Here’s how you
might use this function:

const size_t LENGTH = 22;
const char source[LENGTH] =”The more the merrier!”;
char destination[LENGTH];

errno_t error = strcpy_s(destination, length, source);

if(error == EINVAL)
cout << “Error. The source or the destination is NULL.” << endl;
else if(error == ERANGE)
cout << “Error. The destination is too small.” << endl;

else
cout << “The destination string is: “ << destination << endl;

You need to include the <cstring> and <cerrno> headers for this to compile. The strcpy_s() func-
tion verifies that the source and destination are not NULL and that the destination buffer has sufficient

203

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 203



space to accommodate the source string. When either or both the source and destination are NULL, the
function returns the value EINVAL. If the destination buffer is too small, the function returns ERANGE. If
the copy is successful, the return value is 0.

You have analogous wide-character versions of these copy functions; these are wcscpy() and
wcscpy_s().

Comparing Null-Terminated Strings
The strcmp() function compares two null-terminated strings that you specify by arguments that are
pointers of type char*. The function returns a value of type int that is -1, 0, or 1 depending on whether
the string pointed to by the first argument is less than, equal to, or greater than the string pointed to by
the second argument. Here’s an example:

char* str1(“Jill”);
char* str2(“Jacko”);
char* comp[] = { “less than “, “equal to “, “greater than “};
cout << str1 << “ is “ << comp[strcmp(str1, str2) + 1] << str2 << ‘.’ << endl;

This fragment compares the strings str1 and str2. The comp array contains the three strings you may
want to use in the output and the return value from the strcmp() function is used to select from this
array. By adding 1 to the value strcmp() returns, you conveniently get 0, 1, or 2 so you can use this to
select the appropriate phrase from comp.

Comparing the strings works by comparing the character codes of successive pairs of corresponding
characters. The first pair of characters that are different determines whether the first string is less than
or greater than the second string. Two strings are equal if they contain the same number of characters
and corresponding characters are identical. Of course, the output is:

Jill is greater than Jacko.

The wstrcmp() function is the wide-character string equivalent of strcmp().

Searching Null-Terminated Strings
The strspn() function searches a string for the first character that is not contained in a given set and
returns the index of the character found. The first argument is a pointer to the string to be searched and
the second argument is a pointer to a string containing the set of characters. You could search for the
first character that is not a vowel like this:

char* str = “I agree with everything.”;
char* vowels = “aeiouAEIOU “;
size_t index = strspn(str, vowels);
cout << “The first character that is not a vowel is ‘“ << str[index]

<< “‘ at position “ << index << endl;

This searches str for the first character that is not in vowels. Note that I included a space in the vowels
set so a space will be ignored so far as the search is concerned. The output from this fragment is:

The first character that is not a vowel is ‘g’ at position 3

204

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 204



Another way of looking at the value the strspn() function returns is that it represents the length of the
substring starting from the first character in the first argument string that consists entirely of characters
in the second argument string. In the example it is the first three characters “I a”.

The wcsspn() function is the wide-character string equivalent of strspn().

The strstr() functions return a pointer to the position in the first argument of a substring specified by
the second argument. Here’s a fragment that shows this in action:

char* str = “I agree with everything.”;
char* substring = “ever”;
char* psubstr = strstr(str, substring);

if(!psubstr)
cout << “\”” << substring << “\” not found in \”” << str << “\”” << endl;

else
cout << “The first occurrence of \”” << substring

<< “\” in \”” << str << “\” is at position “
<< psubstr-str << endl;

The third statement calls the strstr() function to search str for the first occurrence of substring. The
function returns a pointer to the position of the substring if it is found or NULL when it is not found. The
if statement outputs a message depending on whether or not substring was found in str. The expres-
sion psubstr-str gives the index position of the first character in the substring. The output produced by
this fragment is:

The first occurrence of “ever” in “I agree with everything.” is at position 13

Try It Out Searching Null-Terminated Strings
This example searches a given string to determine the number of occurrences of a given substring.
Here’s the code:

//Ex4_12.cpp
// Searching a string
#include <iostream>
#include <cstring>
using std::cout;
using std::endl;
using std::strlen;
using std::strstr;

int main()
{
char* str = “Smith, where Jones had had \”had had\” had had \”had\”.”

“\n\”Had had\” had had the examiners’ approval.”;
char* word = “had”;
cout << “The string to be searched is: “

<< endl << str << endl;

int count = 0;                  // Number of occurrences of word in str
char* pstr = str;               // Pointer to search start position
char* found = 0;                // Pointer to occurrence of word in str

205

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 205



while(true)
{
found = strstr(pstr, word);
if(!found)
break;

++count;
pstr = found+strlen(word);    // Set next search start as 1 past the word found

}

cout << “\”” << word << “\” was found “
<< count << “ times in the string.” << endl;

return 0;
}

The output from this example is:

The string to be searched is: Smith, where Jones had had “had had” had had “had”.
“Had had” had had the examiners’ approval.
“had” was found 10 times in the string.

How It Works
All the action takes place in the indefinite while loop:

while(true)
{

found = strstr(pstr, word);
if(!found)

break;
++count;
pstr = found+strlen(word);    // Set next search start as 1 past the word found

}

The first step is to search the string for word starting at position pstr, which initially is the beginning of
the string. You store the address that strstr() returns in found; this will be null if word was not found
in str so the if statement ends the loop in that case.

If found is not null, you increment the count of the number of occurrences of word and update the pstr
pointer so it points to one character past the word instance that was found in str. This will be the start-
ing point for the search on the next loop iteration.

From the output you can see that word was found ten times in str. Of course “Had” doesn’t count
because it starts with an uppercase letter.

C++/CLI Programming
Dynamic memory allocation works differently with the CLR, and the CLR maintains its own memory
heap that is independent of the native C++ heap. The CLR automatically deletes memory that you allo-
cate on the CLR heap when it is no longer required, so you do not need to use the delete operator in a
program written for the CLR. The CLR may also compact heap memory to avoid fragmentation from time to

206

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 206



time. Thus at a stroke, the CLR greatly reduces the possibility of memory leaks and memory fragmentation.
The management and clean-up of the heap that the CLR provides is described as garbage collection — the
garbage being your discarded variables and objects, and the heap that is managed by the CLR is called the
garbage-collected heap. You use the gcnew operator instead of new to allocate memory in a C++/CLI, pro-
gram and the ‘gc’ prefix is a cue to the fact that you are allocating memory on the garbage-collected heap
and not the native C++ heap where all the housekeeping is down to you.

The CLR garbage collector is able to delete objects and release the memory that they occupy when they are
no longer required. An obvious question arises: How does the garbage collector know when an object on
the heap is no longer required? The answer is quite simple; the CLR keeps track of every variable that refer-
ences each object in the heap and when there are no variables containing the address of a given object, the
object can no longer be referred to in a program and therefore can be deleted.

Because the garbage collection process can involve compacting of the heap memory area to remove frag-
mented unused blocks of memory, the addresses of data item that you have stored in the heap can change.
Consequently you cannot use ordinary native C++ pointers with the garbage-collected heap because if 
the location of the data pointed to changes, the pointer will no longer be valid. You need a way to access
objects on the heap that enables the address to be updated when the garbage collector relocates the data
item in the heap. This capability is provided in two ways: by a tracking handle (also referred to simply as
a handle) that is analogous to a pointer in native C++ and by a tracking reference that provides the equiv-
alent of a native C++ reference in a CLR program.

Tracking Handles
A tracking handle has similarities to a native C++ pointer but there are significant differences, too. A track-
ing handle does store an address, and the address it contains is automatically updated by the garbage col-
lector if the object it references is moved during compaction of the heap. However, you cannot perform
address arithmetic with a tracking handle as you can with a native pointer, and casting of a tracking handle
is not permitted.

You use tracking handles to reference objects created in the CLR heap. All objects that are reference class
types are stored in the heap and therefore the variables you create to refer to such objects must be tracking
handles. For instance, the String class type is a reference class type so variables that reference String
objects must be tracking handles. The memory for value class types is allocated on the stack by default, but
you can choose to store values in the heap by using the gcnew operator. This is also a good time to remind
you of a point I mentioned in Chapter 2 — that variables allocated on the CLR heap, which includes all
CLR reference types, cannot be declared at global scope.

Declaring Tracking Handles
You specify a handle for a type by placing the ^ symbol (commonly referred to as a ‘hat’) following the
type name. For example, here’s how you could declare a tracking handle with the name proverb that
can store the address of a String object:

String^ proverb;

This defines the variable proverb to be a tracking handle of type String^. When you declare a handle
it is automatically initialized with null, so it will not refer to anything. To explicitly set a handle to null
you use the keyword nullptr like this:

proverb = nullptr;                     // Set handle to null

207

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 207



Note that you cannot use 0 to represent null here, as you can with native pointers. If you initialize a handle
with 0, the value 0 is converted to the type of object that the handle references and the address of this new
object is stored in the handle.

Of course, you can initialize a handle explicitly when you declare it. Here’s another statement that defines
a handle to a String object:

String^ saying = L”I used to think I was indecisive but now I’m not so sure”;

This statement creates a String object on the heap that contains the string on the right of the assignment;
the address of the new object is stored in saying. Note that the type of the string literal is const wchar_t*,
not type String. The way the String class has been defined makes it possible for such a literal to be used
to create an object of type String.

Here’s how you could create a handle for a value type:

int^ value = 99;

This statement creates the handle value of type int^ and the value it points to on the heap is initialized
to 99. Remember that you have created a kind of pointer so value cannot participate in arithmetic oper-
ations without dereferencing it. To dereference a tracking handle, you use the * operator in the same way
as for native pointers. For example, here is a statement that uses the value pointed to by a tracking handle
in an arithmetic operation:

int result = 2*(*value)+15;

The expression *value between the parentheses accesses the integer stored at the address held in the
tracking handle so the variable result is set to 213.

Note that when you use a handle on the left of an assignment, there’s no need to explicitly dereference it
to store a result; the compiler takes care of it for you. For example:

int^ result = 0;
result = 2*(*value)+15;

Here you first create the handle result that points to a value 0 on the heap. Note that this results in a
warning from the compiler because it deduces that you might intend to initialize the handle to null and
this is not the way to do that. Because result appears on the left of an assignment in the next statement
and the right hand side produces a value, the compiler is able to determine that result must be derefer-
enced to store the value. Of course, you could write it explicitly like this:

*result = 2*(*value)+15;

Note that this works only if result has actually been defined. If result has only been declared, when
you execute the code you get a runtime error. For example:

int^ result;                           // Declaration but no definition
*result = 2*(*value)+15;               // Error message - unhandled exception

208

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 208



Because you are dereferencing result in the second statement, you are implying that the object pointed to
already exists. Because this is not the case you get a runtime error. The first statement is a declaration of the
handle, result, and this is set to null by default and you cannot dereference a null handle. If you don’t
explicitly dereference result in the second statement, everything works as it should because the result of
the expression on the right of the assignment is a value class type and its address is stored in result.

CLR Arrays
CLR arrays are different from the native C++ arrays. Memory for a CLR array is allocated on the garbage-
collected heap, but there’s more to it than that. CLR arrays have built-in functionality that you don’t get with
native C++ arrays, as you’ll see shortly. You specify an array variable type using the keyword array. You
must also specify the type for the array elements between angled brackets following the array keyword, so
the general form the type of for a variable to reference a one-dimensional array is array<element_type>^.
Because a CLR array is created on the heap, an array variable is always a tracking handle. Here’s an example
of a declaration for an array variable:

array<int>^ data;

The array variable, data, can store a reference to any one-dimensional array of elements of type int.

You can create a CLR array using the gcnew operator at the same time you declare the array variable:

array<int>^ data = gcnew array<int>(100);  // Create an array to store 100 integers

This statement creates a one-dimensional array with the name data — note that an array variable is a
tracking handle, so you must not forget the hat following the element type specification between the
angled brackets. The number of elements appears between parentheses following the array type specifica-
tion so this array contains 100 elements each of which can store a value of type int.

Similar to native C++ arrays, CLR array elements are indexed from zero so you could set values for the
elements in the data array like this:

for(int i = 0 ; i<100 ; i++)
data[i] = 2*(i+1);

This loop sets the values of the elements to 2, 4, 6, and so on up to 200. Elements in a CLR array are
objects so here you are storing objects of type Int32 in the array. Of course, these behave like ordinary
integers in arithmetic expressions so the fact that they are objects is transparent in such situations.

In the previous loop, the number of elements appears in the loop as a literal value. It would be better to
use the Length property of the array that records the number of elements, like this:

for(int i = 0 ; i < data->Length ; i++)
data[i] = 2*(i+1);

To access the Length property, you use the -> operator because data is a tracking handle and works
like a pointer. The Length property records the number of values as a 32-bit integer value. If you need 
it, you can get the array length as a 64-bit value through the LongLength property.

209

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 209



You can also iterate over all the elements in an array using the for each loop:

array<int>^ values = { 3, 5, 6, 8, 6};
for each(int item in values)
{
item = 2*item + 1;
Console::Write(“{0,5}”,item);

}

Within the loop, item references each of the elements in the values array in turn. The first statement in
the body of the loop replaces the current element’s value by twice the value plus 1. The second statement
in the loop outputs the new value right-justified in a field width of five characters so the output produced
by this code fragment is:

7   11   13   17   13

An array variable can store the address of any array of the same rank (the rank being the number of
dimensions, which in the case of the data array is 1) and element type. For example:

data = gcnew array<int>(45);

This statement creates a new one-dimensional array of 45 elements of type int and stores its address in
data. The original array is discarded.

You can also create an array from a set of initial values for the elements:

array<double>^ samples = { 3.4, 2.3, 6.8, 1.2, 5.5, 4.9. 7.4, 1.6};

The size of the array is determined by the number of initial values between the braces, in this case eight,
and the values are assigned to the elements in sequence.

Of course, the elements in an array can be of any type, so you can easily create an array of strings:

array<String^>^ names = { “Jack”, “Jane”, “Joe”, “Jessica”, “Jim”, “Joanna”};

The elements of this array are initialized with the strings that appear between the braces, and the num-
ber of strings determines the number of elements in the array. String objects are created on the CLR
heap so the element type is a tracking handle type, String^.

If you declare the array variable without initializing it, you must explicitly create the array if you want
to use a list of initial values. For example:

array<String^>^ names;                 // Declare the array variable
names = gcnew array<String^>{ “Jack”, “Jane”, “Joe”, “Jessica”, “Jim”, “Joanna”};

The second statement creates the array and initializes it with the strings between the braces. Without the
explicit gcnew definition the statement will not compile.

You can use the static Clear() function that is defined in the Array class to set any sequence of numeric
elements in an array to zero. You call a static function using the class name and you’ll learn more about

210

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 210



such functions when you explore classes in detail. Here’s an example of how you could use the Clear()
function:

Array::Clear(samples, 0, samples->Length);            // Set all elements to zero

The first argument to Clear() is the array that is to be cleared, the second argument is the index for the
first element to be cleared, and the third argument is the number of elements to be cleared. Thus this
example sets all the elements of the samples array to 0.0. If you apply the Clear() function to an array
of tracking handles such as String^, the elements are set to null, and if you apply it to an array of bool
elements they are set to false.

It’s time to let a CLR array loose in an example.

Try It Out Using a CLR Array
In this example, you generate an array containing random values and then find the maximum value.
Here’s the code:

// Ex4_13.cpp : main project file.

// Using a CLR array
#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
array<double>^ samples = gcnew array<double>(50);

// Generate random element values
Random^ generator = gcnew Random;
for(int i = 0 ; i< samples->Length ; i++)
samples[i] = 100.0*generator->NextDouble();

// Output the samples
Console::WriteLine(L”The array contains the following values:”);
for(int i = 0 ; i< samples->Length ; i++)
{
Console::Write(L”{0,10:F2}”, samples[i]);
if((i+1)%5 == 0)
Console::WriteLine();

}

// Find the maximum value
double max = 0;
for each(double sample in samples)
if(max < sample)
max = sample;

Console::WriteLine(L”The maximum value in the array is {0:F2}”, max);
return 0;

}

211

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 211



Typical output from this example looks like this:

The array contains the following values:
30.38     73.93     29.82     93.00     78.14
89.53     75.87      5.98     45.29     89.83
5.25     53.86     11.40      3.34     83.39
69.94     82.43     43.05     32.87     59.50
58.89     96.69     34.67     18.81     72.99
89.60     25.53     34.00     97.35     55.26
52.64     90.85     10.35     46.14     82.03
55.46     93.26     92.96     85.11     10.55
50.50      8.10     29.32     82.98     76.48
83.94     56.95     15.04     21.94     24.81

The maximum value in the array is 97.35

How It Works
You first create an array that stores 50 values of type double:

array<double>^ samples = gcnew array<double>(50);

The array variable, samples, must be a tracking handle because CLR arrays are created on the garbage-
collected heap.

You populate the array with pseudo-random values of type double with the following statements:

Random^ generator = gcnew Random;
for(int i = 0 ; i< samples->Length ; i++)

samples[i] = 100.0*generator->NextDouble();

The first statement creates an object of type Random on the CLR heap. A Random object has functions 
that will generate pseudo-random values. Here you use the NextDouble() function in the loop, 
which returns a random value of type double that lies between 0.0 and 1.0. By multiplying this by 
100.0 you get a value between 0.0 and 100.0. The for loop stores a random value in each element of 
the samples array.

A Random object also has a Next() function that returns a random non-negative value of type int.
If you supply an integer argument when you call the Next() function, it will return a random non-
negative integer less than the argument value. You can also supply two integer arguments that repre-
sent the minimum and maximum values for the random integer to be returned.

The next loop outputs the contents of the array five elements to a line:

Console::WriteLine(L”The array contains the following values:”);
for(int i = 0 ; i< samples->Length ; i++)
{

Console::Write(L”{0,10:F2}”, samples[i]);
if((i+1)%5 == 0)

Console::WriteLine();
}

Within the loop you write the value each element with a field width of 10 and 2 decimal places.
Specifying the field width ensures the values align in columns. You also write a newline character to

212

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 212



the output whenever the expression (i+1)%5 is zero, which is after every fifth element value so you get
five to a line in the output.

Finally you figure out what the maximum element value is:

double max = 0;
for each(double sample in samples)

if(max < sample)
max = sample;

This uses a for each loop just to show that you can. The loop compares max with each element value in
turn and whenever the element is greater than the current value in max, max is set to that value so you end
up with the maximum element value in max.

You could use a for loop here if you also wanted to record the index position of the maximum element
as well as its value — for example:

double max = 0;
int index = 0;
for (int i = 0 ; i < sample->Length ; i++)
if(max < samples[i])
{
max = samples[i];
index = i;

}

Sorting One-Dimensional Arrays
The Array class in the System namespace defines a Sort() function that sorts the elements of a one-
dimensional array so that they are in ascending order. To sort an array you just pass the array handle 
to the Sort() function. Here’s an example:

array<int>^ samples = { 27, 3, 54, 11, 18, 2, 16};
Array::Sort(samples);                            // Sort the array elements

for each(int value in samples)                   // Output the array elements
Console::Write(L”{0, 8}”, value);

Console::WriteLine();

The call to the Sort() function rearranges the values of the elements in the samples array so they are in
ascending sequence. The result of executing this code fragment is:

2    3   11   16   18   27   54

You can also sort a range of elements in an array by supplying two more arguments to the Sort()
function specifying the index for the first element of those to be sorted and the number of elements 
to be sorted. For example:

array<int>^ samples = { 27, 3, 54, 11, 18, 2, 16};
Array::Sort(samples, 2, 3);                      // Sort elements 2 to 4

213

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 213



This statement sorts the three elements in the samples array that begin at index position 2. After executing
these statements, the elements in the array will have the values:

27    3   11   18   54    2   16

The are several other versions of the Sort() function that you can find if you consult the documentation
but I’ll introduce one other that is particularly useful. This version presumes you have two arrays that
are associated so that the elements in the first array represent keys to the corresponding elements in the
second array. For example, you might store names of people in one array and the weights of the individ-
uals in a second array. The Sort() function sorts the array of names in ascending sequence and also
rearrange the elements of the weights array so the weights still match the appropriate person. Let’s try
it in an example.

Try It Out Sorting Two Associated Arrays
This example creates an array of names and stores the weights of each person in the corresponding element
of a second array. It then sorts both arrays in a single operation. Here’s the code:

// Ex4_14.cpp : main project file.
// Sorting an array of keys(the names) and an array of objects(the weights)

#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
array<String^>^ names = { “Jill”, “Ted”, “Mary”, “Eve”, “Bill”, “Al”};
array<int>^ weights = { 103, 168, 128, 115, 180, 176};

Array::Sort( names,weights);                   // Sort the arrays
for each(String^ name in names)                // Output the names
Console::Write(L”{0, 10}”, name);

Console::WriteLine();

for each(int weight in weights)                // Output the weights
Console::Write(L”{0, 10}”, weight);

Console::WriteLine();
return 0;

}

The output from this program is:

Al      Bill       Eve      Jill      Mary       Ted
176       180       115       103       128       168

How It Works
The values in the weights array correspond to the weight of the person at the same index position in the
names array. The Sort() function you call here sorts both arrays using the first array argument — names
in this instance — to determine the order of both arrays. You can see from that output that after sorting
everyone still has his or her correct weight recorded in the corresponding element of the weights array.

214

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 214



Searching One-Dimensional Arrays
The Array class also provides functions that search the elements of a one-dimensional array. Versions of
the BinarySearch() function uses a binary search algorithm to find the index position of a given element
in the entire array, or from a given range of elements. The binary search algorithm requires that the elements
are ordered if it is to work, so you need to sort the elements before searching an array.

Here’s how you could search an entire array:

array<int>^ values = { 23, 45, 68, 94, 123, 127, 150, 203, 299};
int toBeFound = 127;
int position = Array::BinarySearch(values, toBeFound);
if(position<0)
Console::WriteLine(L”{0} was not found.”, toBeFound);

else
Console::WriteLine(L”{0} was found at index position {1}.”, toBeFound, position);

The value to be found is stored in the toBeFound variable. The first argument to the BinarySearch()
function is the handle of the array to be searched and the second argument specifies what you are look-
ing for. The result of the search is returned by the BinarySearch() function as a value of type int. If
the second argument to the function is found in the array specified by the first argument, its index posi-
tion is returned; otherwise a negative integer is returned. Thus you must test the value returned to deter-
mine whether or not the search target was found. Because the values in the values array are already in
ascending sequence there is no need to sort the array before searching it. This code fragment would pro-
duce the output:

127 was found at index position 5.

To search a given range of elements in an array you use a version of the BinarySearch() function that
accepts four arguments. The first argument is the handle of the array to be searched, the second argument
is the index position of the element where the search should start, the third argument is the number of ele-
ments to be searched, and the fourth argument is what you are looking for. Here’s how you might use that:

array<int>^ values = { 23, 45, 68, 94, 123, 127, 150, 203, 299};
int toBeFound = 127;
int position = Array::BinarySearch(values, 3, 6, toBeFound);

This searches the values array from the fourth array element through to the last. As with the previous
version of BinarySearch(), the function returns the index position found or a negative integer if the
search fails.

Let’s try a searching example.

Try It Out Searching Arrays
This is a variation on the previous example with a search operation added:

// Ex4_15.cpp : main project file.
// Searching an array

#include “stdafx.h”

215

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 215



using namespace System;

int main(array<System::String ^> ^args)
{
array<String^>^ names = { “Jill”, “Ted”, “Mary”, “Eve”, “Bill”,

“Al”,   “Ned”, “Zoe”,  “Dan”, “Jean”};
array<int>^ weights = { 103, 168, 128, 115, 180,

176, 209, 98,  190, 130 };
array<String^>^ toBeFound = {“Bill”, “Eve”, “Al”, “Fred”};

Array::Sort( names, weights);                  // Sort the arrays

int result = 0;                                // Stores search result
for each(String^ name in toBeFound)            // Search to find weights
{
result = Array::BinarySearch(names, name);   // Search names array

if(result<0)                                 // Check the result
Console::WriteLine(L”{0} was not found.”, name);

else
Console::WriteLine(L”{0} weighs {1} lbs.”, name, weights[result]);

}
return 0;

}

This program produces the output:

Bill weighs 180 lbs.
Eve weighs 115 lbs.
Al weighs 176 lbs.
Fred was not found.

How It Works
You create two associated arrays — an array of names and an array of corresponding weights in
pounds. You also create the toBeFound array that contains the names of the people for whom you’d
like to know their weights.

You sort the names and weights arrays using the names array to determine the order. You then search
the names array for each name in the toBeFound array in a for each loop. The loop variable, name, is
assigned each of the names in the toBeFound array in turn. Within the loop, you search for the current
name with the statement:

result = Array::BinarySearch(names, name);   // Search names array

This returns the index of the element from names that contains name or a negative integer if the name is
not found. You then test the result and produce the output in the if statement:

if(result<0)                                 // Check the result
Console::WriteLine(L”{0} was not found.”, name);

else
Console::WriteLine(L”{0} weighs {1} lbs.”, name, weights[result]);

216

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 216



Because the ordering of the weights array was determined by the ordering of the names array, you are
able to index the weights array with result, the index position in the names array where name was found.
You can see from the output that “Fred” was not found in the names array.

When the binary search operation fails, the value returned is not just any old negative value. It is in fact
the bitwise complement of the index position of the first element that is greater than the object you are
searching for, or the bitwise complement of the Length property of the array if no element is greater
than the object sought. Knowing this you can use the BinarySearch() function to work out where you
should insert a new object in an array and still maintain the order of the elements. Suppose you wanted 
to insert “Fred” in the names array. You can find the index position where it should be inserted with
these statements:

array<String^>^ names = { “Jill”, “Ted”, “Mary”, “Eve”, “Bill”,
“Al”,   “Ned”, “Zoe”,  “Dan”, “Jean”};

Array::Sort(names);                    // Sort the array
String^ name = L”Fred”;
int position = Array::BinarySearch(names, name);
if(position<0)                         // If it is negative
position = ~position;                 // flip the bits to get the insert index

If the result of the search is negative, flipping all the bits gives you the index position of where the new
name should be inserted. If the result is positive, the new name is identical to the name at this position,
so you can use the result as the new position directly.

You can now copy the names array into a new array that has one more element and use the position value
to insert name at the appropriate place:

array<String^>^ newNames = gcnew array<String^>(names->Length+1);

// Copy elements from names to newNames
for(int i = 0 ; i<position ; i++)
newNames[i] = names[i];

newNames[position] = name;                       // Copy the new element

if(position<names->Length)                       // If any elements remain in names
for(int i = position ; i<names->Length ; i++)
newNames[i+1] = names[i];                    // copy them to newNames

This creates a new array with a length one greater than the old array. You then copy all the elements from
the old to the new up to index position position-1. You then copy the new name followed by the remain-
ing elements from the old array. To discard the old array, you would just write:

names = nullptr;

Multidimensional Arrays
You can create arrays that have two or more dimensions; the maximum number of dimensions an array
can have is 32, which should accommodate most situations. You specify the number of dimensions that
your array has between the angled brackets immediately following the element type and separated from

217

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 217



it by a comma. The dimension of an array is 1 by default, which is why you did not need to specify up to
now. Here’s how you can create a two-dimensional array of integer elements:

array<int, 2>^ values = gcnew array<int, 2>(4, 5);

This statement creates a two-dimensional array with four rows and five columns so it has a total of 20 ele-
ments. To access an element of a multidimensional array you specify a set of index values, one for each
dimension; these are place between square brackets separated by commas following the array name. Here’s
how you could set values for the elements of a two-dimensional array of integers:

int nrows = 4;
int ncols = 5;
array<int, 2>^ values = gcnew array<int, 2>(nrows, ncols);
for(int i = 0 ; i<nrows ; i++)
for(int j = 0 ; j<ncols ; j++)
values[i,j] = (i+1)*(j+1);

The nested loop iterates over all the elements of the array. The outer loop iterates over the rows and the
inner loop iterates over every element in the current row. As you see, each element is set to a value that
is given by the expression (i+1)*(j+1) so elements in the first row will be set to 1,2,3,4,5; elements in
the second row will be 2,4,6,8,10; and so on through to the last row which will be 4,6,12,16,20.

I’m sure you will have noticed that the notation for accessing an element of a two-dimensional array
here is different from the notation used for native C++ arrays. This is no accident. A C++/CLI array is
not an array of arrays like a native C++ array; it is a true two-dimensional array. You cannot use a single
index with a two-dimensional C++/CLI array, because this has no meaning; the array is a two-dimensional
array of elements, not an array of arrays. As I said earlier, the dimensionality of an array is referred to as its
rank, so the rank of the values array in the previous fragment is 2. Of course you can also define C++/CLI
arrays of rank 3 or more, up to an array of rank 32. In contrast, native C++ arrays are actually always of
rank 1 because native C++ arrays of two or more dimensions are really arrays of arrays. As you’ll see later,
you can also define arrays of arrays in C++/CLI.

Let’s put a multidimensional array to use in an example.

Try It Out Using a Multidimensional Array
This CLR console example creates a 12x12 multiplication table in a two-dimensional array:

// Ex4_16.cpp : main project file.
// Using a two-dimensional array

#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
const int SIZE = 12;
array<int, 2>^ products = gcnew array<int, 2>(SIZE,SIZE);

for (int i = 0 ; i < SIZE ; i++)
for(int j = 0 ; j < SIZE ; j++)
products[i,j] = (i+1)*(j+1);

218

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 218



Console::WriteLine(L”Here is the {0} times table:”,  SIZE);

// Write horizontal divider line
for(int i = 0 ; i <= SIZE ; i++)
Console::Write(L”_____”);

Console::WriteLine();                // Write newline

// Write top line of table
Console::Write(L”    |”);
for(int i = 1 ; i <= SIZE ; i++)
Console::Write(L”{0,3} |”, i);

Console::WriteLine();                // Write newline

// Write horizontal divider line with verticals
for(int i = 0 ; i <= SIZE ; i++)
Console::Write(L”____|”);

Console::WriteLine();                // Write newline

// Write remaining lines
for(int i = 0 ; i<SIZE ; i++)
{
Console::Write(L”{0,3} |”, i+1);
for(int j = 0 ; j<SIZE ; j++)
Console::Write(L”{0,3} |”, products[i,j]);

Console::WriteLine();              // Write newline
}

// Write horizontal divider line
for(int i = 0 ; i <= SIZE ; i++)
Console::Write(L”_____”);

Console::WriteLine();                // Write newline

return 0;
}

This example should produce the following output:

Here is the 12 times table:
_________________________________________________________________

|  1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9 | 10 | 11 | 12 |
____|____|____|____|____|____|____|____|____|____|____|____|____|

1 |  1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9 | 10 | 11 | 12 |
2 |  2 |  4 |  6 |  8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
3 |  3 |  6 |  9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
4 |  4 |  8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
5 |  5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
6 |  6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
7 |  7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
8 |  8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
9 |  9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 |108 |
10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |100 |110 |120 |
11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 |110 |121 |132 |
12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 |108 |120 |132 |144 |
_________________________________________________________________

219

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  10:07 AM  Page 219



How It Works
It looks like a lot of code, but most of it is concerned with making the output pretty. You create the two-
dimensional array with the following statements:

const int SIZE = 12;
array<int, 2>^ products = gcnew array<int, 2>(SIZE,SIZE);

The first line defines a constant integer value that specifies the number of elements in each array
dimension. The second line defines an array of rank 2 that has 12 rows of 12 elements. This array
stores the products in the 12 × 12 table.

You set the values of the elements in the products array in a nested loop:

for (int i = 0 ; i < SIZE ; i++)
for(int j = 0 ; j < SIZE ; j++)

products[i,j] = (i+1)*(j+1);

The outer loop iterates over the rows, and the inner loop iterates over the columns. The value of each
element is the product of the row and column index values after they are incremented by 1. The rest of
the code in main() is concerned solely with generating output.

After writing the initial table heading, you create a row of bars to mark the top of the table like this:

for(int i = 0 ; i <= SIZE ; i++)
Console::Write(L”_____”);

Console::WriteLine();                // Write newline

Each iteration of the loop writes five horizontal bar characters. Note that the upper limit for the loop is
inclusive, so you write 13 sets of five bars to allow for the row labels in the table plus the 12 columns.

Next you write the row of column labels for the table with another loop:

// Write top line of table
Console::Write(L”    |”);
for(int i = 1 ; i <= SIZE ; i++)

Console::Write(L”{0,3} |”, i);
Console::WriteLine();                // Write newline

You have to write the space over the row label position separately because that is a special case with no
output value. Each of the column labels is written in the loop. You then write a newline character ready
for the row outputs that follow.

The row outputs are written in a nested loop:

for(int i = 0 ; i<SIZE ; i++)
{

Console::Write(L”{0,3} |”, i+1);
for(int j = 0 ; j<SIZE ; j++)

Console::Write(L”{0,3} |”, products[i,j]);

Console::WriteLine();                // Write newline
}

220

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 220



The outer loop iterates over the rows and the code inside the outer loop writes a complete row, including
the row label on the left. The inner loop writes the values from the products array that correspond to the
ith row, with the values separated by vertical bars.

The remaining code writes more horizontal bars to finish off the bottom of the table.

Arrays of Arrays
Array elements can be of any type, so you can create arrays where the elements are tracking handles that
reference arrays. This gives you the possibility of creating so-called jagged arrays because each handle ref-
erencing an array can have a different number of elements. This is most easily understood by looking at
an example. Suppose you want to store the names of children in a class grouped by the grade they scored,
where there are five classifications corresponding to grades A, B, C, D, and E. You could first create an
array of five elements where each element stores an array of names. Here’s the statement that will do that:

array< array< String^ >^ >^ grades = gcnew array< array< String^ >^ >(5);

Don’t let all the hats confuse you — it’s simpler than it looks. The array variable, grades, is a handle of
type array<type>^. Each element in the array is also a handle to an array, so the type of the array ele-
ments is of the same form — array<type>^ so this has to go between the angled brackets in the original
array type specification, which results in array< array<type>^ >^. The elements stored in the array
are also handles to String objects so you must replace type in the last expression by String^; thus you
end up with the array type being array< array< String^ >^ >^.

With the array of arrays worked out, you can now create the arrays of names. Here’s an example of what
that might look like:

grades[0] = gcnew array<String^>{“Louise”, “Jack”};                  // Grade A
grades[1] = gcnew array<String^>{“Bill”, “Mary”, “Ben”, “Joan”};     // Grade B
grades[2] = gcnew array<String^>{“Jill”, “Will”, “Phil”};            // Grade C
grades[3] = gcnew array<String^>{“Ned”, “Fred”, “Ted”, “Jed”, “Ed”}; // Grade D
grades[4] = gcnew array<String^>{“Dan”, “Ann”};                      // Grade E

The expression grades[n] accesses the nth element of the grades array, and of course this is a handle to
an array of String^ handles in each case. Thus each of the five statements creates an array of String
object handles and stores the address in one of the elements of the grades array. As you see, the arrays
of strings vary in length, so clearly you can manage a set of arrays with arbitrary lengths in this way.

You could create and initialize the whole array of arrays in a single statement:

array< array< String^ >^ >^ grades = gcnew array< array< String^ >^ >
{
gcnew array<String^>{“Louise”, “Jack”},                  // Grade A
gcnew array<String^>{“Bill”, “Mary”, “Ben”, “Joan”},     // Grade B
gcnew array<String^>{“Jill”, “Will”, “Phil”},            // Grade C
gcnew array<String^>{“Ned”, “Fred”, “Ted”, “Jed”, “Ed”}, // Grade D
gcnew array<String^>{“Dan”, “Ann”}                       // Grade E

};

The initial values for the elements are between the braces.

221

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 221



Let’s put this in a working example that demonstrates how you can process arrays of arrays.

Try It Out Using an Array of Arrays
Create a CLR console program project and modify it as follows:

// Ex4_17.cpp : main project file.
// Using an array of arrays

#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
array< array< String^ >^ >^ grades = gcnew array< array< String^ >^ >

{
gcnew array<String^>{“Louise”, “Jack”},                  // Grade A
gcnew array<String^>{“Bill”, “Mary”, “Ben”, “Joan”},     // Grade B
gcnew array<String^>{“Jill”, “Will”, “Phil”},            // Grade C
gcnew array<String^>{“Ned”, “Fred”, “Ted”, “Jed”, “Ed”}, // Grade D
gcnew array<String^>{“Dan”, “Ann”}                       // Grade E

};

wchar_t gradeLetter = ‘A’;

for each(array< String^ >^ grade in grades)
{
Console::WriteLine(L”Students with Grade {0}:”, gradeLetter++);

for each( String^ student in grade)
Console::Write(L”{0,12}”,student);          // Output the current name

Console::WriteLine();                        // Write a newline
}
return 0;

}

This example produces the following output:

Students with Grade A:
Louise        Jack

Students with Grade B:
Bill        Mary         Ben        Joan

Students with Grade C:
Jill        Will        Phil

Students with Grade D:
Ned        Fred         Ted         Jed          Ed

Students with Grade E:
Dan         Ann

How It Works
The array definition is exactly as you saw in the previous section. Next you define the gradeLetter
variable as type wchar_t with the initial value ‘A’. This is to be used to present the grade classification
in the output.

222

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 222



The students and their grades are listed by the nested loops. The outer for each loop iterates over the
elements in the grades array:

for each(array< String^ >^ grade in grades)
{

// Process students in the current grade...
}

The loop variable, grade, is of type array< String^ >^ because that’s the element type in the grades
array. The variable grade references each of the arrays of String^ handles in turn, so first time around
the loop references the array of grade A student names, second time around it references grade B student
names, and so on until the last loop iteration when it references the grade E student names.

On each iteration of the outer loop, you execute the following code:

Console::WriteLine(L”Students with Grade {0}:”, gradeLetter++);

for each( String^ student in grade)
Console::Write(L”{0,12}”,student);          // Output the current name

Console::WriteLine();                        // Write a newline

The first statement writes a line that includes the current value of gradeLetter, which starts out as
‘A’. The statement also increments gradeLetter so it will be, ‘B’, ‘C’, ‘D’, and ‘E’ successively on
subsequent iterations of the outer loop.

Next you have the inner for each loop that iterates over each of the names in the current grade array in
turn. The output statement uses the Console::Write() function so all the names appear on the same
line. The names are presented right-justified in the output in a field width of 12, so the names in the lines
of output are aligned. After the loop, the WriteLine() just writes a newline to the output so the next
grade output starts on a new line.

You could have used a for loop for the inner loop:

for (int i  = 0 ; i < grade->Length ; i++)
Console::Write(L”{0,12}”,grade[i]);         // Output the current name

The loop is constrained by the Length property of the current array of names that is referenced by the
grade variable.

You could also have used a for loop for the outer loop as well, in which case the inner loop needs to be
changed further and the nested loop looks like this:

for (int j = 0 ; j < grades->Length ; j++)
{
Console::WriteLine(L”Students with Grade {0}:”, gradeLetter+j);
for (int i  = 0 ; i < grades[j]->Length ; i++)
Console::Write(L”{0,12}”,grades[j][i]);         // Output the current name

Console::WriteLine();
}

Now grades[j] references the jth array of names so the expression grades[j][i] references the ith
name in the jth array of names.

223

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 223



Strings
You have already seen that the String class type that is defined in the System namespace represents a
string in C++/CLI — in fact a string consists of Unicode characters. To be more precise it represents a string
consisting of a sequence of characters of type System::Char. You get a huge amount of powerful function-
ality with String class objects so it makes string processing very easy. Let’s start at the beginning with
string creation.

You can create a String object like this:

System::String^ saying = L”Many hands make light work.”;

The variable, saying, is a tracking handle that references the String object that is initialized with the
string that appears on the right of the =. You must always use a tracking handle to store a reference to a
String object. The string literal here is a wide character string because it has the prefix L. If you omit the
L prefix, you have a string literal containing 8-bit characters, but the compiler ensures it is converted to a
wide-character string.

You can access individual characters in a string by using a subscript just like an array, and the first char-
acter in the string has an index value of 0. Here’s how you could output the third character in the string
saying:

Console::WriteLine(L”The third character in the string is {0}”, saying[2]);

Note that you can only retrieve a character from a string using an index value; you cannot update the
string in this way. String objects are immutable and therefore cannot be modified.

You can obtain the number of characters in a string by accessing its Length property. You could output
the length of saying with this statement:

Console::WriteLine(L”The string has {0} characters.”, saying->Length);

Because saying is a tracking handle — which as you know is a kind of pointer — you must use the ->
operator to access the Length property (or any other member of the object). You’ll learn more about
properties when you get to investigate C++/CLI classes in detail.

Joining Strings
You can use the + operator to join strings to form a new String object. Here’s an example:

String^ name1 = L”Beth”;
String^ name2 = L”Betty”;
String^ name3 = name1 + L” and “ + name2;

After executing these statements, name3 contains the string “Beth and Betty”. Note how you can use
the + operator to join String objects with string literals. You can also join String objects with numerical
values or bool values and have the values converted automatically to a string before the join operation.
The following statements illustrate this:

String^ str = L”Value: “;
String^ str1 = str + 2.5;            // Result is new string “Value: 2.5”

224

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 224



String^ str2 = str + 25;             // Result is new string L”Value: 25”
String^ str3 = str + true;           // Result is new string L”Value: True”

You can also join a string and a character, but the result depends on the type of character:

char ch = ‘Z’;
wchar_t wch = L’Z’;
String^ str4 = str + ch;               // Result is new string L”Value: 90”
String^ str5 = str + wch;              // Result is new string L”Value: Z”

The comments show the results of the operations. A character of type char is treated as a numerical value
so you get the character code value joined to the string. The wchar_t character is of the same type as the
characters in the String object (type Char) so the character is appended to the string.

Don’t forget that String objects are immutable; once created, they cannot be changed. This means that
all operations that apparently modify String objects always result in new String objects being created.

The String class also defines a Join() function that you use when you want to join a series of strings
stored in an array into a single string with separators between the original strings. Here’s how you could
join names together in a single string with the names separated by commas:

array<String^>^ names = { L”Jill”, L”Ted”, L”Mary”, L”Eve”, L”Bill”};
String^ separator = L“, “;
String^ joined = String::Join(separator, names);

After executing these statements, joined references the string L”Jill, Ted, Mary, Eve, Bill”. The
separator string has been inserted between each of the original strings in the names array. Of course,
the separator string can be anything you like — it could be L” and “, for example, which results in the
string L”Jill and Ted and Mary and Eve and Bill”.

Let’s try a full example of working with String objects.

Try It Out Working with Strings
Suppose you have an array of integer values that you want to output aligned in columns. You want the
values aligned but you want the columns to be just sufficiently wide to accommodate the largest value
in the array with a space between columns. This program does that.

// Ex4_18.cpp : main project file.
// Creating a custom format string

#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
array<int>^ values = { 2, 456, 23, -46, 34211, 456, 5609, 112098,
234, -76504, 341, 6788, -909121, 99, 10};

String^ formatStr1 = L”{0,”           // 1st half of format string
String^ formatStr2 = L”}”;            // 2nd half of format string

225

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 225



String^ number;                       // Stores a number as a string

// Find the length of the maximum length value string
int maxLength = 0;                    // Holds the maximum length found
for each(int value in values)
{
number = L”” + value;               // Create string from value
if(maxLength<number->Length)
maxLength = number->Length;

}

// Create the format string to be used for output
String^ format = formatStr1 + (maxLength+1) + formatStr2;

// Output the values
int numberPerLine = 3;
for(int i = 0 ; i< values->Length ; i++)
{
Console::Write(format, values[i]);
if((i+1)%numberPerLine == 0)
Console::WriteLine();

}
return 0;

}

The output from this program is:

2     456      23
-46   34211     456
5609  112098     234

-76504     341    6788
-909121      99      10

How It Works
The objective of this program is to create a format string to align the output of integers from the values
array in columns with a width sufficient to accommodate the maximum length string representation of
the integers. You create the format string initially in two parts:

String^ formatStr1 = L”{0,”;          // 1st half of format string
String^ formatStr2 = L”}”;            // 2nd half of format string

These two strings are the beginning and end of the format string you ultimately require. You need to work
out the length of the maximum-length number string, and sandwich that value between formatStr1 and
formatStr2 to form the complete format string.

You find the length you require with the following code:

int maxLength = 0;                   // Holds the maximum length found
for each(int value in values)
{

number = “” + value;               // Create string from value
if(maxLength<number->Length)

maxLength = number->Length;
}

226

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 226



Within the loop you convert each number from the array to its String representation by joining it to an
empty string. You compare the Length property of each string to maxLength, and if it’s greater than the
current value of maxLength, it becomes the new maximum length.

Creating the format string is simple:

String^ format = formatStr1 + (maxLength+1) + formatStr2;

You need to add 1 to maxLength to allow one additional space in the field when the maximum length
string is displayed. Placing the expression maxLength+1 between parentheses ensures that it is evalu-
ated as an arithmetic operation before the string joining operations are executed.

Finally you use the format string in the code to output values from the array:

int numberPerLine = 3;
for(int i = 0 ; i< values->Length ; i++)
{

Console::Write(format, values[i]);
if((i+1)%numberPerLine == 0)

Console::WriteLine();
}

The output statement in the loop uses format as the string for output. With the maxLength plugged
into the format string, the output is in columns that are one greater than the maximum length output
value. The numberPerLine variable determines how many values appear on a line so the loop is quite
general in that you can vary the number of columns by changing the value of numberPerLine.

Modifying Strings
The most common requirement for trimming a string is to trim spaces from both the beginning and the
end. The Trim() function for a string object does that:

String^ str = {L”  Handsome is as handsome does...    “};
String^ newStr = str->Trim();

The Trim() function in the second statement removes any spaces from the beginning and end of str
and returns the result as a new String object stored in newStr. Of course, if you did not want to retain
the original string, you could store the result back in str.

There’s another version of the Trim() function that allows you to specify the characters that are to be
removed from the start and end of the string. This function is very flexible because you have more than
one way of specifying the characters to be removed. You can specify the characters in an array and pass
the array handle as the argument to the function:

String^ toBeTrimmed = L”wool wool sheep sheep wool wool wool”;
array<wchar_t>^ notWanted = {L’w’,L’o’,L’l’,L’ ‘};
Console::WriteLine(toBeTrimmed->Trim(notWanted));

Here you have a string, toBeTrimmed, that consists of sheep covered in wool. The array of characters to
be trimmed from the string is defined by the notWanted array so passing that to the Trim() function for

227

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 227



the string removes any of the characters in the array from both ends of the string. Remember, String
objects are immutable so the original string is not being changed in any way — a new string is created
and returned by the Trim() operation. Executing this code fragment produces the output:

sheep sheep

If you happen to specify the character literals without the L prefix, they will be of type char (which cor-
responds to the SByte value class type); however, the compiler arranges that they are converted to type
wchar_t.

You can also specify the characters that the Trim() function is to remove explicitly as arguments, so you
could write the last line of the previous fragment as:

Console::WriteLine(toBeTrimmed->Trim(L’w’, L’o’, L’l’, L’ ‘));

This produces the same output as the previous version of the statement. You can have as many argu-
ments of type wchar_t as you like, but if there are a lot of characters to be specified an array is the best
approach.

If you want to trim only one end of a string, you can use the TrimEnd() or TrimStart() functions. These
come in the same variety of versions as the Trim() function so without arguments you trim spaces, with
an array argument you trim the characters in the array, and with explicit wchar_t arguments those charac-
ters are removed.

The inverse of trimming a string is padding it at either end with spaces or other characters. You have
PadLeft() and PadRight() functions that pad a string at the left or right end respectively. The primary
use for these functions is in formatting output where you want to place strings either left- or right-justified
in a fixed width field. The simpler versions of the PadLeft() and PadRight() functions accept a single
argument specifying the length of the string that is to result from the operation. For example:

String^ value = L”3.142”;
String^ leftPadded = value->PadLeft(10);       // Result is L”     3.142”
String^ rightPadded = value->PadRight(10);     // Result is L“3.142     “

If the length you specify as the argument is less than or equal to the length of the original string, either
function returns a new String object that is identical to the original.

To pad a string with a character other than a space, you specify the padding character as the second
argument to the PadLeft() or PadRight() functions. Here are a couple of examples of this:

String^ value = L”3.142”;
String^ leftPadded = value->PadLeft(10, L’*’);   // Result is L“*****3.142”
String^ rightPadded = value->PadRight(10, L’#’); // Result is L“3.142#####”

Of course, with all these examples, you could store the result back in the handle referencing the original
string, which would discard the original string.

The String class also has the ToUpper() and ToLower() functions to convert an entire string to upper-
or lowercase. Here’s how that works:

String^ proverb = L”Many hands make light work.”;
String^ upper = proverb->ToUpper();    // Result L“MANY HANDS MAKE LIGHT WORK.”

228

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 228



The ToUpper() function returns a new string that is the original string converted to uppercase.

You use the Insert() function to insert a string at a given position in an existing string. Here’s an
example of doing that:

String^ proverb = L”Many hands make light work.”;
String^ newProverb = proverb->Insert(5, L”deck “);

The function inserts the string specified by the second argument starting at the index position in the old
string specified by the first argument. The result of this operation is a new string containing:

Many deck hands make light work.

You can also replace all occurrences of a given character in a string with another character or all occur-
rences of a given substring with another substring. Here’s a fragment that shows both possibilities:

String^ proverb = L”Many hands make light work.”;
Console::WriteLine(proverb->Replace(L’ ‘, L’*’);
Console::WriteLine(proverb->Replace(L”Many hands”, L”Pressing switch”);

Executing this code fragment produces the output:

Many*hands*make*light*work.
Pressing switch make light work.

The first argument to the Replace() function specifies the character or substring to be replaced and the
second argument specifies the replacement.

Comparing Strings
You can compare two String objects using the Compare() function in the String class. The function
returns an integer that is less than zero, equal to zero, or greater than zero, depending on whether the
first argument is less than, equal to, or greater than the second argument. Here’s an example:

String^ him(L”Jacko”);
String^ her(L”Jillo”);
int result = String::Compare(him, her);
if(result < 0)
Console::WriteLine(L“{0} is less than {1}.”, him, her);

else if(result > 0)
Console::WriteLine(L“{0} is greater than {1}.”, him, her);

else
Console::WriteLine(L“{0} is equal to {1}.”, him, her);

You store the integer that the Compare() function returns in result and use that in the if statement to
decide the appropriate output. Executing this fragment produces the output:

Jacko is less than Jillo.

There’s another version of Compare() that requires a third argument of type bool. If the third argument
is true, then the strings referenced by the first two arguments are compared ignoring case; if the third
argument is false then the behavior is the same as the previous version of Compare().

229

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 229



Searching Strings
Perhaps the simplest search operation is to test whether a string starts or ends with a given substring. The
StartsWith() and EndsWith() functions do that. You supply a handle to the substring you are looking
for as the argument to either function, and the function returns a bool value that indicates whether or not
the substring is present. Here’s a fragment showing how you might use the StartsWith() function:

String^ sentence = L”Hide, the cow’s outside.”;
if(sentence->StartsWith(L”Hide”))
Console::WriteLine(L“The sentence starts with ‘Hide’.”);

Executing this fragment results in the output:

The sentence starts with ‘Hide’.

Of course, you could also apply the EndsWith() function to the sentence string:

Console::WriteLine(L“The sentence does{0] end with ‘outside’.”,
sentence->EndsWith(L”outside”) ? L”” : L” not”);

The result of the conditional operator expression is inserted in the output string. This is an empty string
if EndsWith() returns true and “ not” if it returns false. In this instance the function returns false
(because of the period at the end of the sentence string).

The IndexOf() function searches a string for the first occurrence of a specified character or a substring
and returns the index if it is present or -1 if it is not found. You specify the character or the substring you
are looking for as the argument to the function. For example:

String^ sentence = L”Hide, the cow’s outside.”;
int ePosition = sentence->IndexOf(L’e’);         // Returns 3
int thePosition = sentence->IndexOf(L”the”);     // Returns 6

The first search is for the letter ‘e’ and the second is for the word “the”. The values returned by the
IndexOf() function are indicated in the comments.

More typically you will want to find all occurrences of a given character or substring and another version
of the IndexOf() function is designed to be used repeatedly to enable you to do that. In this case you
supply a second argument specifying the index position where the search is to start. Here’s an example of
how you might use the function in this way:

int index = 0;
int count = 0;
while((index = words->IndexOf(word,index)) >= 0)
{
index += word->Length;
++count;

}
Console::WriteLine(L”’{0}’ was found {1} times in:\n{2}”, word, count, words);

This fragment counts the number of occurrences of “wool” in the words string. The search operation
appears in the while loop condition and the result is stored in index. The loop continues as long as
index is non-negative so when IndexOf() returns -1 the loop ends. Within the loop body, the value

230

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 230



of index is incremented by the length of word, which moves the index position to the character fol-
lowing the instance of word that was found, ready for the search on the next iteration. The count vari-
able is incremented within the loop so when the loop ends it has accumulated the total number of
occurrences of word in words. Executing the fragment results in the following output:

‘wool’ was found 5 times in:
wool wool sheep sheep wool wool wool

The LastIndexOf() function is similar to the IndexOf() function except that it searches backwards
through the string from the end or from a specified index position. Here’s how the operation performed
by the previous fragment could be performed using the LastIndexOf() function:

int index = words->Length - 1;
int count = 0;
while(index >= 0 && (index = words->LastIndexOf(word,index)) >= 0)
{
--index;
++count;

}

With the word and words strings the same as before, this fragment produces the same output. Because
LastIndexOf() searches backwards, the starting index is the last character in the string, which is
words->Length-1. When an occurrence of word is found, you must now decrement index by 1 so that 
the next backward search starts at the character preceding the current occurrence of word. If word occurs
right at the beginning of words — at index position 0 — decrementing index results in –1, which is not a
legal argument to the LastIndexOf() function because the search starting position must always be
within the string. The addition check for a negative value of index in the loop condition prevents this
from happening; if the right operand of the && operator is false, the left operand is not evaluated.

The last search function I want to mention is IndexOfAny() that searches a string for the first occurrence
of any character in the array of type array<wchar_t> that you supply as the argument. Similar to the
IndexOf() function, the IndexOfAny() function comes in versions that search from the beginning of a
string or from a specified index position. Let’s try a full working example of using the IndexOfAny()
function.

Try It Out Searching for Any of a Set of Characters
This example searches a string for punctuation characters:

// Ex4_19.cpp : main project file.
// Searching for punctuation

#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
array<wchar_t>^ punctuation = {L’”’, L’\’’, L’.’, L’,’, L’:’, L’;’, L’!’, L’?’};
String^ sentence = L”\”It’s chilly in here\”, the boy’s mother said coldly.”;

// Create array of space characters same length as sentence

231

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 231



array<wchar_t>^ indicators = gcnew array<wchar_t>(sentence->Length){L’ ‘};

int index = 0;                       // Index of character found
int count = 0;                       // Count of punctuation characters
while((index = sentence->IndexOfAny(punctuation, index)) >= 0)
{
indicators[index] = L’^’;          // Set marker
++index;                           // Increment to next character
++count;                           // Increase the count

}
Console::WriteLine(L”There are {0} punctuation characters in the string:”,

count);
Console::WriteLine(L”\n{0}\n{1}”, sentence, gcnew String(indicators));
return 0;

}

This example should produce the following output:

There are 6 punctuation characters in the string:

“It’s chilly in here”, the boy’s mother said coldly.
^  ^                ^^        ^                    ^

How It Works
You first create an array containing the characters to be found and the string to be searched:

array<wchar_t>^ punctuation = {L’”’, L’\’’, L’.’, L’,’, L’:’, L’;’, L’!’, L’?’};
String^ sentence = L”\”It’s chilly in here\”, the boy’s mother said coldly.”;

Note that you must specify a single quote character using an escape sequence because a single quote is a
delimiter in a character literal. You can use a double quote explicitly in a character literal because there’s
no risk of it being interpreted as a delimiter in this context.

Next you define an array of characters with the elements initialized to a space character:

array<wchar_t>^ indicators = gcnew array<wchar_t>(sentence->Length){L’ ‘};

This array has as many elements as the sentence string has characters. You’ll be using this array in
the output to mark where punctuation characters occur in the sentence string. You’ll just change 
the appropriate array element to ‘^’ whenever a punctuation character is found. Note how a single
initializer between the braces following the array specification can be used to initialize all the elements 
in the array.

The search takes place in the while loop:

while((index = sentence->IndexOfAny(punctuation, index)) >= 0)
{

indicators[index] = L’^’;          // Set marker
++index;                           // Increment to next character
++count;                           // Increase the count

}

232

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 232



The loop condition is essentially the same as you have seen in earlier code fragments. Within the loop body
you update the indicators array element at position index to be a ‘^’ character before incrementing
index ready for the next iteration. When the loop ends, count contains the number of punctuation charac-
ters that were found, and indicators will contain ‘^’ characters at the positions in sentence where such
characters were found.

The output is produced by the statements:

Console::WriteLine(L”There are {0} punctuation characters in the string:”,
count);

Console::WriteLine(L”\n{0}\n{1}” sentence, gcnew String(indicators));

The second statement creates a new String object on the heap from the indicators array by passing the
array to the String class constructor. A class constructor is a function that will create a class object when
it is called. You’ll learn more about constructors when you get into defining your own classes.

Tracking References
A tracking reference provides a similar capability to a native C++ reference in that it represents an alias for
something on the CLR heap. You can create tracking references to value types on the stack and to handles
in the garbage-collected heap; the tracking references themselves are always created on the stack. A track-
ing reference is automatically updated if the object referenced is moved by the garbage collector.

You define a tracking reference using the % operator. For example, here’s how you could create a tracking
reference to a value type:

int value = 10;
int% trackValue = value;

The second statement defines stackValue to be a tracking reference to the variable value, which has
been created on the stack. You can now modify value using stackValue:

trackValue *= 5;
Console::WriteLine(value);

Because trackValue is an alias for value, the second statement outputs 50.

Interior Pointers
Although you cannot perform arithmetic on the address in a tracking handle, C++/CLI does provide a
form of pointer with which it is possible to apply arithmetic operations; it’s called an interior pointer and is
defined using the keyword interior_ptr. The address stored in an interior pointer can be updated auto-
matically by the CLR garbage collection when necessary. An interior point is always an automatic variable
that is local to a function.

Here’s how you could define an interior point containing the address of the first element in an array:

array<double>^ data = {1.5, 3.5, 6.7, 4.2, 2.1};
interior_ptr<double> pstart = &data[0];

233

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 233



You specify the type of object pointed to by the interior pointer between angled brackets following the
interior_ptr keyword. In the second statement here you initialize the pointer with the address of the
first element in the array using the & operator, just as you would with a native C++ pointer. If you do
not provide an initial value for an interior pointer, it is initialized with nullptr by default. An array 
is always allocated on the CLR heap so here’s a situation where the garbage collector may adjust the
address contained in an interior pointer.

There are constraints on the type specification for an interior pointer. An interior pointer can contain the
address of a value class object on the stack or the address of a handle to an object on the CLR heap; it
cannot contain the address of a whole object on the CLR heap. An interior pointer can also point to a
native class object or a native pointer.

You can also use an interior pointer to hold the address of a value class object that is part of an object on 
the heap, such as an element of a CLR array. This way you can create an interior pointer that can store the
address of a tracking handle to a System::String object but you cannot create an interior pointer to store
the address of the String object itself. For example:

interior_ptr<String^> pstr1;      // OK - pointer to a handle
interior_ptr<String> pstr2;       // Will not compile - pointer to a String object

All the arithmetic operations that you can apply to a native C++ pointer you can also apply to an interior
pointer. You can increment and decrement an interior pointer to change the address it contains to refer to
the following or preceding data item. You can also add or subtract integer values and compare interior
points. Let’s put together an example that does some of that.

Try It Out Creating and Using Interior Pointers
This example exercises interior pointers with numerical values and strings:

// Ex4_20.cpp : main project file.
// Creating and using interior pointers

#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
// Access array elements through a pointer
array<double>^ data = {1.5, 3.5, 6.7, 4.2, 2.1};
interior_ptr<double> pstart = &data[0];
interior_ptr<double> pend = &data[data->Length - 1];
double sum = 0.0;
while(pstart <= pend)
sum += *pstart++;

Console::WriteLine(L”Total of data array elements = {0}\n”, sum);

// Just to show we can - access strings through an interior pointer
array<String^>^ strings = { L”Land ahoy!”,

L”Splice the mainbrace!”,
L”Shiver me timbers!”,

234

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 234



L”Never throw into the wind!”
};

for(interior_ptr<String^> pstrings = &strings[0] ;
pstrings-&strings[0] < strings->Length ; ++pstrings)

Console::WriteLine(*pstrings);

return 0;
}

The output from this example is:

Total of data array elements = 18
Land ahoy!
Splice the mainbrace!
Shiver me timbers!
Never throw into the wind!

How It Works
After creating the data array of elements of type double, you define two interior pointers:

interior_ptr<double> pstart = &data[0];
interior_ptr<double> pend = &data[data->Length - 1];

The first statement creates pstart as a pointer to type double and initializes it with the address of the
first element in the array, data[0]. The interior pointer, pend, is initialized with the address of the last
element in the array, data[data->Length - 1]. Because data->Length is the number of elements in
the array, subtracting 1 from this value produces the index for the last element.

The while loop accumulates the sum of the elements in the array:

while(pstart <= pend)
sum += *pstart++;

The loop continues as long as the interior pointer, pstart, contains an address that is not greater than
the address in pend. You could equally well have expressed the loop condition as !pstart > pend.

Within the loop, pstart starts out containing the address of the first array element. The value of the first
element is obtained by dereferencing the pointer with the expression *pstart and the result of this is
added to sum. The address in the pointer is then incremented using the ++ operator. On the last loop iter-
ation, pstart contains the address of the last element which is the same as the address value that pend
contains, so incrementing pstart makes the loop condition false because pstart is then greater than
pend. After the loop ends the value of sum is written out so you can confirm that the while loop is work-
ing as it should.

Next you create an array of four strings:

array<String^>^ strings = { L”Land ahoy!”,
L”Splice the mainbrace!”,
L”Shiver me timbers!”,

235

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 235



L”Never throw into the wind!”
};

The for loop then outputs each string to the command line:

for(interior_ptr<String^> pstrings = &strings[0] ;
pstrings-&strings[0] < strings->Length ; ++pstrings)

Console::WriteLine(*pstrings);

The first expression in the for loop condition declares the interior pointer, pstrings, and initializes it with
the address of the first element in the strings array. The second expression determines whether the for
loop continues:

pstrings-&strings[0] < strings->Length

As long as pstrings contains the address of a valid array element, the difference between the address in
pstrings and the address of the first element in the array is less than the number of elements in the array,
given by the expression strings->Length. Thus when this difference equals the length of the array, the
loop ends. You can see from the output that everything works as expected.

The most frequent use of an interior pointer is to reference objects that are part of a CLR heap object, and
you’ll see more about this later in the book.

Summary
You are now familiar with all of the basic types of values in C++, how to create and use arrays of those types,
and how to create and use pointers. You have also been introduced to the idea of a reference. However, we
have not exhausted all of these topics. I’ll come back to the topics of arrays, pointers, and references later in
the book. The important points discussed in this chapter relating to native C++ programming are:

❑ An array allows you to manage a number of variables of the same type using a single name.
Each dimension of an array is defined between square brackets following the array name in 
the declaration of the array.

❑ Each dimension of an array is indexed starting from zero. Thus the fifth element of a one-
dimensional array has the index value 4.

❑ Arrays can be initialized by placing the initializing values between curly braces in the 
declaration.

❑ A pointer is a variable that contains the address of another variable. A pointer is declared as a
‘pointer to type’ and may only be assigned addresses of variables of the given type.

236

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 236



❑ A pointer can point to a constant object. Such a pointer can be reassigned to another object. A
pointer may also be defined as const, in which case it can’t be reassigned.

❑ A reference is an alias for another variable, and can be used in the same places as the variable 
it references. A reference must be initialized in its declaration.

❑ A reference can’t be reassigned to another variable.

❑ The operator sizeof returns the number of bytes occupied by the object specified as its argu-
ment. Its argument may be a variable or a type name between parentheses.

❑ The operator new allocates memory dynamically in the free store in a native C++ application.
When memory has been assigned as requested, it returns a pointer to the beginning of the 
memory area provided. If memory cannot be assigned for any reason, an exception is thrown 
that by default causes the program to terminate.

The pointer mechanism is sometimes a bit confusing because it can operate at different levels within the
same program. Sometimes it is operating as an address, and at other times it can be operating with the
value stored at an address. It’s very important that you feel at ease with the way pointers are used, so if
you find that they are in any way unclear, try them out with a few examples of your own until you feel
confident about applying them.

The key points that you learned about in relation to programming for the CLR are:

❑ In CLR program, you allocate memory of the garbage-collected heap using the gcnew
operator.

❑ Reference class objects in general and String objects in particular are always allocated on the
CLR heap.

❑ You use String objects when working with strings in a CLR program.

❑ The CLR has its own array types with more functionality that native array types.

❑ CLR arrays are created on the CLR heap.

❑ A tracking handle is a form of pointer used to reference variables defined on the CLR heap. A
tracking handle is automatically updated if what it refers to is relocated in the heap by the
garbage collector.

❑ Variable that reference objects and arrays on the heap are always tracking handles.

❑ A tracking reference is similar to a native reference except that the address it contains is auto-
matically updated if the object referenced is moved by the garbage collector.

❑ An interior pointer is a C++/CLI pointer type to which you can apply the same operation as a
native pointer.

❑ The address contained in an interior pointer can be modified using arithmetic operations and
still maintain an address correctly even when referring to something stored in the CLR heap.

237

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 237



Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Write a native C++ program that allows an unlimited number of values to be entered and stored
in an array allocated in the free store. The program should then output the values five to a line
followed by the average of the values entered. The initial array size should be five elements. The
program should create a new array with five additional elements when necessary and copy val-
ues from the old array to the new.

2. Repeat the previous exercise but use pointer notation throughout instead of arrays.

3. Declare a character array, and initialize it to a suitable string. Use a loop to change every other
character to uppercase.

Hint: In the ASCII character set, values for uppercase characters are 32 less than their lowercase
counterparts.

4. Write a C++/CLI program that creates an array with a random number of elements of type int.
The array should have from 10 to 20 elements. Set the array elements to random values between
100 and 1000. Output the elements five to a line in ascending sequence without sorting the array;
for example find the smallest element and output that, then the next smallest, and so on.

5. Write a C++/CLI program that will generate a random integer greater than 10,000. Output the
integer and then output the digits in the integer in words. For example, if the integer generated
were 345678, then the output should be:

The value is 345678
three four five six seven eight

6. Write a C++/CLI program that creates an array containing the following strings:

“Madam I’m Adam.”
“Don’t cry for me, Marge and Tina.”
“Lid off a daffodil.”
“Red lost soldier.”
“Cigar? Toss it in a can. It is so tragic.”

The program should examine each string in turn, output the string and indicate whether it is or
is not a palindrome (that is, the same sequence of letters reading backward or forward, ignoring
spaces and punctuation).

238

Chapter 4: Arrays, Strings, and Pointers

25905c04.qxd:WroxPro  2/21/08  8:47 AM  Page 238



5
Introducing Structure 

into Your Programs

Up to now, you haven’t really been able to structure your program code in a modular fashion because
you have only been able to construct a program as a single function, main(); but you have been using
library functions of various kinds as well as functions belonging to objects. Whenever you write a
C++ program, you should have a modular structure in mind from the outset and, as you’ll see, a
good understanding of how to implement functions is essential to object-oriented programming in
C++. In this chapter, you’ll learn:

❑ How to declare and write your own C++ functions

❑ How function arguments are defined and used

❑ How arrays can be passed to and from a function

❑ What pass-by-value means

❑ How to pass pointers to functions

❑ How to use references as function arguments, and what pass-by-reference means

❑ How the const modifier affects function arguments

❑ How to return values from a function

❑ How recursion can be used

There’s quite a lot to structuring your C++ programs, so to avoid indigestion, you won’t try to swal-
low the whole thing in one gulp. After you have chewed over and gotten the full flavor of these
morsels, you’ll move on to the next chapter, where you will get further into the meat of the topic.

Understanding Functions
First take a look at the broad principles of how a function works. A function is a self-contained
block of code with a specific purpose. A function has a name that both identifies it and is used to

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 239



call it for execution in a program. The name of a function is global but is not necessarily unique in C++,
as you’ll see in the next chapter; however, functions that perform different actions should generally have
different names.

The name of a function is governed by the same rules as those for a variable. A function name is, therefore,
a sequence of letters and digits, the first of which is a letter, where an underscore (_) counts as a letter. The
name of a function should generally reflect what it does, so for example, you might call a function that
counts beans count_beans().

You pass information to a function by means of arguments specified when you invoke it. These arguments
need to correspond with parameters that appear in the definition of the function. The arguments that you
specify replace the parameters used in the definition of the function when the function executes. The code
in the function then executes as though it was written using your argument values. Figure 5-1 illustrates
the relationship between arguments in the function call and the parameters specified in the definition of
the function.

Figure 5-1

In this example, the function returns the sum of the two arguments passed to it. In general, a function
returns either a single value to the point in the program where it was called, or nothing at all, depending
on how the function is defined. You might think that returning a single value from a function is a constraint,
but the single value returned can be a pointer that might contain the address of an array, for example. You
will see more about how data is returned from a function a little later in this chapter.

int add_ints( int i, int j ) 
{ 
 return i + j ; 
} 
 

cout << add_ints( 2 , 3 ); 

Argument values replace corresponding 
parameters in the function definition 

Value 5 returned 

Function 
Definition 

Parameters 

Arguments 

240

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 240



Why Do You Need Functions?
One major advantage that a function offers is that it can be executed as many times as necessary from dif-
ferent points in a program. Without the ability to package a block of code into a function, programs would
end up being much larger because you would typically need to replicate the same code at various points in
them. But the real reason that you need functions is to break up a program into easily manageable chunks
for development and testing; small blocks of code are easier to understand than large blocks of code.

Imagine a really big program — let’s say a million lines of code. A program of this size would be virtu-
ally impossible to write without functions. Functions enable you to segment a program so that you can
write the code piecemeal, and test each piece independently before bringing it together with the other
pieces. It also allows the work to be divided among members of a programming team, with each team
member taking responsibility for a tightly specified piece of the program, with a well-defined functional
interface to the rest of the code.

Structure of a Function
As you have seen when writing the function main(), a function consists of a function header that iden-
tifies the function, followed by the body of the function between curly braces containing the executable
code for the function. Let’s look at an example. You could write a function to raise a value to a given
power, that is, to compute the result of multiplying the value x by itself n times, which is xn:

// Function to calculate x to the power n, with n greater than or equal to 0
double power(double x, int n)          // Function header
{                                      // Function body starts here...

double result = 1.0;                // Result stored here
for(int i = 1; i <= n; i++)
result *= x;

return result;
}                                      // ...and ends here

The Function Header
Let’s first examine the function header in this example. The following is the first line of the function.

double power(double x, int n)          // Function header

It consists of three parts:

❑ The type of the return value (double in this case)

❑ The name of the function (power in this case)

❑ The parameters of the function enclosed between parentheses (x and n in this case, of types
double and int respectively)

The return value is returned to the calling function when the function is executed, so when the function
is called, it results in a value of type double in the expression in which it appears.

Our function has two parameters: x, the value to be raised to a given power which is of type double, and
the value of the power, n, which is of type int. The computation that the function performs is written using

241

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 241



these parameter variables together with another variable, result, declared in the body of the function.
The parameter names and any variables defined in the body of the function are local to the function.

Note that no semicolon is required at the end of the function header or after the closing brace for 
the function body.

The General Form of a Function Header
The general form of a function header can be written as follows:

return_type function_name(parameter_list)

The return_type can be any legal type. If the function does not return a value, the return type is specified
by the keyword void. The keyword void is also used to indicate the absence of parameters, so a function
that has no parameters and doesn’t return a value would have the following function header.

void my_function(void)

An empty parameter list also indicates that a function takes no arguments, so you could omit the keyword
void between the parentheses like:

void my_function()

A function with a return type specified as void should not be used in an expression in the calling 
program. Because it doesn’t return a value, it can’t sensibly be part of an expression, so using it 
in this way causes the compiler to generate an error message.

The Function Body
The desired computation in a function is performed by the statements in the function body following the
function header. The first of these in our example declares a variable result that is initialized with the
value 1.0. The variable result is local to the function, as are all automatic variables declared within the
function body. This means that the variable result ceases to exist after the function has completed exe-
cution. What might immediately strike you is that if result ceases to exist on completing execution of
the function, how is it returned? The answer is that a copy of the value being returned is made automati-
cally, and this copy is available to the return point in the program.

The calculation is performed in the for loop. A loop control variable i is declared in the for loop which
assumes successive values from 1 to n. The variable result is multiplied by x once for each loop itera-
tion, so this occurs n times to generate the required value. If n is 0, the statement in the loop won’t be
executed at all because the loop continuation condition immediately fails, and so result is left as 1.0.

As I’ve said, the parameters and all the variables declared within the body of a function are local to the
function. There is nothing to prevent you from using the same names for variables in other functions
for quite different purposes. Indeed, it’s just as well this is so because it would be extremely difficult to
ensure variables names were always unique within a program containing a large number of functions,
particularly if the functions were not all written by the same person.

The scope of variables declared within a function is determined in the same way that I have already dis-
cussed. A variable is created at the point at which it is defined and ceases to exist at the end of the block
containing it. There is one type of variable that is an exception to this — variables declared as static.
I’ll discuss static variables a little later in this chapter.

242

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 242



Be careful about masking global variables with local variables of the same name. You first met this 
situation back in Chapter 2 where you saw how you could use the scope resolution operator :: to
access global variables.

The return Statement
The return statement returns the value of result to the point where the function was called. The general
form of the return statement is

return expression;

where expression must evaluate to a value of the type specified in the function header for the return
value. The expression can be any expression you want, as long as you end up with a value of the required
type. It can include function calls — even a call of the same function in which it appears, as you’ll see later
in this chapter.

If the type of return value has been specified as void, there must be no expression appearing in the
return statement. It must be written simply as:

return;

Using a Function
At the point at which you use a function in a program, the compiler must know something about it to
compile the function call. It needs enough information to be able to identify the function, and to verify
that you are using it correctly. Unless the definition of the function that you intend to use appears earlier
in the same source file, you must declare the function using a statement called a function prototype.

Function Prototypes
A prototype of a function provides the basic information that the compiler needs to check that you are
using a function correctly. It specifies the parameters to be passed to the function, the function name,
and the type of the return value — basically, it contains the same information as appears in the function
header, with the addition of a semicolon. Clearly, the number of parameters and their types must be the
same in the function prototype as they are in the function header in the definition of the function.

The prototypes for the functions that you call from within another function must appear before the state-
ments doing the calling and are usually placed at the beginning of the program source file. The header
files that you’ve been including for standard library functions contain the prototypes of the functions
provided by the library, amongst other things.

For the power() function example, you could write the prototype as:

double power(double value, int index);

Don’t forget that a semicolon is required at the end of a function prototype. Without it, you get error
messages from the compiler.

Note that I have specified names for the parameters in the function prototype that are different from
those I used in the function header when I defined the function. This is just to indicate that it’s possible.
Most often, the same names are used in the prototype and in the function header in the definition of the

243

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 243



function, but this doesn’t have to be so. You can use longer more expressive parameter names in the func-
tion prototype to aid understanding of the significance of the parameters and then use shorter parameter
names in the function definition where the longer names would make the code in the body of the func-
tion less readable.

If you like, you can even omit the names altogether in the prototype, and just write:

double power(double, int);

This provides enough information for the compiler to do its job; however, it’s better practice to use some
meaningful name in a prototype because it aids readability and, in some cases, makes all the difference
between clear code and confusing code. If you have a function with two parameters of the same type
(suppose our index was also of type double in the function power(), for example), the use of suitable
names indicates which parameter appears first and which second.

Try It Out Using a Function
You can see how all this goes together in an example exercising the power() function.

// Ex5_01.cpp
// Declaring, defining, and using a function
#include <iostream>
using std::cout;
using std::endl;

double power(double x, int n);    // Function prototype

int main(void)
{

int index = 3;                 // Raise to this power
double x = 3.0;                // Different x from that in function power
double y = 0.0;

y = power(5.0, 3);             // Passing constants as arguments
cout << endl

<< “5.0 cubed = “ << y;

cout << endl
<< “3.0 cubed = “
<< power(3.0, index);     // Outputting return value

x = power(x, power(2.0, 2.0)); // Using a function as an argument
cout << endl                   // with auto conversion of 2nd parameter

<< “x = “ << x;

cout << endl;
return 0;

}

// Function to compute positive integral powers of a double value
// First argument is value, second argument is power index
double power(double x, int n)

244

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 244



{                                 // Function body starts here...
double result = 1.0;           // Result stored here
for(int i = 1; i <= n; i++)

result *= x;
return result;

}                                 // ...and ends here

This program shows some of the ways in which you can use the function power(), specifying the argu-
ments to the function in a variety of ways. If you run this example, you get the following output:

5.0 cubed = 125
3.0 cubed = 27
x = 81

How It Works
After the usual #include statement for input/output and the using declarations, you have the proto-
type for the function power(). If you were to delete this and try recompiling the program, the compiler
wouldn’t be able to process the calls to the function in main() and would instead generate a whole series
of error messages:

error C3861: ‘power’: identifier not found

and the error message:

error C2365: ‘power’ : redefinition; previous definition was ‘formerly unknown
identifier’

In a change from previous examples, I’ve used the new keyword void in the function main() where the
parameter list would usually appear to indicate that no parameters are to be supplied. Previously, I left
the parentheses enclosing the parameter list empty, which is also interpreted in C++ as indicating that
there are no parameters; but it’s better to specify the fact by using the keyword void. As you saw, the
keyword void can also be used as the return type for a function to indicate that no value is returned. If
you specify the return type of a function as void, you must not place a value in any return statement
within the function; otherwise, you get an error message from the compiler.

You gathered from some of the previous examples that using a function is very simple. To use the func-
tion power() to calculate 5.03 and store the result in a variable y in our example, you have the following
statement:

y = power(5.0, 3);

The values 5.0 and 3 here are the arguments to the function. They happen to be constants, but you can use
any expression as an argument, as long as a value of the correct type is ultimately produced. The arguments
to the power() function substitute for the parameters x and n, which were used in the definition of the func-
tion. The computation is performed using these values and then a copy of the result, 125, is returned to the
calling function, main(), which is then stored in y. You can think of the function as having this value in the
statement or expression in which it appears. You then output the value of y:

cout << endl
<< “5.0 cubed = “ << y;

245

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 245



The next call of the function is used within the output statement:

cout << endl
<< “3.0 cubed = “
<< power(3.0, index);        // Outputting return value

Here, the value returned by the function is transferred directly to the output stream. Because you haven’t
stored the returned value anywhere, it is otherwise unavailable to you. The first argument in the call of
the function here is a constant; the second argument is a variable.

The function power() is used next in this statement:

x = power(x, power(2.0, 2.0));    // Using a function as an argument

Here the power() function is called twice. The first call to the function is the rightmost in the expression,
and the result supplies the value for the second argument to the leftmost call. Although the arguments 
in the sub-expression power(2.0, 2.0) are both specified as the double literal 2.0, the function is actu-
ally called with the first argument as 2.0 and the second argument as the integer literal, 2. The compiler
converts the double value specified for the second argument to type int because it knows from the
function prototype (shown again below) that the type of the second parameter has been specified as int.

double power(double x, int n);       // Function prototype

The double result 4.0 is returned by the first call to the power() function, and after conversion to type
int, the value 4 is passed as the second argument in the next call of the function, with x as the first argu-
ment. Because x has the value 3.0, the value of 3.04 is computed and the result, 81.0, stored in x. This
sequence of events is illustrated in Figure 5-2.

Figure 5-2

x = power( x , power( 2.0 , 2.0 )); 

power( 2.0 , 2 ) 

initial value 
3.0 

1 

result stored 
back in x 

Converted
to type int 

Converted 
to type int 

4.0 (type double) 

81.0 (type double) 

power( 3.0 , 4 ) 

2 

3 

4 

5 

246

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 246



This statement involves two implicit conversions from type double to type int that were inserted by
the compiler. There’s a possible loss of data when converting from type double to type int so the com-
piler issues warning message when this occurs, even though the compiler has itself inserted this conver-
sion. Generally relying on automatic conversions where there is potential for data loss is a dangerous
programming practice, and it is not at all obvious from the code that this conversion is intended. It is far
better to be explicit in your code by using the static_cast operator when necessary. The statement in
the example is much better written as:

x = power(x, static_cast<int>(power(2.0, 2)));

Coding the statement like this avoids both the compiler warning messages that the original version caused.
Using a static cast does not remove the possibility of losing data in the conversion of data from one type
to another. Because you specified it though, it is clear that this is what you intended, recognizing that data
loss might occur.

Passing Arguments to a Function
It’s very important to understand how arguments are passed to a function, as it affects how you write
functions and how they ultimately operate. There are also a number of pitfalls to be avoided, so we’ll
look at the mechanism for this quite closely.

The arguments you specify when a function is called should usually correspond in type and sequence
to the parameters appearing in the definition of the function. As you saw in the last example, if the
type of an argument specified in a function call doesn’t correspond with the type of parameter in the
function definition, (where possible) it converts to the required type, obeying the same rules as those
for casting operands that were discussed in Chapter 2. If this proves not to be possible, you get an
error message from the compiler; however, even if the conversion is possible and the code compiles,
it could well result in the loss of data (for example from type long to type short) and should there-
fore be avoided.

There are two mechanisms used generally in C++ to pass arguments to functions. The first mechanism
applies when you specify the parameters in the function definition as ordinary variables (not references).
This is called the pass-by-value method of transferring data to a function so let’s look into that first of all.

The Pass-by-value Mechanism
With this mechanism, the variables or constants that you specify as arguments are not passed to a function
at all. Instead, copies of the arguments are created and these copies are used as the values to be transferred.
Figure 5-3 shows this in a diagram using the example of our power() function.

Each time you call the function power(), the compiler arranges for copies of the arguments that you
specify to be stored in a temporary location in memory. During execution of the functions, all references
to the function parameters are mapped to these temporary copies of the arguments.

247

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 247



Figure 5-3

Try It Out Passing-by-value
One consequence of the pass-by-value mechanism is that a function can’t directly modify the arguments
passed. You can demonstrate this by deliberately trying to do so in an example:

// Ex5_02.cpp
// A futile attempt to modify caller arguments
#include <iostream>
using std::cout;
using std::endl;

int incr10(int num);           // Function prototype

int main(void)
{

int num = 3;

cout << endl
<< “incr10(num) = “ << incr10(num)
<< endl

int index = 2; 
double value = 10.0; 
double result = power(value, index); 

Temporary copies of the arguments 
are made for use in the function 

The original arguments are not 
accessible here, only the copies. 

double power ( double x , int n ) 
{ 
 
   ... 
 
} 

copy of value copy of index 

index 2 

10.0 value 

2 10.0 

248

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 248



<< “num = “ << num;
cout << endl;
return 0;

}

// Function to increment a variable by 10
int incr10(int num)            // Using the same name might help...
{

num += 10;                  // Increment the caller argument – hopefully

return num;                 // Return the incremented value
}

Of course, this program is doomed to failure. If you run it, you get this output:

incr10(num) = 13
num = 3

How It Works
The output confirms that the original value of num remains untouched. The incrementing occurred on
the copy of num that was generated and was eventually discarded on exiting from the function.

Clearly, the pass-by-value mechanism provides you with a high degree of protection from having your
caller arguments mauled by a rogue function, but it is conceivable that you might actually want to arrange
to modify caller arguments. Of course, there is a way to do this. Didn’t you just know that pointers would
turn out to be incredibly useful?

Pointers as Arguments to a Function
When you use a pointer as an argument, the pass-by-value mechanism still operates as before; however,
a pointer is an address of another variable, and if you take a copy of this address, the copy still points to
the same variable. This is how specifying a pointer as a parameter enables your function to get at a caller
argument.

Try It Out Pass-by-pointer
You can change the last example to use a pointer to demonstrate the effect:

// Ex5_03.cpp
// A successful attempt to modify caller arguments
#include <iostream>
using std::cout;
using std::endl;

int incr10(int* num);                // Function prototype

int main(void)
{

249

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 249



int num = 3;

int* pnum = &num;                 // Pointer to num

cout << endl
<< “Address passed = “ << pnum;

int result = incr10(pnum);
cout << endl

<< “incr10(pnum) = “ << result;

cout << endl
<< “num = “ << num;

cout << endl;
return 0;

}

// Function to increment a variable by 10
int incr10(int* num)                 // Function with pointer argument
{

cout << endl
<< “Address received = “ << num;

*num += 10;                       // Increment the caller argument
//  - confidently

return *num;                      // Return the incremented value
}

The output from this example is:

Address passed = 0012FF6C
Address received = 0012FF6C
incr10(pnum) = 13
num = 13

The address values produced by your computer may be different from those shown above, but the two
values should be identical to each other.

How It Works
In this example, the principal alterations from the previous version relate to passing a pointer, pnum, in
place of the original variable, num. The prototype for the function now has the parameter type specified
as a pointer to int, and the main() function has the pointer pnum declared and initialized with the address
of num. The function main(), and the function incr10(), output the address sent and the address received
respectively, to verify that the same address is indeed being used in both places. Because the incr10() func-
tion is writing to cout, you now call it before the output statement and store the return value in result:

int result = incr10(pnum);
cout << endl

<< “incr10(pnum) = “ << result;

250

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 250



This ensures proper sequencing of the output. The output shows that this time the variable num has been
incremented and has a value that’s now identical to that returned by the function.

In the rewritten version of the function incr10(), both the statement incrementing the value passed to
the function and the return statement now de-reference the pointer to use the value stored.

Passing Arrays to a Function
You can also pass an array to a function, but in this case the array is not copied, even though a pass-by-
value method of passing arguments still applies. The array name is converted to a pointer, and a copy of
the pointer to the beginning of the array is passed by value to the function. This is quite advantageous
because copying large arrays is very time consuming. As you may have worked out, however, elements
of the array may be changed within a function and thus an array is the only type that cannot be passed
by value.

Try It Out Passing Arrays
You can illustrate the ins and outs of this by writing a function to compute the average of a number of
values passed to a function in an array.

// Ex5_04.cpp
// Passing an array to a function
#include <iostream>
using std::cout;
using std::endl;

double average(double array[], int count);      //Function prototype

int main(void)
{

double values[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };

cout << endl
<< “Average = “
<< average(values, (sizeof values)/(sizeof values[0]));

cout << endl;
return 0;

}

// Function to compute an average
double average(double array[], int count)
{

double sum = 0.0;                   // Accumulate total in here
for(int i = 0; i < count; i++)

sum += array[i];                 // Sum array elements

return sum/count;                   // Return average
}

251

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 251



The program produces the following output:

Average = 5.5

How It Works
The average()function is designed to work with an array of any length. As you can see from the proto-
type, it accepts two arguments: the array and a count of the number of elements. Because you want it to
work with arrays of arbitrary length, the array parameter appears without a dimension specified.

The function is called in main() in this statement,

cout << endl
<< “Average = “
<< average(values, (sizeof values)/(sizeof values[0]));

The function is called with the first argument as the array name, values, and the second argument as an
expression that evaluates to the number of elements in the array.

You’ll recall this expression, using the operator sizeof, from when you looked at arrays in Chapter 4.

Within the body of the function, the computation is expressed in the way you would expect. There’s 
no significant difference between this and the way you would write the same computation if you 
implemented it directly in main().

The output confirms that everything works as we anticipated.

Try It Out Using Pointer Notation When Passing Arrays
You haven’t exhausted all the possibilities here. As you determined at the outset, the array name is passed
as a pointer — to be precise, as a copy of a pointer — so within the function you are not obliged to work
with the data as an array at all. You could modify the function in the example to work with pointer nota-
tion throughout, in spite of the fact that you are using an array.

// Ex5_05.cpp
// Handling an array in a function as a pointer
#include <iostream>
using std::cout;
using std::endl;

double average(double* array, int count);      //Function prototype

int main(void)
{

double values[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };

cout << endl
<< “Average = “
<< average(values, (sizeof values)/(sizeof values[0]));

252

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 252



cout << endl;
return 0;

}

// Function to compute an average
double average(double* array, int count)
{

double sum = 0.0;                   // Accumulate total in here
for(int i = 0; i < count; i++)

sum += *array++;                 // Sum array elements

return sum/count;                   // Return average
}

The output is exactly the same as in the previous example.

How It Works
As you can see, the program needed very few changes to make it work with the array as a pointer. The
prototype and the function header have been changed, although neither change is absolutely necessary.
If you change both back to the original version with the first parameter specified as a double array and
leave the function body written in terms of a pointer, it works just as well. The most interesting aspect of
this version is the body of the for loop statement:

sum += *array++;                 // Sum array elements

Here you apparently break the rule about not being able to modify an address specified as an array name
because you are incrementing the address stored in array. In fact, you aren’t breaking the rule at all.
Remember that the pass-by-value mechanism makes a copy of the original array address and passes that
to the function, so you are just modifying the copy here — the original array address is quite unaffected.
As a result, whenever you pass a one-dimensional array to a function, you are free to treat the value passed
as a pointer in every sense, and change the address in any way that you want.

Passing Multidimensional Arrays to a Function
Passing a multidimensional array to a function is quite straightforward. The following statement
declares a two dimensional array, beans:

double beans[2][4];

You could then write the prototype of a hypothetical function, yield(), like this:

double yield(double beans[2][4]);

You may be wondering how the compiler can know that this is defining an array of the dimensions
shown as an argument, and not a single array element. The answer is simple — you can’t write a 
single array element as a parameter in a function definition or prototype, although you can pass one 
as an argument when you call a function. For a parameter accepting a single element of an array as 
an argument, the parameter would have just a variable name. The array context doesn’t apply.

253

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 253



When you are defining a multi-dimensional array as a parameter, you can also omit the first dimension
value. Of course, the function needs some way of knowing the extent of the first dimension. For example,
you could write this:

double yield(double beans[][4], int index);

Here, the second parameter would provide the necessary information about the first dimension. The
function can operate with a two-dimensional array with the value for the first dimension specified by
the second argument to the function and with the second dimension fixed at 4.

Try It Out Passing Multidimensional Arrays
You define such a function in the following example:

// Ex5_06.cpp
// Passing a two-dimensional array to a function
#include <iostream>
using std::cout;
using std::endl;

double yield(double array[][4], int n);

int main(void)
{

double beans[3][4] =  {   { 1.0,  2.0,  3.0,  4.0 },
{ 5.0,  6.0,  7.0,  8.0 },
{ 9.0, 10.0, 11.0, 12.0 }   };

cout << endl
<< “Yield = “ << yield(beans, sizeof beans/sizeof beans[0]);

cout << endl;
return 0;

}

// Function to compute total yield
double yield(double beans[][4], int count)
{

double sum = 0.0;
for(int i = 0; i < count; i++)      // Loop through number of rows

for(int j = 0; j < 4; j++)       // Loop through elements in a row
sum += beans[i][j];

return sum;
}

The output from this example is:

Yield = 78

How It Works
I have used different names for the parameters in the function header from those in the prototype, just 
to remind you that this is possible — but in this case, it doesn’t really improve the program at all. The
first parameter is defined as an array of an arbitrary number of rows, each row having four elements.

254

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 254



You actually call the function using the array beans with three rows. The second argument is specified
by dividing the total size of the array in bytes by the size of the first row. This evaluates to the number
of rows in the array.

The computation in the function is simply a nested for loop with the inner loop summing elements of a
single row and the outer loop repeating this for each row.

Using a pointer in a function rather than a multidimensional array as an argument doesn’t really apply
particularly well in this example. When the array is passed, it passes an address value which points to
an array of four elements (a row). This doesn’t lend itself to an easy pointer operation within the func-
tion. You would need to modify the statement in the nested for loop to the following:

sum += *(*(beans + i) + j);

So the computation is probably clearer in array notation.

References as Arguments to a Function
We now come to the second of the two mechanisms for passing arguments to a function. Specifying a
parameter to a function as a reference changes the method of passing data for that parameter. The method
used is not pass-by-value, where an argument is copied before being transferred to the function, but pass-
by-reference where the parameter acts as an alias for the argument passed. This eliminates any copying
and allows the function to access the caller argument directly. It also means that the de-referencing, which
is required when passing and using a pointer to a value, is also unnecessary.

Try It Out Pass-by-reference
Let’s go back to a revised version of a very simple example, Ex5_03.cpp, to see how it would work
using reference parameters:

// Ex5_07.cpp
// Using a reference to modify caller arguments
#include <iostream>
using std::cout;
using std::endl;

int incr10(int& num);                // Function prototype

int main(void)
{

int num = 3;
int value = 6;

int result = incr10(num);
cout << endl

<< “incr10(num) = “ << result;

cout << endl
<< “num = “ << num;

255

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 255



result = incr10(value);
cout << endl

<< “incr10(value) = “ << result;

cout << endl
<< “value = “ << value;

cout << endl;
return 0;

}

// Function to increment a variable by 10
int incr10(int& num)                 // Function with reference argument
{

cout << endl
<< “Value received = “ << num;

num += 10;                        // Increment the caller argument
//  - confidently

return num;                       // Return the incremented value
}

This program produces the output:

Value received = 3
incr10(num) = 13
num = 13
Value received = 6
incr10(value) = 16
value = 16

How It Works
You should find the way this works quite remarkable. This is essentially the same as Ex5_03.cpp, except
that the function uses a reference as a parameter. The prototype has been changed to reflect this. When the
function is called, the argument is specified just as though it was a pass-by-value operation, so it’s used in
the same way as the earlier version. The argument value isn’t passed to the function. The function param-
eter is initialized with the address of the argument, so whenever the parameter num is used in the function,
it accesses the caller argument directly.

Just to reassure you that there’s nothing fishy about the use of the identifier num in main() as well as in
the function, the function is called a second time with the variable value as the argument. At first sight,
this may give you the impression that it contradicts what I said was a basic property of a reference —
that after declared and initialized, it couldn’t be reassigned to another variable. The reason it isn’t con-
tradictory is that a reference as a function parameter is created and initialized each time the function is
called and is destroyed when the function ends, so you get a completely new reference created each time
you use the function.

Within the function, the value received from the calling program is displayed onscreen. Although the
statement is essentially the same as the one used to output the address stored in a pointer, because num
is now a reference, you obtain the data value rather than the address.

256

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 256



This clearly demonstrates the difference between a reference and a pointer. A reference is an alias for
another variable, and therefore can be used as an alternative way of referring to it. It is equivalent to
using the original variable name.

The output shows that the function incr10() is directly modifying the variable passed as a caller argument.

You will find that if you try to use a numeric value, such as 20, as an argument to incr10(), the compiler
outputs an error message. This is because the compiler recognizes that a reference parameter can be modi-
fied within a function, and the last thing you want is to have your constants changing value now and
again. This would introduce a kind of excitement into your programs that you could probably do without.

This security is all very well, but if the function didn’t modify the value, you wouldn’t want the compiler to
create all these error messages every time you pass a reference argument that was a constant. Surely there
ought to be some way to accommodate this? As Ollie would have said, ‘There most certainly is, Stanley!’

Use of the const Modifier
You can apply the const modifier to a parameter to a function to tell the compiler that you don’t intend
to modify it in any way. This causes the compiler to check that your code indeed does not modify the
argument, and there are no error messages when you use a constant argument.

Try It Out Passing a const
You can modify the previous program to show how the const modifier changes the situation.

// Ex5_08.cpp
// Using a reference to modify caller arguments

#include <iostream>
using std::cout;
using std::endl;

int incr10(const int& num);      // Function prototype

int main(void)
{

const int num = 3;            // Declared const to test for temporary creation
int value = 6;

int result = incr10(num);
cout << endl

<< “incr10(num) = “ << result;

cout << endl
<< “num = “ << num;

result = incr10(value);
cout << endl

257

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 257



<< “incr10(value) = “ << result;

cout << endl
<< “value = “ << value;

cout << endl;
return 0;

}

// Function to increment a variable by 10
int incr10(const int& num)       // Function with const reference argument
{

cout << endl
<< “Value received = “ << num;

//   num += 10;                  // this statement would now be illegal
return num+10;              // Return the incremented value

}

The output when you execute this is:

Value received = 3
incr10(num) = 13
num = 3
Value received = 6
incr10(value) = 16
value = 6

How It Works
You declare the variable num in main() as const to show that when the parameter to the function
incr10() is declared as const, you no longer get a compiler message when passing a const object.

It has also been necessary to comment out the statement that increments num in the function incr10(). If
you uncomment this line, you’ll find the program no longer compiles because the compiler won’t allow
num to appear on the left side of an assignment. When you specified num as const in the function header
and prototype, you promised not to modify it, so the compiler checks that you kept your word.

Everything works as before, except that the variables in main() are no longer changed in the function.

By using reference arguments, you now have the best of both worlds. On one hand, you can write a
function that can access caller arguments directly, and avoid the copying that is implicit in the pass-by-
value mechanism. On the other hand, where you don’t intend to modify an argument, you can get all
the protection against accidental modification you need by using a const modifier with a reference.

Arguments to main()
You can define main() with no parameters (or better, with the parameter list as void) or you can specify
a parameter list that allows the main() function to obtain values from the command line from the execute
command for the program. Values passed from the command line as arguments to main() are always

258

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 258



interpreted as strings. If you want to get data into main() from the command line, you must define it
like this:

int main(int argc, char* argv[])
{

// Code for main()…
}

The first parameter is the count of the number of strings found on the command line including the program
name, and the second parameter is an array that contains pointers to these strings plus an additional ele-
ment that is null. Thus argc is always at least 1 because you at least must enter the name of the program.
The number of arguments received depends on what you enter on the command line to execute the pro-
gram. For example, suppose that you execute the DoThat program with the command:

DoThat.exe

There is just the name of the .exe file for the program so argc is 1 and the argv array contains two ele-
ments — argv[0] pointing to the string “DoThat.exe” and argv[1] that contains null.

Suppose you enter this on the command line:

DoThat or else “my friend” 999.9

Now argc is 5 and argv contains six elements, the last element being 0 and the first five pointing to the
strings:

“DoThat”  “or”  “else” “my friend”  “999.9”

You can see from this that if you want to have a string that includes spaces received as a single string
you must enclose it between double quotes. You can also see that numerical values are read as strings
so if you want conversion to the numerical value that is up to you.

Let’s see it working.

Try It Out Receiving Command-Line Arguments
This program just lists the arguments it receives from the command line.

// Ex5_09.cpp
// Reading command line arguments
#include <iostream>
using std::cout;
using std::endl;

int main(int argc, char* argv[])
{
cout << endl << “argc = “ << argc << endl;
cout << “Command line arguments received are:” << endl;
for(int i = 0 ; i <argc ; i++)
cout << “argument “ << (i+1) << “: “ << argv[i] << endl;

return 0;
}

259

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 259



You have two choices when entering the command-line arguments. After you build the example in the
IDE, you can open a command window at the folder containing the .exe file and then enter the program
name followed by the command-line arguments. Alternatively, you can specify the command-line argu-
ments in the IDE before you execute the program. Just open the project properties window by selecting
Project > Properties from the main menu and then extend the Configuration Properties tree 
in the left pane by clicking the plus sign (+). Click the Debugging folder to see where you can enter com-
mand line values in the right pane.

I enter the following in the command window with the current directory containing the .exe file for the
program:

Ex5_09 trying multiple “argument values” 4.5 0.0

Here is the output from resulting from my input:

argc = 6
Command line arguments received are:
argument 1: Ex5_09
argument 2: trying
argument 3: multiple
argument 4: argument values
argument 5: 4.5
argument 6: 0.0

How It Works
The program first outputs the value of argc and then the values of each argument from the argv
array in the for loop. You can see from the output that the first argument value is the program name.
“argument values” is treated as a single argument because of the enclosing double quotes.

You could make use of the fact that the last element in argv is null and code the output of the command-
line argument values like this:

int i = 0;
while(argv[i] != 0)
cout << “argument “ << (i+1) << “: “ << argv[i++] << endl;

The while loop ends when argv[argc] is reached because that element is null.

Accepting a Variable Number of Function Arguments
You can define a function so that it allows any number of arguments to be passed to it. You indicate that
a variable number of arguments can be supplied when a function is called by placing an ellipsis (which
is three periods, ...) at the end of the parameter list in the function definition. For example:

int sumValues(int first,...)
{

260

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 260



//Code for the function
}

There must be at least one ordinary parameter, but you can have more. The ellipsis must always be placed
at the end of the parameter list.

Obviously there is no information about the type or number of arguments in the variable list, so your code
must figure out what is passed to the function when it is called. The native C++ library defines va_start,
va_arg, and va_end macros in the <cstdarg> header to help you do this. It’s easiest to show how these
are used with an example.

Try It Out Receiving a Variable Number of Arguments
This program uses a function that just sums the values of a variable number of arguments passed to it.

// Ex5_10.cpp
// Handling a variable number of arguments
#include <iostream>
#include <cstdarg>
using std::cout;
using std::endl;

int sum(int count, ...)
{
if(count <= 0)
return 0;

va_list arg_ptr;                     // Declare argument list pointer
va_start(arg_ptr, count);            // Set arg_ptr to 1st optional argument

int sum =0;
for(int i = 0 ; i<count ; i++)
sum += va_arg(arg_ptr, int);       // Add int value from arg_ptr and increment

va_end(arg_ptr);                     // Reset the pointer to null
return sum;

}

int main(int argc, char* argv[])
{
cout << sum(6, 2, 4, 6, 8, 10, 12) << endl;
cout << sum(9, 11, 22, 33, 44, 55, 66, 77, 66, 99) << endl;

}

This example produces the following output:

42
473

261

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 261



How It Works
The main() function calls the sum() function in the two output statements, in the first instance with
seven arguments and in the second with ten arguments. The first argument in each case specifies the
number of arguments that follow. It’s important not to forget this because if you omit the first count
argument, the result will be rubbish.

The sum() function has a single normal parameter of type int that represents the count of the number
of arguments that follow. The ellipsis in the parameter list indicates an arbitrary number of arguments
can be passed. Basically you have two ways of determining how many arguments there are when the
function is called — you can require that the number of arguments is specified by a fixed parameter as
in the case of sum(), or you can require that the last argument has a special marker value that you can
check for and recognize.

To start processing the variable argument list you declare a pointer of type va_list:

va_list arg_ptr;                     // Declare argument list pointer

The va_list type is defined in the <cstdarg> header file and the pointer is used to point to each argu-
ment in turn.

The va_start macro is used to initialize arg_ptr so that it points to the first argument in the list:

va_start(arg_ptr, count);            // Set arg_ptr to 1st optional argument

The second argument to the macro is the name of the fixed parameter that precedes the ellipsis in the
parameter, and this is used by the macro to determine where the first variable argument is.

You retrieve the values of the arguments in the list in the for loop:

int sum =0;
for(int i = 0 ; i<count ; i++)

sum += va_arg(arg_ptr, int);       // Add int value from arg_ptr and increment

The va_arg macro returns the value of the argument at the location specified by arg_ptr and incre-
ments arg_ptr to point to the next argument value. The second argument to the va_arg macro is the
argument type, and this determines the value that you get as well as how arg_ptr increments so if this 
is not correct you get chaos; the program probably executes, but the values you retrieve are rubbish and
arg_ptr is incremented incorrectly to access more rubbish.

When you are finished retrieving argument values, you reset arg_ptr with the statement:

va_end(arg_ptr);                     // Reset the pointer to null

The va_end macro resets the pointer of type va_list that you pass as the argument to it to null. It’s a
good idea to always do this because after processing the arguments arg_ptr points to a location that
does not contain valid data.

262

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 262



Returning Values from a Function
All the example functions that you have created have returned a single value. Is it possible to return any-
thing other than a single value? Well, not directly, but as I said earlier, the single value returned needn’t
be a numeric value; it could also be an address, which provides the key to returning any amount of data.
You simply use a pointer. Unfortunately, this also is where the pitfalls start, so you need to keep your
wits about you for the adventure ahead.

Returning a Pointer
Returning a pointer value is easy. A pointer value is just an address, so if you want to return the address
of some variable value, you can just write the following:

return &value;                     // Returning an address

As long as the function header and function prototype indicate the return type appropriately, you have
no problem — or at least no apparent problem. Assuming that the variable value is of type double, the
prototype of a function called treble, which might contain the above return statement, could be as
follows:

double* treble(double data);

I have defined the parameter list arbitrarily here.

So let’s look at a function that returns a pointer. It’s only fair that I warn you in advance — this function
doesn’t work, but it is educational. Let’s assume that you need a function that returns a pointer to a mem-
ory location containing three times its argument value. Our first attempt the implement such a function
might look like this:

// Function to treble a value - mark 1
double* treble(double data)
{

double result = 0.0;

result = 3.0*data;
return &result;

}

Try It Out Returning a Bad Pointer
You could create a little test program to see what happens (remember that the treble function won’t
work as expected):

// Ex5_11.cpp
#include <iostream>
using std::cout;
using std::endl;

double* treble(double);                   // Function prototype

263

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 263



int main(void)
{

double num = 5.0;                      // Test value
double* ptr = 0;                       // Pointer to returned value

ptr = treble(num);

cout << endl
<< “Three times num = “ << 3.0*num;

cout << endl
<< “Result = “ << *ptr;           // Display 3*num

cout << endl;
return 0;

}

// Function to treble a value - mark 1
double* treble(double data)
{

double result = 0.0;

result = 3.0*data;
return &result;

}

There’s a hint that everything is not as it should be because compiling this program results in a warning
from the compiler:

warning C4172: returning address of local variable or temporary

The output that I got from executing the program was:

Three times num = 15
Result = 4.10416e-230

How It Works (or Why It Doesn’t)
The function main() calls the function treble() and stores the address returned in the pointer ptr,
which should point to a value which is three times the argument, num. You then display the result of
computing three times num, followed by the value at the address returned from the function.

Clearly, the second line of output doesn’t reflect the correct value of 15, but where’s the error? Well, it’s
not exactly a secret because the compiler gives fair warning of the problem. The error arises because the
variable result in the function treble() is created when the function begins execution, and is destroyed
on exiting from the function — so the memory that the pointer is pointing to no longer contains the origi-
nal variable value. The memory previously allocated to result becomes available for other purposes,
and here it has evidently been used for something else.

264

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 264



A Cast Iron Rule for Returning Addresses
There is an absolutely cast iron rule for returning addresses:

Never ever return the address of a local automatic variable from a function.

You obviously can’t use a function that doesn’t work, so what can you do to rectify that? You could use a
reference parameter and modify the original variable, but that’s not what you set out to do. You are try-
ing to return a pointer to some useful data so that, ultimately, you can return more than a single item of
data. One answer lies in dynamic memory allocation (you saw this in action in the last chapter). With the
operator new, you can create a new variable in the free store that continues to exist until it is eventually
destroyed by delete — or until the program ends. With this approach, the function looks like this:

// Function to treble a value - mark 2
double* treble(double data)
{

double* result = new double(0.0);
*result = 3.0*data;
return result;

}

Rather than declaring result as of type double, you now declare it to be of type double* and store 
in it the address returned by the operator new. Because the result is a pointer, the rest of the function is
changed to reflect this, and the address contained in the result is finally returned to the calling program.
You could exercise this version by replacing the function in the last working example with this version.

You need to remember that with dynamic memory allocation from within a native C++ function such 
as this, more memory is allocated each time the function is called. The onus is on the calling program to
delete the memory when it’s no longer required. It’s easy to forget to do this in practice, with the result
that the free store is gradually eaten up until, at some point, it is exhausted and the program fails. As
mentioned before, this sort of problem is referred to as a memory leak.

Here you can see how the function would be used. The only necessary change to the original code is to
use delete to free the memory as soon as you have finished with the pointer returned by the treble()
function.

#include <iostream>

using std::cout;
using std::endl;

double* treble(double);                  // Function prototype

int main(void)
{

double num = 5.0;                     // Test value
double* ptr = 0;                      // Pointer to returned value

ptr = treble(num);

cout << endl

265

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 265



<< “Three times num = “ << 3.0*num;

cout << endl
<< “Result = “ << *ptr;          // Display 3*num

delete ptr;                           // Don’t forget to free the memory

cout << endl;
return 0;

}

// Function to treble a value - mark 2
double* treble(double data)
{

double* result = new double(0.0);
*result = 3.0*data;
return result;

}

Returning a Reference
You can also return a reference from a function. This is just as fraught with potential errors as returning a
pointer, so you need to take care with this too. Because a reference has no existence in its own right (it’s
always an alias for something else), you must be sure that the object that it refers to still exists after the
function completes execution. It’s very easy to forget this when you use references in a function because
they appear to be just like ordinary variables.

References as return types are of primary significance in the context of object-oriented programming. As
you will see later in the book, they enable you to do things that would be impossible without them. (This
particularly applies to “operator overloading,” which I’ll come to in Chapter 8). The principal characteristic
of a reference-type return value is that it’s an lvalue. This means that you can use the result of a function
that returns a reference on the left side of an assignment statement.

Try It Out Returning a Reference
Next, look at one example that illustrates the use of reference return types, and also demonstrates how 
a function can be used on the left of an assignment operation when it returns an lvalue. This example
assumes that you have an array containing a mixed set of values. Whenever you want to insert a new
value into the array, you want to replace the element with the lowest value.

// Ex5_12.cpp
// Returning a reference
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using std::setw;

double& lowest(double values[], int length); // Prototype of function
// returning a reference

int main(void)
{

266

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 266



double array[] = { 3.0, 10.0, 1.5, 15.0, 2.7, 23.0,
4.5, 12.0, 6.8, 13.5, 2.1, 14.0 };

int len = sizeof array/sizeof array[0];   // Initialize to number
// of elements

cout << endl;
for(int i = 0; i < len; i++)

cout << setw(6) << array[i];

lowest(array, len) = 6.9;                 // Change lowest to 6.9
lowest(array, len) = 7.9;                 // Change lowest to 7.9

cout << endl;
for(int i = 0; i < len; i++)

cout << setw(6) << array[i];

cout << endl;
return 0;

}

double& lowest(double a[], int len)
{

int j = 0;                                // Index of lowest element
for(int i = 1; i < len; i++)

if(a[j] > a[i])                        // Test for a lower value...
j = i;                              // ...if so update j

return a[j];                              // Return reference to lowest
// element

}

The output from this example is:

3    10   1.5    15   2.7    23   4.5    12   6.8  13.5   2.1    14
3    10   6.9    15   2.7    23   4.5    12   6.8  13.5   7.9    14

How It Works
Let’s first take a look at how the function is implemented. The prototype for the function lowest() uses
double& as the specification of the return type, which is therefore of type ‘reference to double’. You write
a reference type return value in exactly the same way as you have already seen for variable declarations,
appending the & to the data type. The function has two parameters specified — a one-dimensional array
of type double and a parameter of type int that specifies the length of the array.

The body of the function has a straightforward for loop to determine which element of the array passed
contains the lowest value. The index, j, of the array element with the lowest value is arbitrarily set to 0
at the outset, and then modified within the loop if the current element, a[i], is less than a[j]. Thus, on
exit from the loop, j contains the index value corresponding to the array element with the lowest value.
The return statement is as follows:

return a[j];                    // Return reference to lowest element

In spite of the fact that this looks identical to the statement that would return a value, because the return
type was declared as a reference, this returns a reference to the array element a[j] rather than the value

267

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 267



that the element contains. The address of a[j] is used to initialize the reference to be returned. This ref-
erence is created by the compiler because the return type was declared as a reference.

Don’t confuse returning &a[j] with returning a reference. If you write &a[j] as the return value, you
are specifying the address of a[j], which is a pointer. If you do this after having specified the return type
as a reference, you get an error message from the compiler. Specifically, you get this:

error C2440: ‘return’ : cannot convert from ‘double *__w64 ‘ to ‘double &’

The function main(), which exercises the lowest()function, is very simple. An array of type double is
declared and initialized with 12 arbitrary values, and an int variable len is initialized to the length of
the array. The initial values in the array are output for comparison purposes.

Again, the program uses the stream manipulator setw() to space the values uniformly, requiring the
#include directive for <iomanip>.

The function main() then calls the function lowest() on the left side of an assignment to change the
lowest value in the array. This is done twice to show that it does actually work and is not an accident.
The contents of the array are then output to the display again, with the same field width as before, so
corresponding values line up.

As you can see from the output with the first call to lowest(), the third element of the array, array[2],
contained the lowest value, so the function returned a reference to it and its value was changed to 6.9.
Similarly, on the second call, array[10] was changed to 7.9. This demonstrates quite clearly that return-
ing a reference allows the use of the function on the left side of an assignment statement. The effect is as
if the variable specified in the return statement appeared on the left of the assignment.

Of course, if you want to, you can also use it on the right side of an assignment, or in any other suitable
expression. If you had two arrays, X and Y, with the number of array elements specified by lenx and
leny respectively, you could set the lowest element in the array x to twice the lowest element in the
array y with this statement:

lowest(x, lenx) = 2.0*lowest(y, leny);

This statement would call your lowest()function twice — once with arguments y and leny in the expres-
sion on the right side of the assignment and once with arguments x and lenx to obtain the address where
the result of the right-hand expression is to be stored.

A Teflon-Coated Rule: Returning References
A similar rule to the one concerning the return of a pointer from a function also applies to returning 
references:

Never ever return a reference to a local variable from a function.

I’ll leave the topic of returning a reference from a function for now, but I haven’t finished with it yet. I
will come back to it again in the context of user-defined types and object-oriented programming, when
you will unearth a few more magical things that you can do with references.

268

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 268



Static Variables in a Function
There are some things you can’t do with automatic variables within a function. You can’t count how
many times a function is called, for example, because you can’t accumulate a value from one call to the
next. There’s more than one way to get around this if you need to. For instance, you could use a reference
parameter to update a count in the calling program, but this wouldn’t help if the function was called from
lots of different places within a program. You could use a global variable that you incremented from within
the function, but globals are risky things to use, as they can be accessed from anywhere in a program, which
makes it very easy to change them accidentally.

Global variables are also risky in applications that have multiple threads of execution that access them,
and you must take special care to manage how the globals are accessed from different threads. The basic
problem that has to be addressed when more than one thread can access a global variable is that one
thread can change the value of a global variable while another thread is working with it. The best solu-
tion in such circumstances is to avoid the use of global variables altogether.

To create a variable whose value persists from one call of a function to the next, you can declare a variable
within a function as static. You use exactly the same form of declaration for a static variable that you
saw in Chapter 2. For example, to declare a variable count as static you could use this statement:

static int count = 0;

This also initializes the variable to zero.

Initialization of a static variable within a function only occurs the first time that the function is called.
In fact, on the first call of a function, the static variable is created and initialized. It then continues to
exist for the duration of program execution, and whatever value it contains when the function is exited
is available when the function is next called.

Try It Out Using Static Variables in Functions
You can demonstrate how a static variable behaves in a function with the following simple example:

// Ex5_13.cpp
// Using a static variable within a function
#include <iostream>
using std::cout;
using std::endl;

void record(void);      // Function prototype, no arguments or return value

int main(void)
{

record();

for(int i = 0; i <= 3; i++)
record();

cout << endl;
return 0;

269

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 269



}

// A function that records how often it is called
void record(void)
{

static int count = 0;
cout << endl

<< “This is the “ << ++count;
if((count > 3) && (count < 21))         // All this....

cout <<”th”;
else

switch(count%10)                     // is just to get...
{

case 1: cout << “st”;
break;

case 2: cout << “nd”;
break;

case 3: cout << “rd”;
break;

default: cout << “th”;            // the right ending for...
}                                    // 1st, 2nd, 3rd, 4th, etc.

cout << “ time I have been called”;
return;

}

Our function here serves only to record the fact that it was called. If you build and execute it, you get
this output:

This is the 1st time I have been called
This is the 2nd time I have been called
This is the 3rd time I have been called
This is the 4th time I have been called
This is the 5th time I have been called

How It Works
You initialize the static variable count with 0 and increment it in the first output statement in the function.
Because the increment operation is prefixed, the incremented value is displayed by the output statement. 
It will be 1 on the first call, 2 on the second, and so on. Because the variable count is static, it continues to
exist and retain its value from one call of the function to the next.

The remainder of the function is concerned with working out when ‘st’, ‘nd’, ‘rd’, or ‘th’ should be
appended to the value of count that is displayed. It’s surprisingly irregular. (I guess 101 should be
101st rather than 101th, shouldn’t it?)

Note the return statement. Because the return type of the function is void, to include a value would
cause a compiler error. You don’t actually need to put a return statement in this particular case as run-
ning off the closing brace for the body of the function is equivalent to the return statement without a
value. The program would compile and run without error even if you didn’t include the return.

270

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 270



Recursive Function Calls
When a function contains a call to itself it’s referred to as a recursive function. A recursive function call
can also be indirect, where a function fun1 calls a function fun2, which in turn calls fun1.

Recursion may seem to be a recipe for an indefinite loop, and if you aren’t careful it certainly can be. An
indefinite loop will lock up your machine and require Ctrl+Alt+Del to end the program, which is always
a nuisance. A prerequisite for avoiding an indefinite loop is that the function contains some means of
stopping the process.

Unless you have come across the technique before, the sort of things to which recursion may be applied
may not be obvious. In physics and mathematics there are many things that can be thought of as involv-
ing recursion. A simple example is the factorial of an integer which for a given integer N, is the product
1x2x3...xN. This is very often the example given to show recursion in operation. Recursion can also be
applied to the analysis of programs during the compilation process; however, you will look at something
even simpler.

Try It Out A Recursive Function
At the start of this chapter (see Ex5_01.cpp), you produced a function to compute the integral power
of a value, that is, to compute xn. This is equivalent to x multiplied by itself n times. You can implement
this as a recursive function as an elementary illustration of recursion in action. You can also improve the
implementation of the function to deal with negative index values, where x-n is equivalent to 1/xn.

// Ex5_14.cpp (based on Ex5_01.cpp)
// A recursive version of x to the power n
#include <iostream>
using std::cout;
using std::endl;

double power(double x, int n);    // Function prototype

int main(void)
{
double x = 2.0;                // Different x from that in function power
double result = 0.0;

// Calculate x raised to powers -3 to +3 inclusive
for(int index = -3 ; index<=3 ; index++)
cout << x << “ to the power “ << index << “ is “ << power(x, index)<< endl;

return 0;
}

// Recursive function to compute integral powers of a double value
// First argument is value, second argument is power index
double power(double x, int n)
{

if(n < 0)

271

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 271



{
x = 1.0/x;
n = -n;

}
if(n > 0)

return x*power(x, n-1);
else

return 1.0;
}

The output from this program is:

2 to the power -3 is 0.125
2 to the power -2 is 0.25
2 to the power -1 is 0.5
2 to the power 0 is 1
2 to the power 1 is 2
2 to the power 2 is 4
2 to the power 3 is 8

How It Works
The function now supports positive and negative powers of x, so the first action is to check whether the
value for the power that x is to be raised to, n, is negative:

if(n < 0)
{

x = 1.0/x;
n = -n;

}

Supporting negative powers is easy; it just uses the fact that x-n can be evaluated as (1/x)n. Thus if n is
negative, you set x to be 1.0/x and change the sign of n so it’s positive.

The next if statement decides whether or not the power() function should call itself once more:

if(n > 0)
return x*power(x, n-1);

else
return 1.0;

The if statement provides for the value 1.0 being returned if n is zero, and in all other cases it returns
the result of the expression, x*power(x, n-1). This causes a further call to the function power() with
the index value reduced by 1. Thus the else clause in the if statement provides the essential mecha-
nism necessary to avoid an indefinite sequence of recursive function calls.

Clearly, within the function power(), if the value of n is other than zero, a further call to the function
power()occurs. In fact, for any given value of n other than 0, the function calls itself n times, ignoring
the sign of n. The mechanism is illustrated in Figure 5-4, where the value 3 for the index argument is
assumed.

272

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 272



Figure 5-4

As you see, the power() function is called a total of four times to generate x3, three of the calls being
recursive where the function is calling itself.

Using Recursion
Unless you have a problem that particularly lends itself to using recursive functions, or if you have no
obvious alternative, it’s generally better to use a different approach, such as a loop. This is much more
efficient than using recursive function calls. Think about what happens with our last example to evaluate
a simple product, x*x*...x, n times. On each call, the compiler generates copies of the two arguments to
the function, and also has to keep track of the location to return to when each return is executed. It’s also
necessary to arrange to save the contents of various registers in your computer so that they can be used
within the function power(), and of course these need to be restored to their original state at each return
from the function. With a quite modest depth of recursive call, the overhead can be considerably greater
than if you use a loop.

double power( double x, int n ) 
{ 
   ... 
   return x*power( x , n - 1 ); 
   ... 
} 

x*x*x 

Result: x3 power(  x   ,   3  ) 

x*x 

x 

1.0 

double power( double x, int n ) 
{ 
   ... 
   return x*power( x , n - 1 ); 
   ... 
} 

double power( double x, int n ) 
{ 
   ... 
   return x*power( x , n - 1 ); 
   ... 
} 

double power( double x, int n ) 
{ 
   ... 
   return 1.0; 
   ... 
} 

2 

1 

0 

273

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 273



This is not to say you should never use recursion. Where the problem suggests the use of recursive func-
tion calls as a solution, it can be an immensely powerful technique, greatly simplifying the code. You’ll
see an example where this is the case in the next chapter.

C++/CLI Programming
For the most part, functions in a C++/CLI program work in exactly the same way as in a native program.
Of course, you deal in handles and tracking references when programming for the CLR, not native pointers
and references, and that introduces some differences. There are a few other things that are a little different,
so let’s itemize them.

❑ Function parameters and return values in a CLR program can be value class types, tracking
handles, tracking references, and interior pointers.

❑ When a parameter is an array there no need to have a separate parameter for the size of the
array because C++/CLI arrays have the size built into the Length property.

❑ You cannot do address arithmetic with array parameters in a C++/CLI program as you can in 
a native C++ program so you must always use array indexing.

❑ Returning a handle to memory you have allocated on the CLR heap is not a problem because
the garbage collector takes care of releasing the memory when it is no longer in use.

❑ The mechanism for accepting a variable number of arguments in C++/CLI is different from the
native C++ mechanism.

❑ Accessing command line arguments in main() in a C++/CLI program is also different from the
native C++ mechanism.

Let’s look at the last two differences in more detail.

Functions Accepting a Variable Number of Arguments
The C++/CLI language provides for a variable number of arguments by allowing you to specify the
parameter list as an array with the array specification preceded by an ellipsis. Here’s an example of a
function with this parameter list:

int sum(... array<int>^ args)
{
// Code for sum

}

The sum() function here accepts any number of arguments of type int. To process the arguments you
just access the elements of the array args. Because it is a CLR array, the number of elements is recorded
as its Length property, so you have no problem determining the number of arguments in the body of 
the function. This mechanism is also an improvement over the native C++ mechanism you saw earlier
because it is type-safe. The arguments clearly have to be of type int to be accepted by this function.
Let’s try a variation on Ex5_10 to see the CLR mechanism working.

274

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 274



Try It Out A Variable Number of Function Arguments
Here’s the code for this CLR project.

// Ex5_15.cpp : main project file.
// Passing a variable number of arguments to a function

#include “stdafx.h”

using namespace System;

double sum(... array<double>^ args)
{
double sum = 0.0;
for each(double arg in args)
sum += arg;

return sum;
}

int main(array<System::String ^> ^args)
{
Console::WriteLine(sum(2.0, 4.0, 6.0, 8.0, 10.0, 12.0));
Console::WriteLine(sum(1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9));
return 0;

}

This example produces the following output:

42
49.5

How It Works
The sum() function here has been implemented to accept arguments of type double. The ellipsis preced-
ing the array parameter tells the compiler to expect an arbitrary number of arguments and the argument
values should be stored in an array of elements of type double. Of course, without the ellipsis, the func-
tion would expect just one argument when it was called that was a tracking handle for an array.

Compared to the native version in Ex5_10 the definition of the sum() function is remarkably simple. All
the problems associated with the type and the number of arguments have disappeared in the C++/CLI
version. The sum is accumulated in a simple for each loop that iterates over all the elements in the array.

Arguments to main()
You can see from the previous example that there is only one parameter to the main() function in a
C++/CLI program and it is an array of elements of type String^. Accessing and processing command-
line arguments in a C++/CLI program boils down to just accessing the elements in the array parameter.
You can try it out.

275

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 275



Try It Out Accessing Command-Line Arguments
Here’s a C++/CLI version of Ex5_09.

// Ex5_16.cpp : main project file.
// Receiving multiple command liner arguments.

#include “stdafx.h”

using namespace System;

int main(array<System::String ^> ^args)
{
Console::WriteLine(L”There were {0} command line arguments.”,
args->Length);

Console::WriteLine(L”Command line arguments received are:”);
int i = 1;

for each(String^ str in args)
Console::WriteLine(L”Argument {0}: {1}”, i++, str);

return 0;
}

You can enter the command-line arguments in the command window or through the project properties
window as described earlier in the chapter. I entered the following on the command line:

Ex5_16 trying multiple “argument values” 4.5 0.0

I got the following output:

There were 5 command line arguments.
Command line arguments received are:
Argument 1: trying
Argument 2: multiple
Argument 3: argument values
Argument 4: 4.5
Argument 5: 0.0

How It Works
From the output, you can see that one difference between this and the native C++ version is that you
don’t get the program name passed to main() as an argument — not really a great disadvantage, really
a positive feature in most circumstances. Accessing the command-line arguments is now a trivial exercise
involving just iterating through the elements in the args array.

276

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 276



Summary
In this chapter, you learned about the basics of program structure. You should have a good grasp of how
functions are defined, how data can be passed to a function, and how results are returned to a calling
program. Functions are fundamental to programming in C++, so everything you do from here on will
involve using multiple functions in a program. The key points that you should keep in mind about
writing your own functions are these:

❑ Functions should be compact units of code with a well-defined purpose. A typical program will
consist of a large number of small functions, rather than a small number of large functions.

❑ Always provide a function prototype for each function defined in your program, positioned
before you call that function.

❑ Passing values to a function using a reference can avoid the copying implicit in the call-by-value
transfer of arguments. Parameters that are not modified in a function should be specified as const.

❑ When returning a reference or a pointer from a native C++ function, ensure that the object being
returned has the correct scope. Never return a pointer or a reference to an object that is local to a
native C++ function.

❑ In a C++/CLI program there is no problem with returning a handle to memory that has been
allocated dynamically because the garbage collector takes care of deleting it when it is no longer
required.

❑ When you pass a C++/CLI array to a function, there is no need for another parameter for the
length of the array, as the number of elements is available in the function body as the Length
property for the array.

The use of references as arguments is a very important concept, so make sure you are confident about
using them. You’ll see a lot more about references as arguments to functions when you look into object-
oriented programming.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. The factorial of 4 (written as 4!) is 4*3*2*1 = 24, and 3! is 3*2*1 = 6, so it follows that 4! = 4*3!, or
more generally:

fact(n) = n*fact(n - 1)

The limiting case is when n is 1, in which case 1! = 1. Write a recursive function that calculates
factorials, and test it.

277

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 277



2. Write a function that swaps two integers, using pointers as arguments. Write a program that
uses this function and test that it works correctly.

3. The trigonometry functions (sin(), cos(), and tan()) in the standard <cmath> library take
arguments in radians. Write three equivalent functions, called sind(), cosd(), and tand(),
which take arguments in degrees. All arguments and return values should be type double.

4. Write a native C++ program that reads a number (an integer) and a name (less than 15 charac-
ters) from the keyboard. Design the program so that the data entry is done in one function, and
the output in another. Keep the data in the main program. The program should end when zero
is entered for the number. Think about how you are going to pass the data between functions —
by value, by pointer, or by reference?

5. (Advanced) Write a function that, when passed a string consisting of words separated by single
spaces, returns the first word; calling it again with an argument of NULL returns the second word,
and so on, until the string has been processed completely, when NULL is returned. This is a sim-
plified version of the way the native C++ run-time library routine strtok() works. So, when
passed the string ‘one two three’, the function returns you ‘one’, then ‘two’, and finally ‘three’.
Passing it a new string results in the current string being discarded before the function starts on
the new string.

278

Chapter 5: Introducing Structure into Your Programs

25905c05.qxd:WroxPro  2/21/08  8:48 AM  Page 278



6
More about 

Program Structure

In the previous chapter, you learned about the basics of defining functions and the various ways in
which data can be passed to a function. You also saw how results are returned to a calling program.

In this chapter, you will explore the further aspects of how functions can be put to good use,
including:

❑ What a pointer to a function is

❑ How to define and use pointers to functions

❑ How to define and use arrays of pointers to functions

❑ What an exception is and how to write exception handlers that deal with them

❑ How to write multiple functions with a single name to handle different kinds of data
automatically

❑ What function templates are and how you define and use them

❑ How to write a substantial native C++ program example using several functions

❑ What generic functions are in C++/CLI

❑ How to write a substantial C++/CLI program example using several functions

Pointers to Functions
A pointer stores an address value that, up to now, has been the address of another variable with the
same basic type as the pointer. This has provided considerable flexibility in allowing you to use dif-
ferent variables at different times through a single pointer. A pointer can also point to the address
of a function. This enables you to call a function through a pointer, which will be the function at
the address that was last assigned to the pointer.

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 279



Obviously, a pointer to a function must contain the memory address of the function that you want to call.
To work properly, however, the pointer must also maintain information about the parameter list for the
function it points to, as well as the return type. Therefore, when you declare a pointer to a function, you
have to specify the parameter types and the return type of the functions that it can point to, in addition 
to the name of the pointer. Clearly, this is going to restrict what you can store in a particular pointer to a
function. If you have declared a pointer to functions that accept one argument of type int and return a
value of type double, you can only store the address of a function that has exactly the same form. If you
want to store the address of a function that accepts two arguments of type int and returns type char, 
you must define another pointer with these characteristics.

Declaring Pointers to Functions
You can declare a pointer pfun that you can use to point to functions that take two arguments, of type
char* and int, and return a value of type double. The declaration would be as follows:

double (*pfun)(char*, int);            // Pointer to function declaration

At first you may find that the parentheses make this look a little weird. This statement declares a pointer
with the name pfun that can point to functions that accept two arguments of type pointer to char and 
of type int, and return a value of type double. The parentheses around the pointer name, pfun, and the
asterisk are necessary; without them, the statement would be a function declaration rather than a pointer
declaration. In this case, it would look like this:

double *pfun(char*, int);              // Prototype for a function
// returning type double*

This statement is a prototype for a function pfun() that has two parameters, and returns a pointer to a
double value. Because you intended to declare a pointer, this is clearly not what you want at the moment.

The general form of a declaration of a pointer to a function looks like this:

return_type (*pointer_name)(list_of_parameter_types);

The pointer can only point to functions with the same return_type and
list_of_parameter_types specified in the declaration.

This shows that the declaration of a pointer to a function consists of three components:

❑ The return type of the functions that can be pointed to

❑ The pointer name preceded by an asterisk to indicate it is a pointer

❑ The parameter types of the functions that can be pointed to

If you attempt to assign a function to a pointer that does not conform to the types in the pointer declara-
tion, the compiler generates an error message.

280

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 280



You can initialize a pointer to a function with the name of a function within the declaration of the
pointer. The following is an example of this:

long sum(long num1, long num2);      // Function prototype
long (*pfun)(long, long) = sum;      // Pointer to function points to sum()

In general you can set the pfun pointer that you declared here to point to any function that accepts two
arguments of type long and returns a value of type long. In the first instance you initialized it with the
address of the sum() function that has the prototype given by the first statement.

Of course, you can also initialize a pointer to a function by using an assignment statement. Assuming the
pointer pfun has been declared as above, you could set the value of the pointer to a different function
with these statements:

long product(long, long);            // Function prototype
...
pfun = product;                      // Set pointer to function product()

As with pointers to variables, you must ensure that a pointer to a function is initialized before you use it
to call a function. Without initialization, catastrophic failure of your program is guaranteed.

Try It Out Pointers to Functions
To get a proper feel for these newfangled pointers and how they perform in action, try one out in a program.

// Ex6_01.cpp
// Exercising pointers to functions
#include <iostream>
using std::cout;
using std::endl;

long sum(long a, long b);              // Function prototype
long product(long a, long b);          // Function prototype

int main(void)
{
long (*pdo_it)(long, long);          // Pointer to function declaration

pdo_it = product;
cout << endl

<< “3*5 = “ << pdo_it(3, 5);    // Call product thru a pointer

pdo_it = sum;                        // Reassign pointer to sum()
cout << endl

<< “3*(4 + 5) + 6 = “
<< pdo_it(product(3, pdo_it(4, 5)), 6);   // Call thru a pointer,

// twice
cout << endl;

281

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 281



return 0;
}

// Function to multiply two values
long product(long a, long b)
{
return a*b;

}

// Function to add two values
long sum(long a, long b)
{
return a + b;

}

This example produces the output:

3*5 = 15
3*(4 + 5) + 6 = 33

How It Works
This is hardly a useful program, but it does show very simply how a pointer to a function is declared,
assigned a value, and subsequently used to call a function.

After the usual preamble, you declare a pointer to a function, pdo_it, which can point to either of the
other two functions that you have defined, sum() or product(). The pointer is given the address of 
the function product() in this assignment statement:

pdo_it = product;

You just supply the name of the function as the initial value for the pointer and no parentheses or other
adornments are required. The function name is automatically converted to an address, which is stored 
in the pointer.

The function product() is called indirectly through the pointer pdo_it in the output statement.

cout << endl
<< “3*5 = “ << pdo_it(3, 5);        // Call product thru a pointer

You use the name of the pointer just as if it was a function name, followed by the arguments between
parentheses exactly as they would appear if you were using the original function name directly.

Just to show that you can do it, you change the pointer to point to the function sum().

pdo_it = sum;                            // Reassign pointer to sum()

You then use it again in a ludicrously convoluted expression to do some simple arithmetic:

cout << endl
<< “3*(4 + 5) + 6 = “
<< pdo_it(product(3, pdo_it(4, 5)), 6);  // Call thru a pointer,

// twice

282

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 282



This shows that a pointer to a function can be used in exactly the same way as the function that it points
to. The sequence of actions in the expression is shown in Figure 6-1.

Figure 6-1

A Pointer to a Function as an Argument
Because ‘pointer to a function’ is a perfectly reasonable type, a function can also have a parameter that is
a pointer to a function. The function can then call the function pointed to by the argument. Because the
pointer can be made to point at different functions in different circumstances, this allows the particular
function that is to be called from inside a function to be determined in the calling program. In this case,
you can pass a function explicitly as an argument.

Try It Out Passing a Function Pointer
You can look at this with an example. Suppose you need a function that processes an array of numbers by
producing the sum of the squares of each of the numbers on some occasions, and the sum of the cubes on
other occasions. One way of achieving this is by using a pointer to a function as an argument.

// Ex6_02.cpp
// A pointer to a function as an argument

sum ( 4 , 5 ) 

sum ( 27 , 6 ) 33 

product ( 3 , 9 ) 

pdo_it ( 27 , 6 ) 

pdo_it ( product ( 3 , pdo_it ( 4 , 5 ) ) , 6) 

results in 

results in 

equivalent to 

equivalent to 

produces 

283

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 283



#include <iostream>
using std::cout;
using std::endl;

// Function prototypes
double squared(double);
double cubed(double);
double sumarray(double array[], int len, double (*pfun)(double));

int main(void)
{
double array[] = { 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5 };
int len = sizeof array/sizeof array[0];

cout << endl
<< “Sum of squares = “
<< sumarray(array, len, squared);

cout << endl
<< “Sum of cubes = “
<< sumarray(array, len, cubed);

cout << endl;
return 0;

}

// Function for a square of a value
double squared(double x)
{
return x*x;

}

// Function for a cube of a value
double cubed(double x)
{
return x*x*x;

}

// Function to sum functions of array elements
double sumarray(double array[], int len, double (*pfun)(double))
{
double total = 0.0;                  // Accumulate total in here

for(int i = 0; i < len; i++)
total += pfun(array[i]);

return total;
}

If you compile and run this code, you should see the following output:

Sum of squares = 169.75
Sum of cubes = 1015.88

284

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 284



How It Works
The first statement of interest is the prototype for the function sumarray(). Its third parameter is a
pointer to a function that has a parameter of type double, and returns a value of type double.

double sumarray(double array[], int len, double (*pfun)(double));

The function sumarray() processes each element of the array passed as its first argument with what-
ever function is pointed to by its third argument. The function then returns the sum of the processed
array elements.

You call the function sumarray() twice in main(), the first time with the function name squared
as the third argument, and the second time using cubed. In each case, the address corresponding to
the function name that you use as the argument is substituted for the function pointer in the body 
of the function sumarray(), so the appropriate function is called within the for loop.

There are obviously easier ways of achieving what this example does, but using a pointer to a function
provides you with a lot of generality. You could pass any function to sumarray() that you care to define
as long as it takes one double argument and returns a value of type double.

Arrays of Pointers to Functions
In the same way as with regular pointers, you can declare an array of pointers to functions. You can also
initialize them in the declaration. Here is an example of declaring an array of pointers.

double sum(double, double);                      // Function prototype
double product(double, double);                  // Function prototype
double difference(double, double);               // Function prototype
double (*pfun[3])(double,double) =

{ sum, product, difference };   // Array of function pointers

Each of the elements in the array is initialized by the corresponding function address appearing in the
initializing list between braces. To call the function product() using the second element of the pointer
array, you would write:

pfun[1](2.5, 3.5);

The square brackets that select the function pointer array element appear immediately after the array name
and before the arguments to the function being called. Of course, you can place a function call through an ele-
ment of a function pointer array in any appropriate expression that the original function might legitimately
appear in, and the index value selecting the pointer can be any expression producing a valid index value.

Initializing Function Parameters
With all the functions you have used up to now, you have had to take care to provide an argument
corresponding to each parameter in a function call. It can be quite handy to be able to omit one or more
arguments in a function call and have some default values for the arguments that you leave out sup-
plied automatically. You can arrange this by initializing the parameters to a function in its prototype.

285

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 285



For example, suppose that you write a function to display a message, where the message to be displayed
is passed as an argument. Here is the definition of such a function:

void showit(const char message[])
{
cout << endl

<< message;
return;

}

You can initialize the parameter to this function by specifying the initializing string value in the function
prototype, as follows:

void showit(const char message[] = “Something is wrong.”);

Here, the parameter message is initialized with the string literal shown. Once you initialize a parameter
to a function in the prototype, if you leave out that argument when you call the function, the initializing
value is used in the call.

Try It Out Omitting Function Arguments
Leaving out the function argument when you call the function executes it with the default value. If you
supply the argument, it replaces the default value. You can use the showit() function to output a variety
of messages.

// Ex6_03.cpp
// Omitting function arguments
#include <iostream>
using std::cout;
using std::endl;

void showit(const char message[] = “Something is wrong.”);

int main(void)
{
const char mymess[] = “The end of the world is nigh.”;

showit();                                 // Display the basic message
showit(“Something is terribly wrong!”);   // Display an alternative
showit();                                 // Display the default again
showit(mymess);                           // Display a predefined message

cout << endl;
return 0;

}

void showit(const char message[])
{
cout << endl

<< message;
return;

}

286

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 286



If you execute this example, it produces the following apocalyptic output:

Something is wrong.
Something is terribly wrong!
Something is wrong.
The end of the world is nigh.

How It Works
As you can see, you get the default message specified in the function prototype whenever the argument
is left out; otherwise, the function behaves normally.

If you have a function with several arguments, you can provide initial values for as many of them as you
like. If you want to omit more than one argument to take advantage of a default value, all arguments to
the right of the leftmost argument that you omit must also be left out. For example, suppose you have
this function:

int do_it(long arg1 = 10, long arg2 = 20, long arg3 = 30, long arg4 = 40);

and you want to omit one argument in a call to it. You can omit only the last one, arg4. If you want to
omit arg3, you must also omit arg4. If you omit arg2, arg3 and arg4 must also be omitted, and if you
want to use the default value for arg1, you have to omit all of the arguments in the function call.

You can conclude from this that you need to put the arguments which have default values in the function
prototype together in sequence at the end of the parameter list, with the argument most likely to be omit-
ted appearing last.

Exceptions
If you’ve had a go at the exercises that appear at the end of the previous chapters, you’ve more than
likely come across compiler errors and warnings, as well as errors that occur while the program is 
running. Exceptions are a way of flagging errors or unexpected conditions that occur in your C++ 
programs, and you already know that the new operator throws an exception if the memory you 
request cannot be allocated.

So far, you have typically handled error conditions in your programs by using an if statement to test
some expression, and then executing some specific code to deal with the error. C++ also provides another,
more general mechanism for handling errors that allows you to separate the code that deals with these
conditions from the code that executes when such conditions do not arise. It is important to realize that
exceptions are not intended to be used as an alternative to the normal data checking and validating that
you might do in a program. The code that is generated when you use exceptions carries quite a bit of over-
head with it, so exceptions are really intended to be applied in the context of exceptional, near catastrophic
conditions that might arise, but are not normally expected to occur in the normal course of events. An error
reading from a disk might be something that you use exceptions for. An invalid data item being entered is
not a good candidate for using exceptions.

287

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 287



The exception mechanism uses three new keywords:

❑ try — identifies a code block in which an exception can occur

❑ throw — causes an exception condition to be originated

❑ catch — identifies a block of code in which the exception is handled

In the following Try It Out, you can see how they work in practice.

Try It Out Throwing and Catching Exceptions
You can easily see how exception handling operates by working through an example. Let’s use a very
simple context for this. Suppose that you are required to write a program that calculates the time it takes
in minutes to make a part on a machine. The number of parts made in each hour is recorded, but you must
keep in mind that the machine breaks down regularly and may not make any parts.

You could code this using exception handling as follows:

// Ex6_04.cpp  Using exception handling
#include <iostream>
using std::cout;
using std::endl;

int main(void)
{
int counts[] = {34, 54, 0, 27, 0, 10, 0};
int time = 60;                       // One hour in minutes

for(int i = 0 ; i < sizeof counts/sizeof counts[0] ; i++)
try
{
cout << endl

<< “Hour “ << i+1;

if(counts[i] == 0)
throw “Zero count - calculation not possible.”;

cout << “ minutes per item: “
<< static_cast<double>(time)/counts[i];

}
catch(const char aMessage[])
{
cout << endl

<< aMessage
<< endl;

}
return 0;

}

If you run this example, the output is:

Hour 1 minutes per item: 1.76471
Hour 2 minutes per item: 1.11111

288

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 288



Hour 3
Zero count - calculation not possible.

Hour 4 minutes per item: 2.22222
Hour 5
Zero count - calculation not possible.

Hour 6 minutes per item: 6
Hour 7
Zero count - calculation not possible.

How It Works
The code in the try block is executed in the normal sequence. The try block serves to define where an
exception can be raised. You can see from the output that when an exception is thrown, the sequence of
execution continues with the catch block and after the code in the catch block has been executed, execu-
tion continues with the next loop iteration. Of course, when no exception is thrown, the catch block is
not executed. Both the try block and the catch block are regarded as a single unit by the compiler, so
they both form the for loop block and the loop continues after an exception is thrown.

The division is carried out in the output statement that follows the if statement checking the divisor. When
a throw statement is executed, control passes immediately to the first statement in the catch block, so the
statement that performs the division is bypassed when an exception is thrown. After the statement in the
catch block executes, the loop continues with the next iteration if there is one.

Throwing Exceptions
Exceptions can be thrown anywhere within a try block, and the operand of the throw statements deter-
mines a type for the exception — the exception thrown in the example is a string literal and therefore of
type const char[]. The operand following the throw keyword can be any expression, and the type of
the result of the expression determines the type of exception thrown.

Exceptions can also be thrown in functions called from within a try block and caught by a catch block
following the try block. You could add a function to the previous example to demonstrate this, with the
definition:

void testThrow(void)
{
throw “ Zero count - calculation not possible.”;

}

You place a call to this function in the previous example in place of the throw statement:

if(counts[i] == 0)
testThrow();             // Call a function that throws an exception

The exception is thrown by the testThrow() function and caught by the catch block whenever the
array element is zero, so the output is the same as before. Don’t forget the function prototype if you add
the definition of testThrow() to the end of the source code.

289

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 289



Catching Exceptions
The catch block following the try block in our example catches any exception of type const char[].
This is determined by the parameter specification that appears in parentheses following the keyword
catch. You must supply at least one catch block for a try block, and the catch blocks must immediately
follow the try block. A catch block catches all exceptions (of the correct type) that occur anywhere in the
code in the immediately preceding try block, including those thrown in any functions called directly or
indirectly within the try block.

If you want to specify that a catch block is to handle any exception thrown in a try block, you must put
an ellipsis (...) between the parentheses enclosing the exception declaration:

catch (...)
{
// code to handle any exception

}

This catch block must appear last if you have other catch blocks defined for the try block.

Try It Out Nested try Blocks
You can nest try blocks one within another. With this situation, if an exception is thrown from within an
inner try block that is not followed by a catch block corresponding to the type of exception thrown, the
catch handlers for the outer try block are searched. You can demonstrate this with the following example:

// Ex6_05.cpp
// Nested try blocks
#include <iostream>
using std::cin;
using std::cout;
using std::endl;

int main(void)
{
int height = 0;
const double inchesToMeters = 0.0254;
char ch = ‘y’;

try                                            // Outer try block
{
while(ch == ‘y’||ch ==’Y’)
{
cout << “Enter a height in inches: “;
cin >> height;                             // Read the height to be converted

try                                        // Defines try block in which
{                                          // exceptions may be thrown
if(height > 100)

throw “Height exceeds maximum”;       // Exception thrown
if(height < 9)

throw height;                         // Exception thrown

290

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 290



cout << static_cast<double>(height)*inchesToMeters
<< “ meters”
<< endl;

}
catch(const char aMessage[])               // start of catch block which
{                                          // catches exceptions of type
cout << aMessage << endl;                // const char[]

}
cout << “Do you want to continue(y or n)?”;
cin >> ch;

}
}
catch(int badHeight)
{
cout << badHeight << “ inches is below minimum” << endl;

}
return 0;

}

How It Works
Here there is a try block enclosing the while loop and an inner try block in which two different types 
of exception may be thrown. The exception of type const char[] is caught by the catch block for the
inner try block, but the exception of type int has no catch handler associated with the inner try block;
therefore, the catch handler in the outer try block is executed. In this case, the program ends immedi-
ately because the statement following the catch block is a return.

Exception Handling in the MFC
This is a good point to raise the question of MFC and exceptions because they are used to some extent. 
If you browse the documentation that came with Visual C++ 2008, you may come across TRY, THROW, and
CATCH in the index. These are macros defined within MFC that were created before the exception handling
was implemented in the C++ language. They mimic the operation of try, throw, and catch in the C++
language, but the language facilities for exception handling really render these obsolete so you should not
use them. They are, however, still there for two reasons. There are large numbers of programs still around
that use these macros, and it is important to ensure that as far as possible old code still compiles. Also, most
of the MFC that throws exceptions was implemented in terms of these macros. In any event, any new pro-
grams should use the try, throw, and catch keywords in C++ because they work with the MFC.

There is one slight anomaly you need to keep in mind when you use MFC functions that throw exceptions.
The MFC functions that throw exceptions generally throw exceptions of class types — you will find out
about class types before you get to use the MFC. Even though the exception that an MFC function throws is
of a given class type — CDBException say — you need to catch the exception as a pointer, not as the type
of the exception. So with the exception thrown being of type CDBException, the type that appears as the
catch block parameter is CBDException*. You will see examples of functions that throw exceptions of
type CDBException where this is the case in Chapter 21.

291

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 291



Handling Memory Allocation Errors
When you used the operator new to allocate memory for our variables (as you saw in Chapters 4 and
5), you ignored the possibility that the memory might not be allocated. If the memory isn’t allocated,
an exception is thrown that results in the termination of the program. Ignoring this exception is quite
acceptable in most situations because having no memory left is usually a terminal condition for a pro-
gram that you can usually do nothing about. However, there can be circumstances where you might 
be able to do something about it if you had the chance or you might want to report the problem in
your own way. In this situation, you can catch the exception that the new operator throws. Let’s con-
trive an example to show this happening.

Try It Out Catching an Exception Thrown by the new Operator
The exception that the new operator throws when memory cannot be allocated is of type bad_alloc.
bad_alloc is a class type defined in the <new> standard header file, so you’ll need an #include direc-
tive for that. Here’s the code:

// Ex6_06.cpp
// Catching an exception thrown by new
#include<new>                    // For bad_alloc type
#include<iostream>
using std::bad_alloc;
using std::cout;
using std::endl;

int main( )
{
char* pdata = 0;
size_t count = ~static_cast<size_t>(0)/2;
try
{
pdata = new char[count];
cout << “Memory allocated.” << endl;

}
catch(bad_alloc &ex)
{
cout << “Memory allocation failed.” << endl

<< “The information from the exception object is: “
<< ex.what() << endl;

}
delete[] pdata;
return 0;

}

On my machine this example produces the following output:

Memory allocation failed.
The information from the exception object is: bad allocation

If you are in the fortunate position of having many gigabytes of memory in your computer, you may not
get the exception thrown.

292

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 292



How It Works
The example allocates memory dynamically for an array of type char[] where the length is specified by
the count variable that you define as:

size_t count = ~static_cast<size_t>(0)/2;

The size of an array is an integer of type size_t so you declare count to be of this type. The value for
count is generated by a somewhat complicated expression. The value 0 is type int so the value pro-
duced by the expression static_cast<size_t>(0) is a zero of type size_t. Applying the ~ operator
to this flips all the bits so you then have a size_t value with all the bits as 1, which corresponds to the
maximum value you can represent as size_t because size_t is an unsigned type. This value exceeds
the maximum amount of memory that the new operator can allocate in one go so you divide by 2 to
bring it within the bounds of what is possible. This is still a very large value so unless your machine is
exceptionally well endowed with memory, the allocation request will fail.

The allocation of the memory takes place in the try block. If the allocation succeeds you’ll see a message
to that effect but if as you expect it fails, an exception of type bad_alloc will be thrown by the new
operator. This causes the code in the catch block to be executed. Calling the what() function for the
bad_alloc object reference ex returns a string describing the problem that caused the exception and
you see the result of this call in the output. Most exception classes implement the what() function to
provide a string describing why the exception was thrown.

To handle out-of-memory situations with some positive effect, clearly you must have some means of
returning memory to the free store. In most practical cases, this involves some serious work on the 
program to manage memory so it is not often undertaken.

Function Over loading
Suppose you have written a function that determines the maximum value in an array of values of type
double:

// Function to generate the maximum value in an array of type double
double maxdouble(double array[], int len)
{

double max = array[0];

for(int i = 1; i < len; i++)
if(max < array[i])

max = array[i];

return max;
}

You now want to create a function that produces the maximum value from an array of type long, so you
write another function similar to the first, with this prototype:

long maxlong(long array[], int len);

293

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 293



You have chosen the function name to reflect the particular task in hand, which is OK for two functions,
but you may also need the same function for several other types of argument. It seems a pity that you
have to keep inventing names. Ideally, you would use the same function name max() regardless of the
argument type, and have the appropriate version executed. It probably won’t be any surprise to you that
you can indeed do this, and the C++ mechanism that makes it possible is called function overloading.

What Is Function Overloading?
Function overloading allows you to use the same function name for defining several functions as long
as they each have different parameter lists. When the function is called, the compiler chooses the cor-
rect version for the job based on the list of arguments you supply. Obviously, the compiler must always 
be able to decide unequivocally which function should be selected in any particular instance of a func-
tion call, so the parameter list for each function in a set of overloaded functions must be unique.
Following on from the max() function example, you could create overloaded functions with the fol-
lowing prototypes:

int max(int array[], int len);               // Prototypes for
long max(long array[], int len);             // a set of overloaded
double max(double array[], int len);         // functions

These functions share a common name, but have a different parameter list. In general, overloaded func-
tions can be differentiated by having corresponding parameters of different types, or by having a differ-
ent number of parameters.

Note that a different return type does not distinguish a function adequately. You can’t add the following
function to the previous set:

double max(long array[], int len);      // Not valid overloading

The reason is that this function would be indistinguishable from the function that has this prototype:

long max(long array[], int len);

If you define functions like this, it causes the compiler to complain with the following error:

error C2556: ‘double max(long [],int)’ : overloaded function differs only by return
type from ‘long max(long [],int)’

and the program does not compile. This may seem slightly unreasonable, until you remember that you
can write statements such as these:

long numbers[] = {1, 2, 3, 3, 6, 7, 11, 50, 40};
int len = sizeof numbers/sizeof numbers[0];
max(numbers, len);

The fact that the call for the max() function doesn’t make much sense here because you discard the result
does not make it illegal. If the return type were permitted as a distinguishing feature, the compiler would
be unable to decide whether to choose the version with a long return type or a double return type in the
instance of the preceding code. For this reason the return type is not considered to be a differentiating fea-
ture of overloaded functions.

294

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 294



In fact every function — not just overloaded functions — is said to have a signature, where the signa-
ture of a function is determined by its name and its parameter list. All functions in a program must have
unique signatures; otherwise the program does not compile.

Try It Out Using Overloaded Functions
You can exercise the overloading capability with the function max() that you have already defined. Try
an example that includes the three versions for int, long and double arrays.

// Ex6_07.cpp
// Using overloaded functions
#include <iostream>
using std::cout;
using std::endl;

int max(int array[], int len);               // Prototypes for
long max(long array[], int len);             // a set of overloaded
double max(double array[], int len);         // functions

int main(void)
{

int small[] = {1, 24, 34, 22};
long medium[] = {23, 245, 123, 1, 234, 2345};
double large[] = {23.0, 1.4, 2.456, 345.5, 12.0, 21.0};

int lensmall = sizeof small/sizeof small[0];
int lenmedium = sizeof medium/sizeof medium[0];
int lenlarge = sizeof large/sizeof large[0];

cout << endl << max(small, lensmall);
cout << endl << max(medium, lenmedium);
cout << endl << max(large, lenlarge);

cout << endl;
return 0;

}

// Maximum of ints
int max(int x[], int len)
{

int max = x[0];
for(int i = 1; i < len; i++)

if(max < x[i])
max = x[i];

return max;
}

// Maximum of longs
long max(long x[], int len)
{

long max = x[0];
for(int i = 1; i < len; i++)

if(max < x[i])

295

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 295



max = x[i];
return max;

}

// Maximum of doubles
double max(double x[], int len)
{

double max = x[0];
for(int i = 1; i < len; i++)

if(max < x[i])
max = x[i];

return max;
}

The example works as you would expect and produces this output:

34
2345
345.5

How It Works
You have three prototypes for the three overloaded versions of the function max(). In each of the three
output statements, the appropriate version of the function max() is selected by the compiler based on
the argument list types. This works because each of the versions of the max() function has a unique sig-
nature because its parameter list is different from that of the other max() functions.

When to Overload Functions
Function overloading provides you with the means of ensuring that a function name describes the
function being performed and is not confused by extraneous information such as the type of data
being processed. This is akin to what happens with basic operations in C++. To add two numbers you
use the same operator, regardless of the types of the operands. Our overloaded function max() has the
same name, regardless of the type of data being processed. This helps to make the code more readable
and makes these functions easier to use.

The intent of function overloading is clear: to enable the same operation to be performed with different
operands using a single function name. So, whenever you have a series of functions that do essentially
the same thing, but with different types of arguments, you should overload them and use a common
function name.

Function Templates
The last example was somewhat tedious in that you had to repeat essentially the same code for each
function, but with different variable and parameter types. However, there is a way of avoiding this. You
have the possibility of creating a recipe that will enable the compiler to automatically generate functions
with various parameter types. The code defining the recipe for generating a particular group of functions
is called a function template.

296

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 296



A function template has one or more type parameters, and you generate a particular function by supply-
ing a concrete type argument for each of the template’s parameters. Thus the functions generated by a
function template all have the same basic code, but customized by the type arguments that you supply.
You can see how this works in practice by defining a function template for the function max() in the pre-
vious example.

Using a Function Template
You can define a template for the function max() as follows:

template<class T> T max(T x[], int len)
{

T max = x[0];
for(int i = 1; i < len; i++)

if(max < x[i])
max = x[i];

return max;
}

The template keyword identifies this as a template definition. The angled brackets following the
template keyword enclose the type parameters that are used to create a particular instance of the
function separated by commas; in this instance you have just one type parameter, T. The keyword
class before the T indicates that the T is the type parameter for this template, class being the generic
term for type. Later in the book you will see that defining a class is essentially defining your own data
type. Consequently, you have fundamental types in C++, such as type int and type char, and you
also have the types that you define yourself. Note that you can use the keyword typename instead of
class to identify the parameters in a function template, in which case the template definition would
look like this:

template<typename T> T max(T x[], int len)
{

T max = x[0];
for(int i = 1; i < len; i++)

if(max < x[i])
max = x[i];

return max;
}

Some programmers prefer to use the typename keyword as the class keyword tends to connote a user-
defined type, whereas typename is more neutral and therefore is more readily understood to imply fun-
damental types as well as user-defined types. In practice you’ll see both keywords used widely.

Wherever T appears in the definition of a function template, it is replaced by the specific type argument,
such as long, that you supply when you create an instance of the template. If you try this out manually
by plugging in long in place of T in the template, you’ll see that this generates a perfectly satisfactory
function for calculating the maximum value from an array of type long:

long max(long x[], int len)
{

long max = x[0];
for(int i = 1; i < len; i++)

if(max < x[i])

297

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 297



max = x[i];
return max;

}

The creation of a particular function instance is referred to as instantiation.

Each time you use the function max() in your program, the compiler checks to see if a function corre-
sponding to the type of arguments that you have used in the function call already exists. If the function
required does not exist, the compiler creates one by substituting the argument type that you have used
in your function call in place of the parameter T throughout the source code in the corresponding tem-
plate definition. You could exercise the template for max() function with the same main() function that
you used in the previous example.

Try It Out Using a Function Template
Here’s a version of the previous example modified to use a template for the max() function:

// Ex6_08.cpp
// Using function templates

#include <iostream>
using std::cout;
using std::endl;

// Template for function to compute the maximum element of an array
template<typename T> T max(T x[], int len)
{

T max = x[0];
for(int i = 1; i < len; i++)

if(max < x[i])
max = x[i];

return max;
}

int main(void)
{

int small[] = { 1, 24, 34, 22};
long medium[] = { 23, 245, 123, 1, 234, 2345};
double large[] = { 23.0, 1.4, 2.456, 345.5, 12.0, 21.0};

int lensmall = sizeof small/sizeof small[0];
int lenmedium = sizeof medium/sizeof medium[0];
int lenlarge = sizeof large/sizeof large[0];

cout << endl << max(small, lensmall);
cout << endl << max(medium, lenmedium);
cout << endl << max(large, lenlarge);

cout << endl;
return 0;

}

If you run this program, it produces exactly the same output as the previous example.

298

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:49 AM  Page 298



How It Works
For each of the statements outputting the maximum value in an array, a new version of max() is instan-
tiated using the template. Of course, if you add another statement calling the function max() with one 
of the types used previously, no new version of the code is generated.

Note that using a template doesn’t reduce the size of your compiled program in any way. The compiler
generates a version of the source code for each function that you require. In fact, using templates can gen-
erally increase the size of your program, as functions can be created automatically even though an existing
version might satisfactorily be used by casting the argument accordingly. You can force the creation of
particular instances of a template by explicitly including a declaration for it. For example, if you wanted
to ensure that an instance of the template for the function max() was created corresponding to the type
float, you could place the following declaration after the definition of the template:

float max(float, int);

This forces the creation of this version of the function template. It does not have much value in the case
of our program example, but it can be useful when you know that several versions of a template function
might be generated, but you want to force the generation of a subset that you plan to use with arguments
cast to the appropriate type where necessary.

An Example Using Functions
You have covered a lot of ground in C++ up to now and a lot on functions in this chapter alone. After
wading through a varied menu of language capabilities, it’s not always easy to see how they relate to
one another. Now would be a good point to see how some of this goes together to produce something
with more meat than a simple demonstration program.

Let’s work through a more realistic example to see how a problem can be broken down into functions.
The process involves defining the problem to be solved, analyzing the problem to see how it can be
implemented in C++, and finally writing the code. The approach here is aimed at illustrating how 
various functions go together to make up the final result, rather than providing a tutorial on how to
develop a program.

Implementing a Calculator
Suppose you need a program that acts as a calculator; not one of these fancy devices with lots of buttons
and gizmos designed for those who are easily pleased, but one for people who know where they are going,
arithmetically speaking. You can really go for it and enter a calculation from the keyboard as a single arith-
metic expression, and have the answer displayed immediately. An example of the sort of thing that you
might enter is:

2*3.14159*12.6*12.6 / 2 + 25.2*25.2

To avoid unnecessary complications for the moment, you won’t allow parentheses in the expression and
the whole computation must be entered in a single line; however, to allow the user to make the input look
attractive, you will allow spaces to be placed anywhere. The expression entered may contain the operators

299

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 299



multiply, divide, add, and subtract represented by *, /, + and – respectively, and the expression entered
will be evaluated with normal arithmetic rules, so that multiplication and division take precedence over
addition and subtraction.

The program should allow as many successive calculations to be performed as required, and should ter-
minate if an empty line is entered. It should also have helpful and friendly error messages.

Analyzing the Problem
A good place to start is with the input. The program reads in an arithmetic expression of any length on a
single line, which can be any construction within the terms given. Because nothing is fixed about the ele-
ments making up the expression, you have to read it as a string of characters and then work out within
the program how it’s made up. You can decide arbitrarily that you will handle a string of up to 80 char-
acters, so you could store it in an array declared within these statements:

const int MAX = 80;           // Maximum expression length including ‘\0’
char buffer[MAX];             // Input area for expression to be evaluated

To change the maximum length of the string processed by the program, you will only need to alter the
initial value of MAX.

You need to understand the basic structure of the information that appears in the input string, so let’s
break it down step-by-step.

You will want to make sure that the input is as uncluttered as possible when you are processing it, so
before you start analyzing the input string, you will get rid of any spaces in it. You can call the function
that will do this eatspaces(). This function can work by stepping through the input buffer — which is
the array buffer[] — and shuffling characters up to overwrite any spaces. This process uses two indexes
to the buffer array, i and j, which start out at the beginning of the buffer; in general, you’ll store element
j at position i. As you progress through the array elements, each time you find a space you increment j
but not i, so the space at position i gets overwritten by the next character you find at index position j
that is not a space. Figure 6-2 illustrates the logic of this.

This process is one of copying the contents of the array buffer[] to itself, excluding any spaces. Figure 6-2
shows the buffer array before and after the copying process and the arrows indicate which characters are
copied and the position to which each character is copied.

Figure 6-2

The buffer array before copying its contents to itself 

Index i is not incremented at 
these positions because they 
contain a space. 
These spaces are overwritten 
by the next non-space 
character that is found in 
buffer. 

The buffer array after copying its contents to itself 

2
1 2 3 40index j

index i

5

1 2 3 40 5

6 7

2

..... 

..... 

+

+

5 * 3 \0

5 * 3 \0 ..... 

300

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 300



When you have removed spaces from the input you are ready to evaluate the expression. You define the
function expr() which returns the value that results from evaluating the whole expression in the input
buffer. To decide what goes on inside the expr() function, you need to look into the structure of the input
in more detail. The add and subtract operators have the lowest precedence and so are evaluated last. You
can think of the input string as comprising one or more terms connected by operators, which can be either
the operator + or the operator -. You can refer to either operator as an addop. With this terminology, you
can represent the general form of the input expression like this:

expression: term addop term ... addop term

The expression contains at least one term and can have an arbitrary number of following addop term
combinations. In fact, assuming that you have removed all the blanks, there are only three legal possibil-
ities for the character that follows each term:

❑ The next character is ‘\0’, so you are at the end of the string.

❑ The next character is ‘-’, in which case you should subtract the next term from the value
accrued for the expression up to this point.

❑ The next character is ‘+’, in which case you should add the value of the next term to the value
of the expression accumulated so far.

If anything else follows a term, the string is not what you expect, so you’ll display an error message and
exit from the program. Figure 6-3 illustrates the structure of a sample expression.

Figure 6-3

Next, you need a more detailed and precise definition of a term. A term is simply a series of numbers
connected by either the operator * or the operator /. Therefore, a term (in general) looks like this:

term: number multop number ... multop number

multop represents either a multiply or a divide operator. You could define a function term() to return the
value of a term. This needs to scan the string to a number first and then to look for a multop followed by
another number. If a character is found that isn’t a multop, the term() function assumes that it is an addop
and returns the value that has been found up to that point.

The last thing you need to figure out before writing the program is how you recognize a number. To mini-
mize the complexity of the code, you’ll only recognize unsigned numbers; therefore, a number consists of
a series of digits that may be optionally followed by a decimal point and some more digits. To determine
the value of a number you step through the buffer looking for digits. If you find anything that isn’t a digit,

term term term 

End of input 

addop addop 

2 + / 2* ..... 5 3 - 7 \0

301

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 301



you check whether it’s a decimal point. If it’s not a decimal point it has nothing to do with a number, so you
return what you have got. If you find a decimal point, you look for more digits. As soon as you find any-
thing that’s not a digit, you have the complete number and you return that. Imaginatively, you’ll call the
function to recognize a number and return its value number(). Figure 6-4 shows an example of how an
expression breaks down into terms and numbers.

You now have enough understanding of the problem to write some code. You can work through the func-
tions you need and then write a main() function to tie them all together. The first and perhaps easiest func-
tion to write is eatspaces(), which is going to eliminate the blanks from the input string.

Figure 6-4

Eliminating Blanks from a String
You can write the prototype for the eatspaces() function as follows:

void eatspaces(char* str);         // Function to eliminate blanks

The function doesn’t need to return any value because the blanks can be eliminated from the string in situ,
modifying the original string directly through the pointer that is passed as the argument. The process for
eliminating blanks is a very simple one. You copy the string to itself, overwriting any spaces as you saw
earlier in this chapter.

You can define the function to do this as follows:

// Function to eliminate spaces from a string
void eatspaces(char* str)
{
int i = 0;                                     // ‘Copy to’ index to string
int j = 0;                                     // ‘Copy from’ index to string

while((*(str + i) = *(str + j++)) != ‘\0’)     // Loop while character is not \0
if(*(str + i) != ‘ ‘)                        // Increment i as long as
i++;                                       // character is not a space

return;
}

2

digit digit

number number numbermultop

term

expression
The value of the expression is returned by the expr()
function

The value of each term is returned by the term() function

The value of each number is returned by the number()
function

End of input

addop addop termterm

number

digit point digit digit digit digit digit

3 * 13 ..... + . - 1 25 7 \0

302

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 302



How the Function Functions
All the action is in the while loop. The loop condition copies the string by moving the character at posi-
tion j to the character at position i and then increments j to the next character. If the character copied
was ‘\0’, you have reached the end of the string and you’re done.

The only action in the loop statement is to increment i to the next character if the last character copied
was not a blank. If it is a blank, i is not be incremented and the blank can therefore be overwritten by
the character copied on the next iteration.

That wasn’t hard, was it? Next, you can try writing the function that returns the result of evaluating the
expression.

Evaluating an Expression
The expr()function returns the value of the expression specified in the string that is supplied as an
argument, so you can write its prototype as follows:

double expr(char* str);              // Function evaluating an expression

The function declared here accepts a string as an argument and returns the result as type double. Based
on the structure for an expression that you worked out earlier, you can draw a logic diagram for the process
of evaluating an expression as shown in Figure 6-5.

Figure 6-5

Get value of first 
term

Set expression 
value to value of 

first term

Return expression
value

Subtract value of next
term from expression

value

Add value of next 
term to expression 

value

ERROR

Next character
is '\0'?

No

Yes

Yes

Yes

No

No

Next character
is '-'?

Next character
is '+'?

303

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 303



Using this basic definition of the logic, you can now write the function:

// Function to evaluate an arithmetic expression
double expr(char* str)
{
double value = 0.0;                  // Store result here
int index = 0;                       // Keeps track of current character position

value = term(str, index);            // Get first term

for(;;)                              // Indefinite loop, all exits inside
{
switch(*(str + index++))           // Choose action based on current character
{
case ‘\0’:                       // We’re at the end of the string

return value;                 // so return what we have got

case ‘+’:                        // + found so add in the
value += term(str, index);    // next term
break;

case ‘-’:                        // - found so subtract
value -= term(str, index);    // the next term
break;

default:                         // If we reach here the string
cout << endl                  // is junk

<< “Arrrgh!*#!! There’s an error”
<< endl;

exit(1);
}

}
}

How the Function Functions
Considering this function is analyzing any arithmetic expression that you care to throw at it (as long as it
uses our operator subset), it’s not a lot of code. You define a variable index of type int, which keeps track
of the current position in the string where you are working, and you initialize it to 0, which corresponds to
the index position of the first character in the string. You also define a variable value of type double in
which you’ll accumulate the value of the expression that is passed to the function in the char array str.

Because an expression must have at least one term, the first action in the function is to get the value of
the first term by calling the function term(), which you have yet to write. This actually places three
requirements on the function term():

1. It should accept a char* pointer and an int variable as parameters, the second parameter being
an index to the first character of the term in the string supplied.

2. It should update the index value passed to position it at the character following the last character
of the term found.

3. It should return the value of the term as type double.

304

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 304



The rest of the program is an indefinite for loop. Within the loop, the action is determined by a switch
statement, which is controlled by the current character in the string. If it is a ‘+’, you call the term()func-
tion to get the value of the next term in the expression and add it to the variable value. If it is a ‘-’, you
subtract the value returned by term() from the variable value. If it is a ‘\0’, you are at the end of the
string, so you return the current contents of the variable value to the calling program. If it is any other
character, it shouldn’t be there, so after remonstrating with the user you end the program!

As long as either a ‘+’ or a ‘-’ is found, the loop continues. Each call to term() moves the value of
the index variable to the character following the term that was evaluated, and this should be should be
either another ‘+’ or ‘-’, or the end of string character ‘\0’. Thus, the function either terminates nor-
mally when ‘\0’ is reached, or abnormally by calling exit(). You need to remember the #include
directive for <cstdlib> header file that provides the definition of the function exit() when you come 
to put the whole program together.

You also could also analyze an arithmetic expression using a recursive function. If you think about the defi-
nition of an expression slightly differently, you could specify it as being either a term, or a term followed by
an expression. The definition here is recursive (i.e. the definition involves the item being defined), and this
approach is very common in defining programming language structures. This definition provides just
as much flexibility as the first, but using it as the base concept, you could arrive at a recursive version 
of expr() instead of using a loop as you did in the implementation above. You might want to try this
alternative approach as an exercise after you have completed the first version.

Getting the Value of a Term
The term() function returns a value for a term as type double and receives two arguments: the string
being analyzed and an index to the current position in the string. There are other ways of doing this, but
this arrangement is quite straightforward. You can, therefore, write the prototype of the function term()
as follows:

double term(char* str, int& index);        // Function analyzing a term

You have specified the second parameter as a reference. This is because you want the function to be able
to modify the value of the variable index in the calling program to position it at the character following
the last character of the term found in the input string. You could return index as a value, but then you
would need to return the value of the term in some other way, so this arrangement seems quite natural.

The logic for analyzing a term is going to be similar in structure to that for an expression. A term is a num-
ber, potentially followed by one or more combinations of a multiply or a divide operator and another
number. You can write the definition of the term() function as follows:

// Function to get the value of a term
double term(char* str, int& index)
{
double value = 0.0;                  // Somewhere to accumulate

// the result

value = number(str, index);          // Get the first number in the term

// Loop as long as we have a good operator
while((*(str + index) == ‘*’) || (*(str + index) == ‘/’))

305

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 305



{

if(*(str + index) == ‘*’)          // If it’s multiply,
value *= number(str, ++index);   // multiply by next number

if(*(str + index) == ‘/’)          // If it’s divide,
value /= number(str, ++index);   // divide by next number

}
return value;                        // We’ve finished, so return what

// we’ve got
}

How the Function Functions
You first declare a local double variable, value, in which you’ll accumulate the value of the current
term. Because a term must contain at least one number, the first action in the function is to obtain the
value of the first number by calling the number() function and storing the result in value. You implic-
itly assume that the function number()accepts the string and an index to a position in the string as
arguments, and returns the value of the number found. Because the number() function must also
update the index to the string to the position after the number that was found, you’ll again specify 
the second parameter as a reference when you come to define that function.

The rest of the term() function is a while loop that continues as long as the next character is ‘*’ or
‘/’. Within the loop, if the character found at the current position is ‘*’, you increment the variable
index to position it at the beginning of the next number, call the function number() to get the value of
the next number, and then multiply the contents of value by the value returned. In a similar manner, if
the current character is ‘/’, you increment the index variable and divide the contents of value by the
value returned from number(). Because the function number() automatically alters the value of the
variable index to the character following the number found, index is already set to select the next
available character in the string on the next iteration.

The loop terminates when a character other than a multiply or divide operator is found, whereupon the
current value of the term accumulated in the variable value is returned to the calling program.

The last analytical function that you require is number(), which determines the numerical value of any
number appearing in the string.

Analyzing a Number
Based on the way you have used the number() function within the term() function, you need to
declare it with this prototype:

double number(char* str, int& index);   // Function to recognize a number

The specification of the second parameter as a reference allows the function to update the argument in
the calling program directly, which is what you require.

You can make use of a function provided in a standard C++ library here. The <cctype> header file pro-
vides definitions for a range of functions for testing single characters. These functions return values of

306

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 306



type int where nonzero values correspond to true and zero corresponds to false. Four of these func-
tions are shown in the following table:

A number of other functions are provided by <cctype>, but I won’t grind through all the detail. If
you’re interested, you can look them up in the Visual C++ 2008 Help. A search on “is routines” 
should find them.

You only need the last of the functions shown above in the program. Remember that isdigit() is testing
a character, such as the character ‘9’ (ASCII character 57 in decimal notation) for instance, not a numeric 9,
because the input is a string.

You can define the function number() as follows:

// Function to recognize a number in a string
double number(char* str, int& index)
{
double value = 0.0;                  // Store the resulting value

while(isdigit(*(str + index)))       // Loop accumulating leading digits
value = 10*value + (*(str + index++) - ‘0’);

// Not a digit when we get to here
if(*(str + index) != ‘.’)            // so check for decimal point
return value;                      // and if not, return value

double factor = 1.0;                 // Factor for decimal places
while(isdigit(*(str + (++index))))   // Loop as long as we have digits
{
factor *= 0.1;                     // Decrease factor by factor of 10
value = value + (*(str + index) - ‘0’)*factor;   // Add decimal place

}

return value;                        // On loop exit we are done
}

How the Function Functions
You declare the local variable value as type double that holds the value of the number that is found. You
initialize it with 0.0 because you add in the digit values as you go along.

Functions Description

int isalpha(int c) Returns nonzero if the argument is alphabetic, 0 otherwise.

int isupper(int c) Returns nonzero if the argument is an upper case letter, 0 otherwise.

int islower(int c) Returns nonzero if the argument is a lower case letter, 0 otherwise.

int isdigit(int c) Returns nonzero if the argument is a digit, 0 otherwise.

307

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 307



As the number in the string is a series of digits as ASCII characters, the function steps through the string
accumulating the value of the number digit by digit. This occurs in two phases — the first phase accumu-
lates digits before the decimal point; then if you find a decimal point, the second phase accumulates the
digits after it.

The first step is in the while loop that continues as long as the current character selected by the variable
index is a digit. The value of the digit is extracted and added to the variable value in the loop statement:

value = 10*value + (*(str + index++) - ‘0’);

The way this is constructed bears a closer examination. A digit character has an ASCII value between 48,
corresponding to the digit 0, and 57 corresponding to the digit 9. Thus, if you subtract the ASCII code
for ‘0’ from the code for a digit, you convert it to its equivalent numeric digit value from 0 to 9. You
have parentheses around the subexpression *(str + index++) - ‘0’; these are not essential, but
they do make what’s going on a little clearer. The contents of the variable value are multiplied by 10
to shift the value one decimal place to the left before adding in the digit value because you’ll find digits
from left to right — that is, the most significant digit first. This process is illustrated in Figure 6-6.

Figure 6-6

As soon as you come across something other than a digit, it is either a decimal point or something else. If
it’s not a decimal point, you’ve finished, so you return the current contents of the variable value to the
calling program. If it is a decimal point, you accumulate the digits corresponding to the fractional part of
the number in the second loop. In this loop, you use the factor variable, which has the initial value 1.0,
to set the decimal place for the current digit, and consequently factor is multiplied by 0.1 for each digit
found. Thus, the first digit after the decimal point is multiplied by 0.1, the second by 0.01, the third by
0.001, and so on. This process is illustrated in Figure 6-7.

53 49 51

5 1

digits in number

ASCII codes as decimal values

Intial value = 0

1st digit

2nd digit

3rd digit

value = 10*value + (53 - 48)
 = 10*0.0 + 5
 = 5.0

value = 10*value + (49 - 48)
 = 10*5.0 + 1
 = 51.0

value = 10*value + (51 - 48)
 = 10*51.0 + 3
 = 513.0

3

308

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 308



Figure 6-7

As soon as you find a non-digit character you are done, so after the second loop you return the value of
the variable value. You almost have the whole thing now. You just need a main() function to read the
input and drive the process.

Putting the Program Together
You can collect the #include statements together and assemble the function prototypes at the beginning
of the program for all the functions used in this program:

// Ex6_09.cpp
// A program to implement a calculator

#include <iostream>                   // For stream input/output
#include <cstdlib>                    // For the exit() function
#include <cctype>                     // For the isdigit() function
using std::cin;
using std::cout;
using std::endl;

void eatspaces(char* str);            // Function to eliminate blanks
double expr(char* str);               // Function evaluating an expression
double term(char* str, int& index);   // Function analyzing a term
double number(char* str, int& index); // Function to recognize a number

53 49 51

5 1

digits in integral
part of number

digits in fractional
part of number

ASCII codes as decimal values

Before the decimal point
value = 513.0
factor = 1.0

1st digit

2nd digit

3rd digit

value = value + factor*(54 - 48)
 = 513.0 + 0.1*6
 = 513.6

value = value + factor*(48 - 48)
 = 513.6 + 0.01*0
 = 513.60

value = value + factor*(56 - 48)
 = 513.60 + 0.001*8
 = 513.608

factor = 0.1*factor

factor = 0.1*factor

factor = 0.1*factor

3 6. 0 8

46 54 48 56

309

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 309



const int MAX = 80;                   // Maximum expression length,
// including ‘\0’

You have also defined a global variable MAX, which is the maximum number of characters in the expression
processed by the program (including the terminating ‘\0’ character.

Now you can add the definition of the main() function and your program is complete. The main()
function should read a string and exit if it is empty; otherwise, call the function expr() to evaluate the
input and display the result. This process should repeat indefinitely. That doesn’t sound too difficult,
so let’s give it a try.

int main()
{
char buffer[MAX] = {0};    // Input area for expression to be evaluated

cout << endl
<< “Welcome to your friendly calculator.”
<< endl
<< “Enter an expression, or an empty line to quit.”
<< endl;

for(;;)
{
cin.getline(buffer, sizeof buffer);     // Read an input line
eatspaces(buffer);                      // Remove blanks from input

if(!buffer[0])                          // Empty line ends calculator
return 0;

cout << “\t= “ << expr(buffer)          // Output value of expression
<< endl << endl;

}
}

How the Function Functions
In main(), you set up the char array buffer to accept an expression up to 80 characters long (including the
string termination character). The expression is read within the indefinite for loop using the getline()
input function and after obtaining the input, spaces are removed from the string by calling the function
eatspaces().

All the other things that the function main() provides for are within the loop. They are to check for an
empty string, which consists of just the null character, ‘\0’, in which case the program ends, and to out-
put the value of the string produced by the function expr().

After you type all the functions, you should get output similar to the following:

2 * 35
= 70

2/3 + 3/4 + 4/5 + 5/6 + 6/7
= 3.90714

310

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 310



1 + 2.5 + 2.5*2.5 + 2.5*2.5*2.5
= 25.375

You can enter as many calculations as you like, and when you are fed up with it, just press Enter to end
the program.

Extending the Program
Now that you have got a working calculator, you can start to think about extending it. Wouldn’t it be
nice to be able to handle parentheses in an expression? It can’t be that difficult, can it? Let’s give it a try.

Think about the relationship between something in parentheses that might appear in an expression and
the kind of expression analysis that you have made so far. Look at an example of the kind of expression
you want to handle:

2*(3 + 4) / 6 - (5 + 6) / (7 + 8)

Notice that the expressions in parentheses always form part of a term in your original parlance. Whatever
sort of computation you come up with, this is always true. In fact, if you could substitute the value of
the expressions within parentheses back into the original string, you would have something that you
can already deal with. This indicates a possible approach to handling parentheses. You might be able to
treat an expression in parentheses as just another number, and modify the function number() to sort out
the value of whatever appears between the parentheses.

That sounds like a good idea, but ‘sorting out’ the expression in parentheses requires a bit of thought:
the clue to success is in the terminology used here. An expression that appears within parentheses is a
perfectly good example of a full-blown expression, and you already have the expr() function that will
return the value of an expression. If you can get the number() function to work out what the contents 
of the parentheses are and extract those from the string, you could pass the substring that results to the
expr() function, so recursion would really simplify the problem. What’s more, you don’t need to worry
about nested parentheses. Because any set of parentheses contains what you have defined as an expres-
sion, they are taken care of automatically. Recursion wins again.

Take a stab at rewriting the number() function to recognize an expression between parentheses.

// Function to recognize an expression in parentheses
// or a number in a string
double number(char* str, int& index)
{

double value = 0.0;                  // Store the resulting value

if(*(str + index) == ‘(‘)            // Start of parentheses
{
char* psubstr = 0;                 // Pointer for substring
psubstr = extract(str, ++index);   // Extract substring in brackets
value = expr(psubstr);             // Get the value of the substring
delete[]psubstr;                   // Clean up the free store
return value;                      // Return substring value

}

while(isdigit(*(str + index)))       // Loop accumulating leading digits

311

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 311



value = 10*value + (*(str + index++) - 48);
// Not a digit when we get to here

if(*(str + index)!= ‘.’)             // so check for decimal point
return value;                      // and if not, return value

double factor = 1.0;                 // Factor for decimal places
while(isdigit(*(str + (++index))))   // Loop as long as we have digits
{
factor *= 0.1;                     // Decrease factor by factor of 10
value = value + (*(str + index) - 48)*factor;  // Add decimal place

}
return value;                        // On loop exit we are done

}

This is not yet complete, because you still need the extract() function, but you’ll fix that in a moment.

How the Function Functions
Look how little has changed to support parentheses. I suppose it is a bit of a cheat because you use a func-
tion (extract()) that you haven’t written yet, but for one extra function you get as many levels of nested
parentheses as you want. This really is icing on the cake, and it’s all down to the magic of recursion!

The first thing that the function number() does now is to test for a left parenthesis. If it finds one, it calls
another function, extract() to extract the substring between the parentheses from the original string.
The address of this new substring is stored in the pointer psubstr, so you then apply the expr() function
to the substring by passing this pointer as an argument. The result is stored in value, and after releasing
the memory allocated on the free store in the function extract() (as you will eventually implement it),
you return the value obtained for the substring as though it were a regular number. Of course, if there is no
left parenthesis to start with, the function number() continues exactly as before.

Extracting a Substring
You now need to write the function extract(). It’s not difficult, but it’s also not trivial. The main compli-
cation comes from the fact that the expression within parentheses may also contain other sets of parenthe-
ses, so you can’t just go looking for the first right parenthesis you can find. You must watch out for more
left parentheses as well, and for every one you find, ignore the corresponding right parenthesis. You can
do this by maintaining a count of left parentheses as you go along, adding one to the count for each left
parenthesis you find. If the left parenthesis count is not zero, you subtract one for each right parenthesis.
Of course, if the left parenthesis count is zero and you find a right parenthesis, you’re at the end of the
substring. The mechanism for extracting a parenthesized substring is illustrated in Figure 6-8.

Because the string you extract here contains subexpressions enclosed within parentheses, eventually
extract() is called again to deal with those.

The function extract()also needs to allocate memory for the substring and return a pointer to it. Of
course, the index to the current position in the original string must end up selecting the character fol-
lowing the substring, so the parameter for that should be specified as a reference. The prototype of
extract(), therefore, is as follows:

char* extract(char* str, int& index); //Function to extract a substring

312

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 312



Figure 6-8

You can now have a shot at the definition of the function.

// Function to extract a substring between parentheses
// (requires <cstring> header file)
char* extract(char* str, int& index)
{
char buffer[MAX];                    // Temporary space for substring
char* pstr = 0;                      // Pointer to new string for return
int numL = 0;                        // Count of left parentheses found
int bufindex = index;                // Save starting value for index

do
{
buffer[index - bufindex] = *(str + index);
switch(buffer[index - bufindex])
{
case ‘)’:
if(numL == 0)
{
buffer[index - bufindex] = ‘\0’;  // Replace ‘)’ with ‘\0’
++index;
pstr = new char[index - bufindex];
if(!pstr)
{
cout << “Memory allocation failed,”

<< “ program terminated.”;
exit(1);

}
strcpy_s(pstr, index-bufindex, buffer); // Copy substring to new memory
return pstr;                 // Return substring in new memory

}
else

( 2 5 -3+ * ) / 2( 2 * ( 9 )11 +

0

Signals start of substring
Finding ')' with the '(' count at zero

indicates the end of the parenthesized
substring has been reached

Original expression string

Substring that was between parentheses

'(' count: 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0

)

2 5 -3+ * ) / 2( 2 * ( 9 )11 + \0

copy replace
with '\0'

313

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 313



numL--;                      // Reduce count of ‘(‘ to be matched
break;

case ‘(‘:
numL++;                        // Increase count of ‘(‘ to be

// matched
break;

}
} while(*(str + index++) != ‘\0’);   // Loop - don’t overrun end of string

cout << “Ran off the end of the expression, must be bad input.”
<< endl;

exit(1);
return pstr;

}

How the Function Functions
You declare a char array to temporarily hold the substring. You don’t know how long the substring will
be, but it can’t be more than MAX characters. You can’t return the address of buffer to the calling function
because it is local and will be destroyed on exit from the function; therefore, you need to allocate some
memory on the free store when you know how long the string is. You do this by declaring a variable pstr
of type ‘pointer to char’, which you return by value when you have the substring safe and sound in the
free store memory.

You declare a counter numL to keep track of left parentheses in the substring (as I discussed earlier). The
initial value of index (when the function begins execution) is stored in the variable bufindex. You use
this in combination with incremented values of index to index the array buffer.

The executable part of the function is basically one big do-while loop. The substring is copied from str
to buffer one character on each loop iteration, with a check for left or right parentheses during each cycle.
If a left parenthesis is found, numL is incremented, and if a right parenthesis is found and numL is non-zero,
it is decremented. When you find a right parenthesis and numL is zero, you have found the end of the sub-
string. The ‘)’ in the substring in buffer is then replaced by ‘\0’, and sufficient memory is obtained on
the free store to hold the substring. The substring in buffer is then copied to the memory you obtained
through the operator new by using the strcpy_s() function that is declared in the<cstring> header file;
this is a safe version of the old strcpy() function that is declared in the same header. This function copies
the string specified by the third argument, buffer, to the address specified by the first argument, pstr.
The second argument is the length of the destination string, pstr.

If you fall through the bottom of the loop, it means that you hit the ‘\0’ at the end of the expression in str
without finding the complementary right bracket, so you display a message and terminate the program.

Running the Modified Program
After replacing the number() function in the old version of the program, adding the #include statement
for <cstring>, and incorporating the prototype and the definition for the new extract() function you

314

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 314



have just written, you’re ready to roll with an all-singing, all-dancing calculator. If you have assembled all
that without error, you can get output something like this:

Welcome to your friendly calculator.
Enter an expression, or an empty line to quit.
1/(1+1/(1+1/(1+1)))

= 0.6
(1/2-1/3)*(1/3-1/4)*(1/4-1/5)

= 0.000694444
3.5*(1.25-3/(1.333-2.1*1.6))-1

= 8.55507
2,4-3.4
Arrrgh!*#!! There’s an error

The friendly and informative error message in the last output line is due to the use of the comma instead
of the decimal point in the expression above it, in what should be 2.4. As you can see, you get nested paren-
theses to any depth with a relatively simple extension of the program, all due to the amazing power of
recursion.

C++/CLI Programming
Just about everything discussed so far in relation to functions for native C++ applies equally well to
C++/CLI language code with the proviso that parameter types and return types will be fundamental
types, which as you know are equivalent to value class types in a CLR program, tracking handle types,
or tracking reference types. Because you cannot perform arithmetic on the address stored in a tracking
handle, the coding techniques that I demonstrated for treating parameters that are native C++ arrays as
pointers on which you can perform arithmetic operations do not apply to C++/CLI arrays. Many of the
complications that can arise with arguments to native C++ functions disappear, but there is still the odd
trap in C++/CLI for the unwary. A CLR version of the calculator can help you understand how functions
look written in C++/CLI.

The throw and catch mechanism for exceptions works much the same in CLR programs as it does in
native C++ programs, but there are some differences. The exceptions that you throw in a C++/CLI pro-
gram must always be thrown using tracking handles. Consequently you should always be throwing excep-
tion objects and as far as possible you should avoid throwing literals, especially string literals. For example,
consider this try-catch code:

try
{
throw L”Catch me if you  can.”;

}
catch(String^ ex)                    // The exception will not be caught by this
{
Console::WriteLine(L”String^: {0}”,ex);

}

315

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 315



The catch block cannot catch the object thrown here, because the throw statement throws an exception
of type const wchar_t*, not of type String^. To catch the exception as thrown, the catch block needs
to be:

try
{

throw L”Catch me if you  can.”;
}
catch(const wchar_t* ex)             // OK. The exception thrown is of this type
{
String^ exc = gcnew String(ex);
Console::WriteLine(L”wchar_t:{0}”, exc);

}

This catch block catches the exception because it now has the correct type.

To throw the exception so that it can be caught by the original catch block, you must change the code in
the try block:

try
{
throw gcnew String(L”Catch me if you  can.”);

}
catch(String^ ex)                    // OK. Exception thrown is of this type
{

Console::WriteLine(L”String^: {0}”,ex);
}

Now the exception is a String object and is thrown as type String^, a handle that references the string.

You can use function templates in your C++/CLI programs, but you have an additional capability called
generic functions that looks remarkably similar; however, there are significant differences.

Understanding Generic Functions
Although generic functions appear to do the same thing as function templates and therefore at first sight
seem superfluous, generic functions work rather differently from template functions and the differences
make them a valuable additional capability in CLR programs. When you use a function template, the
compiler generates the source code for functions that you require from the template; this generated code
is then compiled along with the rest of your program code. In some cases this can result in many func-
tions being generated and the size of the execution module may be increased substantially. On the other
hand a generic function specification is itself compiled, and when you call a function that matches the
generic function specification, actual types are substituted for the type parameters at execution time. No
extra code is generated at compile time and the code-bloat that can arise with template functions does
not occur.

Some aspects of defining a generic function depend on a knowledge of stuff that comes in later chapters
but it will all be clear eventually. I’ll provide minimal explanations here of the things that are new and
you’ll learn the detail later in the book.

316

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 316



Defining Generic Functions
You define a generic function using type parameters that are replaced by actual types when the function
is called. Here’s an example of a generic function definition:

generic<typename T> where T:IComparable
T MaxElement(array<T>^ x)
{
T max = x[0];
for(int i = 1; i < x->Length; i++)
if(max->CompareTo(x[i]) < 0)

max = x[i];
return max;

}

This generic function does the same job as the native C++ function template you saw earlier in this chap-
ter. The generic keyword in the first line identifies what follows as a generic specification and the first
line defines the type parameter for the function as T; the typename keyword between the angled brack-
ets indicates that the T that follows is the name of a type parameter in the generic function, and that this
type parameter is replaced by an actual type when the generic function is used. For a generic function
with multiple type parameters, the parameter names go between the angled brackets, each preceded by
the typename keyword and separated by commas.

The where keyword that follows the closing angled bracket introduces a constraint on the actual type
that may be substituted for T when the generic function is used. This particular constraint says that any
type that is to replace T in the generic function must implement the IComparable interface. You’ll learn
about interfaces later in the book, but for now I’ll say that it implies that the type must define the
CompareTo() function that allows two objects of the type to be compared. Without this constraint the
compiler has no knowledge of what operations are possible for the type that is to replace T because until
the generic function is used, this is completely unknown. With the constraint you can use the
CompareTo() function to compare max with an element of the array. The CompareTo() function returns
an integer value that is less than zero when the object for which it is called (max in this case) is less than
the argument, zero if it equals the argument, and greater than zero if it is greater than the argument.

The second line specifies the generic function name MaxElement, its return type T, and its parameter list.
This looks rather like an ordinary function header except that it involves the generic type parameter T.
The return type for the generic function and the array element type that is part of the parameter type
specification are both of type T, so both these types are determined when the generic function is used.

Using Generic Functions
The simplest way of calling a generic function is just to use it like any ordinary function. For example,
you could use the generic MaxElement() from the previous section like this:

array<double>^ data = {1.5, 3.5, 6.7, 4.2, 2.1};
double maxData = MaxElement(data);

The compiler is able to deduce that the type argument to the generic function is double in this instance
and generates the code to call the function accordingly. The function executes with instances of T in the
function being replaced by double. As I said earlier, this is not like a template function; there is no creation

317

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 317



of function instances at compile time. The compiled generic function is able to handle type argument
substitutions when it is called.

Note that if you pass a string literal as an argument to a generic function, the compiler deduces that the
type argument is String^, regardless of whether the string literal is a narrow string constant such as
“Hello!” or a wide string constant such as L”Hello!”.

It is possible that the compiler may not be able to deduce the type argument from a call of a generic func-
tion. In these instances you can specify the type argument(s) explicitly between angled brackets following
the function name in the call. For example, you could write the call in the previous fragment as:

double maxData = MaxElement<double>(data);

With an explicit type argument specified there is no possibility of ambiguity.

There are limitations on what types you can supply as a type argument to a generic function. A type argu-
ment cannot be a native C++ class type, nor a native pointer or reference, nor a handle to a value class type
such as int^. Thus only value class types such as int or double and tracking handles such as String^
are allowed (but not a handle to a value class type).

Let’s try a working example.

Try It Out Using a Generic Function
Here’s an example that defines and uses three generic functions:

// Ex6_10.cpp : main project file.
// Defining and using generic functions

#include “stdafx.h”

using namespace System;

// Generic function to find the maximum element in an array
generic<typename T> where T:IComparable
T MaxElement(array<T>^ x)
{
T max = x[0];
for(int i = 1; i < x->Length; i++)
if(max->CompareTo(x[i]) < 0)

max = x[i];
return max;

}

// Generic function to remove an element from an array
generic<typename T> where T:IComparable
array<T>^ RemoveElement(T element, array<T>^ data)
{
array<T>^ newData = gcnew array<T>(data->Length - 1);
int index = 0;                      // Index to elements in newData array
bool found = false;             // Indicates that the element to remove was found
for each(T item in data)

318

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 318



{
// Check for invalid index or element found
if((!found) && item->CompareTo(element) == 0)
{
found = true;
continue;

}
else
{
if(index == newData->Length)
{
Console::WriteLine(L”Element to remove not found”);
return data;

}
newData[index++] = item;

}
}
return newData;

}

// Generic function to list an array
generic<typename T> where T:IComparable
void ListElements(array<T>^ data)
{
for each(T item in data)
Console::Write(L”{0,10}”, item);

Console::WriteLine();
}

int main(array<System::String ^> ^args)
{
array<double>^ data = {1.5, 3.5, 6.7, 4.2, 2.1};
Console::WriteLine(L”Array contains:”);
ListElements(data);
Console::WriteLine(L”\nMaximum element = {0}\n”, MaxElement(data));
array<double>^ result = RemoveElement(MaxElement(data), data);
Console::WriteLine(L” After removing maximum, array contains:”);
ListElements(result);

array<int>^ numbers = {3, 12, 7, 0, 10,11};
Console::WriteLine(L”\nArray contains:”);
ListElements(numbers);
Console::WriteLine(L”\nMaximum element = {0}\n”, MaxElement(numbers));
Console::WriteLine(L”\nAfter removing maximum, array contains:”);
ListElements(RemoveElement(MaxElement(numbers), numbers));

array<String^>^ strings = {L”Many”, L”hands”, L”make”, L”light”, L”work”};
Console::WriteLine(L”\nArray contains:”);
ListElements(strings);
Console::WriteLine(L”\nMaximum element = {0}\n”, MaxElement(strings));
Console::WriteLine(L”\nAfter removing maximum, array contains:”);
ListElements(RemoveElement(MaxElement(strings), strings));
return 0;

}

319

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 319



The output from this example is:

Array contains:
1.5       3.5       6.7       4.2       2.1

Maximum element = 6.7

After removing maximum, array contains:
1.5       3.5       4.2       2.1

Array contains:
3        12         7         0        10        11

Maximum element = 12

After removing maximum, array contains:
3         7         0        10        11

Array contains:
Many     hands      make     light      work

Maximum element = work

After removing maximum, array contains:
Many     hands      make     light

How It Works
The first generic function that this example defines is MaxElement(), which is identical to the one you
saw in the preceding section that finds the maximum element in an array so I won’t discuss it again.

The next generic function, RemoveElements(), removes the element passed as the first argument
from the array specified by the second argument and the function returns a handle to the new array 
that results from the operation. You can see from the first two lines of the function definition that both
parameter types and the return type involve the type parameter, T.

generic<typename T> where T:IComparable
array<T>^ RemoveElement(T element, array<T>^ data)

The constraint on T is the same as for the first generic function and implies that whatever type is used 
as the type argument must implement the CompareTo() function to allow objects of the type to be com-
pared. The second parameter and the return type are both handles to an array of elements of type T. The
first parameter is simply type T.

The function first creates an array to hold the result:

array<T>^ newData = gcnew array<T>(data->Length - 1);

The newData array is of the same type as the second argument — an array of elements of type T — but
has one fewer elements because one element is to be removed from the original.

320

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 320



The elements are copied from the data array to the newData array in the for each loop:

int index = 0;                      // Index to elements in newData array
bool found = false;                 // Indicates that element to remove was found
for each(T item in data)
{

// Check for invalid index or element found
if((!found) && item->CompareTo(element) == 0)
{

found = true;
continue;

}
else
{

if(index == newData->Length)
{

Console::WriteLine(L”Element to remove not found”);
return data;

}
newData[index++] = item;

}
}

All elements are copied except the one identified by the first argument to the function. You use the index
variable to select the next newData array element that is to receive the next element from the data array.
Each element from data is copied unless it is equal to element, in which case found is set to true and
the continue statement skips to the next iteration. It is quite possible that an array could have more than
one element equal to the first argument and the found variable prevents subsequent elements that are the
same as element from being skipped in the loop.

You also have a check for the index variable exceeding the legal limit for indexing elements in newData.
This could arise if there is no element in the data array equal to the first argument to the function. In this
eventuality, you just return the handle to the original array.

The third generic function just lists the elements from an array of type array<T>:

generic<typename T>
void ListElements(array<T>^ data)
{

for each(T item in data)
Console::Write(L”{0,10}”, item);

Console::WriteLine();
}

This is one of the few occasions where no constraint on the type parameter is needed. There is very little
you can do with objects that are of a completely unknown type so typically generic function type param-
eters will have constraints. The operation of the function is very simple — each element from the array 
is written to the command line in an output field with a width of 10 in the for each loop. If you want,
you could add a little sophistication by adding a parameter for the field width and creating the format
string to be used as the first argument to the Write() function in the Console class. You could also add
logic to the loop to write a specific number of elements per line based on the field width.

321

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 321



The main() function exercises these generic functions with type parameters of types double, int, and
String^. Thus you can see that all three generic functions work with value types and handles. In the
second and third examples, the generic functions are used in combination in a single statement. For
example, look at this statement in the third sample use of the functions:

ListElements(RemoveElement(MaxElement(strings), strings));

The first argument to the RemoveElement() generic function is produced by the MaxElement() generic
function call, so these generic functions can be used in the same way as equivalent ordinary functions.

The compiler is able to deduce the type argument in all instances where the generic functions are used
but you could specify them explicitly if you wanted to. For example, you could write the previous state-
ment like this:

ListElements(RemoveElement<String^>(MaxElement<String^>(strings), strings));

A Calculator Program for the CLR
Let’s re-implement the calculator as a C++/CLI example. We’ll assume the same program structure and
hierarchy of functions as you saw for the native C++ program but the functions will be declared and
defined as C++/CLI functions. A good starting point is the set of function prototypes at the beginning of
the source file — I have used Ex6_11 as the CLR project name:

// Ex6_11.cpp : main project file.
// A CLR calculator supporting parentheses

#include “stdafx.h”
#include <cstdlib>                          // For exit()

using namespace System;
String^ eatspaces(String^ str);             // Function to eliminate blanks
double expr(String^ str);                   // Function evaluating an expression
double term(String^ str, int^ index);       // Function analyzing a term
double number(String^ str, int^ index);     // Function to recognize a number
String^ extract(String^ str, int^ index);   // Function to extract a substring

All the parameters are now handles; the string parameters are type String^ and the index parameter
that records the current position in the string is also a handle of type int^. Of course, a string is
returned as a handle of type String^.

The main() function implementation looks like this:

int main(array<System::String ^> ^args)
{
String^ buffer;    // Input area for expression to be evaluated

Console::WriteLine(L”Welcome to your friendly calculator.”);
Console::WriteLine(L”Enter an expression, or an empty line to quit.”);

322

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 322



for(;;)
{
buffer = eatspaces(Console::ReadLine());         // Read an input line

if(String::IsNullOrEmpty(buffer))                // Empty line ends calculator
return 0;

Console::WriteLine(L”  = {0}\n\n”,expr(buffer)); // Output value of expression
}
return 0;

}

The function is a lot shorter and easier to read. Within the indefinite for loop you call the String class
function, IsNullOrEmpty(). This function returns true if the string passed as the argument is null or
of zero length so it does exactly what you want here.

Removing Spaces from the Input String
The function to remove spaces is also simpler and shorter:

// Function to eliminate spaces from a string
String^ eatspaces(String^ str)
{
// Array to hold string without spaces
array<wchar_t>^ chars = gcnew array<wchar_t>(str->Length);
int length = 0;                      // Number of chars in array

// Copy non-space characters to chars array
for each(wchar_t ch in str)
if(ch != ‘ ‘)
chars[length++] = ch;

// Return chars array as string
return gcnew String(chars, 0, length);

}

You first create an array to accommodate the string when the spaces have been removed. This is an array
of elements of type wchar_t because strings in C++/CLI are Unicode characters. The process for remov-
ing the spaces is very simple — you copy all the characters that are not spaces from the string str to the
array, chars, keeping track of the number of characters copied in the length variable. You finally create
a new String object using a String class constructor that creates the object from elements in an array.
The first argument to the constructor is the array that is the source of characters for the string, the second
argument is the index position for the first character from the array that forms the string, and the third
argument is the total number of characters from the array that are to be used. The String class defines a
range of constructors for creating strings in various ways.

Evaluating an Arithmetic Expression
You can implement the function to evaluate an expression like this:

// Function to evaluate an arithmetic expression
double expr(String^ str)
{

323

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 323



int^ index = 0;                      // Keeps track of current character position

double value = term(str, index);     // Get first term

while(*index < str->Length)
{
switch(str[*index])                // Choose action based on current character
{
case ‘+’:                        // + found so

++(*index);                   // increment index and add
value += term(str, index);    // the next term
break;

case ‘-’:                        // - found so
++(*index);                  // decrement index and add

value -= term(str, index);     // the next term
break;

default:                         // If we reach here the string is junk
Console::WriteLine(L”Arrrgh!*#!! There’s an error.\n”);
exit(1);

}
}
return value;

}

The index variable is declared as a handle because you want to pass it to the term() function and allow
the term() function to modify the original variable. If you declared index simply as type int, the term()
function would receive a copy of the value and could not refer to the original variable to change it.

The declaration of index results in a warning message from the compiler because the statement relies on
autoboxing of the value 0 to produce the Int32 value class object that the handle references, and the warn-
ing is because people often write the statement like this but intend to initialize the handle to null. Of course,
to do this you must use nullptr as the initial value in place of 0. If you want to eliminate the warning, you
could rewrite the statement as:

int^ index = gcnew int(0);

This statement uses a constructor explicitly to create the object and initialize it with 0 so there’s no warn-
ing from the compiler.

After processing the initial term by calling the term() function, the while loop steps through the string
looking for + or - operators followed by another term. The switch statement identifies and processes
the operators. If you have been using native C++ for a while, you might be tempted to write the case
statements in the switch a little differently — for example:

// Incorrect code!! Does not work!!
case ‘+’:                             // + found so

value += term(str, ++(*index));    // increment index & add the next term
break;

Of course, this would typically be written without the first comment. This code is wrong, but why is it
wrong? The term() function expects a handle in type int^ as the second argument and that is what is

324

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 324



supplied here although maybe not as you expect. The compiler arranges for the expression ++(*index)
to be evaluated and the result stored in a temporary location. The expression indeed updates the value ref-
erenced by index, but the handle that is passed to the term() function is a handle to the temporary loca-
tion holding the result of evaluating the expression, not the handle index. This handle is produced by
autoboxing the value stored in the temporary location. When the term() function updates, the value refer-
enced by the handle that is passed to it the temporary location is updated, not the location referenced by
index; thus all the updates to the index position of the string made in the term() function are lost. If you
expect a function to update a variable in the calling program, you must not use an expression as the func-
tion argument — you must always use the handle variable name.

Obtaining the Value of a Term
As in the native C++ version, the term() function steps through the string that is passed as the first
argument, starting at the character position referenced by the second argument:

// Function to get the value of a term
double term(String^ str, int^ index)
{
double value = number(str, index);        // Get the first number in the term

// Loop as long as we have characters and a good operator
while(*index < str->Length)
{
if(str[*index] == L’*’)                 // If it’s multiply,
{
++(*index);                           // increment index and
value *= number(str, index);          // multiply by next number

}
else if( str[*index] == L’/’)           // If it’s divide
{
++(*index);                           // increment index and
value /= number(str, index);          // divide by next number

}
else
break;                                // Exit the loop

}
// We’ve finished, so return what we’ve got
return value;

}

After calling the number() function to get the value of the first number or parenthesized expression in 
a term, the function steps through the string in the while loop. The loop continues while there are still
characters in the input string, as long as a * or / operator followed by another number or parenthesized
expression is found.

Evaluating a Number
The number function extracts and evaluates a parenthesized expression if there is one; otherwise, it
determines the value of the next number in the input:

// Function to recognize a number
double number(String^ str, int^ index)
{
double value = 0.0;                       // Store for the resulting value

325

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 325



// Check for expression between parentheses
if(str[*index] == L’(‘ )                  // Start of parentheses
{
++(*index);
String^ substr = extract(str, index);   // Extract substring in brackets
return expr(substr);                    // Return substring value

}

// Loop accumulating leading digits
while((*index < str->Length) && Char::IsDigit(str, *index))
{
value = 10.0*value + Char::GetNumericValue(str[(*index)]);
++(*index);

}

// Not a digit when we get to here
if((*index == str->Length) || str[*index] != ‘.’)   // so check for decimal point
return value;                                     // and if not, return value

double factor = 1.0;                 // Factor for decimal places
++(*index);                          // Move to digit

// Loop as long as we have digits
while((*index < str->Length) && Char::IsDigit(str, *index))
{
factor *= 0.1;                     // Decrease factor by factor of 10
value = value + Char::GetNumericValue(str[*index])*factor; // Add decimal place
++(*index);

}

return value;                        // On loop exit we are done
}

As in the native C++ version, the extract() function is used to extract a parenthesized expression and
the substring that results is passed to the expr() function to be evaluated. If there’s no parenthesized
expression — indicated by the absence of an opening parenthesis, the input is scanned for a number,
which is a sequence of zero or more digits followed by an optional decimal point plus fractional digits.
The IsDigit() function in the Char class returns true if a character is a digit and false otherwise. The
character here is in the string passed as the first argument to the function at the index position specified
by the second argument. There’s another version if the IsDigit() function that accepts a single argu-
ment of type wchar_t so you could use this with the argument str[*index]. The GetNumericValue()
function in the Char class returns the value of a Unicode digit character that you pass as the argument as
a value of type double. There’s another version of this function to which you can pass a string handle and
an index position to specify the character.

326

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 326



Extracting a Parenthesized Substring
You can implement the extract() function that returns a parenthesized substring from the input like this:

// Function to extract a substring between parentheses
String^ extract(String^ str, int^ index)
{
String^ substr;                      // Substring to return
int numL = 0;                        // Count of left parentheses found
int bufindex = *index;               // Save starting value for index

while(*index < str->Length)
{
switch(str[*index])
{
case ‘)’:
if(numL == 0)
{
array<wchar_t>^ substrChars = gcnew array<wchar_t>(*index - bufindex);
str->CopyTo(bufindex, substrChars, 0, substrChars->Length);
substr = gcnew String(substrChars);
++(*index);

return substr;               // Return substring in new memory
}
else
numL--;                      // Reduce count of ‘(‘ to be matched

break;

case ‘(‘:
numL++;                        // Increase count of ‘(‘ to be

// matched
break;

}
++(*index);

}

Console::WriteLine(L”Ran off the end of the expression, must be bad input.”);
exit(1);
return substr;

}

Again, the strategy is the same as the native C++ version, but the differences are in the details. To find the
complementary right parenthesis the function keeps track of how many new left parentheses are found
using the variable numL. The substring is extracted when a right parenthesis is found and the left parenthesis
count in numL is zero. The substring is copied into the substrChars array using the CopyTo() function

327

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 327



for the String object, str. The function copies characters beginning at the string index position speci-
fied by the first argument into the array specified by the second argument; the third argument defines
the starting element in the array to receive characters and the fourth argument is the number of charac-
ters to be copied. You create the string that is returned as the result of the extraction by using the String
class constructor that creates an object from all the elements in the array, substrChars, that is passed as
the argument.

If you assemble all the functions in a CLR console project you’ll have a C++/CLI implementation of the
calculator running with the CLR. The output should be much the same as the native C++ version.

Summary
You now have a reasonably comprehensive knowledge of writing and using functions. You’ve used a
pointer to a function in a practical context for handling out-of-memory conditions in the free store, and
you have used overloading to implement a set of functions providing the same operation with different
types of parameters. You’ll see more about overloading functions in the following chapters.

The important bits that you learned in this chapter include:

❑ A pointer to a function stores the address of a function, plus information about the number and
types of parameters and return type for a function.

❑ You can use a pointer to a function to store the address of any function with the appropriate
return type, and number and types of parameters.

❑ You can use a pointer to a function to call the function at the address it contains. You can also
pass a pointer to a function as a function argument.

❑ An exception is a way of signaling an error in a program so that the error handling code can be
separated from the code for normal operations.

❑ You throw an exception with a statement that uses the keyword throw.

❑ Code that may throw exceptions should be placed in a try block, and the code to handle a par-
ticular type of exception is placed in a catch block immediately following the try block. There
can be several catch blocks following a try block, each catching a different type of exception.

❑ Overloaded functions are functions with the same name, but with different parameter lists.

❑ When you call an overloaded function, the function to be called is selected by the compiler
based on the number and types of the arguments that you specify.

❑ A function template is a recipe for generating overloaded functions automatically.

❑ A function template has one or more arguments that are type variables. An instance of the func-
tion template — that is, a function definition — is created by the compiler for each function call
that corresponds to a unique set of type arguments for the template.

❑ You can force the compiler to create a particular instance from a function template by specifying
the function you want in a prototype declaration.

You also got some experience of using several functions in a program by working through the calculator
example. But remember that all the uses of functions up to now have been in the context of a traditional

328

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 328



procedural approach to programming. When you come to look at object-oriented programming, you will
still use functions extensively, but with a very different approach to program structure and to the design
of a solution to a problem.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Consider the following function:

int ascVal(size_t i, const char* p)
{

// print the ASCII value of the char
if (!p || i > strlen(p))

return -1;
else

return p[i];
}

Write a program that will call this function through a pointer and verify that it works. You’ll
need an #include directive for the <cstring> header in your program to use the strlen()
function.

2. Write a family of overloaded functions called equal(), which take two arguments of the same
type, returning 1 if the arguments are equal, and 0 otherwise. Provide versions having char,
int, double, and char* arguments. (Use the strcmp() function from the runtime library to
test for equality of strings. If you don’t know how to use strcmp(), search for it in the online
help. You’ll need an #include directive for the <cstring> header file in your program.) Write
test code to verify that the correct versions are called.

3. At present, when the calculator hits an invalid input character, it prints an error message, but
doesn’t show you where the error was in the line. Write an error routine that prints out the input
string, putting a caret (^) below the offending character, like this:

12 + 4,2*3
^

4. Add an exponentiation operator, ^, to the calculator, fitting it in alongside * and /. What are the
limitations of implementing it in this way, and how can you overcome them?

5. (Advanced) Extend the calculator so it can handle trig and other math functions, allowing you
to input expressions such as:

2 * sin(0.6)

The math library functions all work in radians; provide versions of the trigonometric functions
so that the user can use degrees, for example:

2 * sind(30)

329

Chapter 6: More about Program Structure

25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 329



25905c06.qxd:WroxPro  2/21/08  8:50 AM  Page 330



7
Defining Your 

Own Data Types

This chapter is about creating your own data types to suit your particular problem. It’s also about
creating objects, the building blocks of object-oriented programming. An object can seem a bit mys-
terious to the uninitiated but, as you will see in this chapter, an object can be just an instance of one
of your own data types.

In this chapter, you will learn about:

❑ Structures and how they are used

❑ Classes and how they are used

❑ The basic components of a class and how you define class types

❑ Creating and using objects of a class

❑ Controlling access to members of a class

❑ Constructors and how to create them

❑ The default constructor

❑ References in the context of classes

❑ The copy constructor and how it is implemented

❑ How C++/CLI classes differ from native C++ classes

❑ Properties in a C++/CLI class and how you define and use them

❑ Literal fields and how you define and use them

❑ initonly fields and how you define and use them

❑ What a static constructor is

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 331



The struct in C++
A structure is a user-defined type that you define using the keyword struct, so it is often referred to 
as a struct. The struct originated back in the C language, and C++ incorporates and expands on the 
C struct. A struct in C++ is functionally replaceable by a class insofar as anything you can do with 
a struct you can also achieve by using a class; however, because Windows was written in C before C++
became widely used, the struct appears pervasively in Windows programming. It is also widely used
today, so you really need to know something about structs. We’ll first take a look at (C-style) structs 
in this chapter before exploring the more extensive capabilities offered by classes.

What Is a struct?
Almost all the variables that you have seen up to now have been able to store a single type of entity — a
number of some kind, a character, or an array of elements of the same type. The real world is a bit more
complicated than that, and just about any physical object you can think of needs several items of data to
describe it even minimally. Think about the information that might be needed to describe something as
simple as a book. You might consider title, author, publisher, date of publication, number of pages, price,
topic or classification, and ISBN number just for starters, and you can probably come up with a few
more without too much difficulty. You could specify separate variables to contain each of the parame-
ters that you need to describe a book, but ideally you would want to have a single data type, BOOK say,
which embodied all of these parameters. I’m sure you won’t be surprised to hear that this is exactly
what a struct can do for you.

Defining a struct
Let’s stick with the notion of a book, and suppose that you just want to include the title, author, publisher,
and year of publication within your definition of a book. You could declare a structure to accommodate
this as follows:

struct BOOK
{
char Title[80];
char Author[80];
char Publisher[80];
int Year;

};

This doesn’t define any variables, but it actually creates a new type for variables and the name of the type
is BOOK. The keyword struct defines BOOK as such, and the elements making up an object of this type are
defined within the braces. Note that each line defining an element in the struct is terminated by a semi-
colon, and that a semicolon also appears after the closing brace. The elements of a struct can be of any
type, except the same type as the struct being defined. You couldn’t have an element of type BOOK
included in the structure definition for BOOK, for example. You may think this to be a limitation, but
note that you could include a pointer to a variable of type BOOK, as you’ll see a little later on.

The elements Title, Author, Publisher, and Year enclosed between the braces in the definition above
may also be referred to as members or fields of the BOOK structure. Each object of type BOOK contains the

332

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 332



members Title, Author, Publisher, and Year. You can now create variables of type BOOK in exactly the
same way that you create variables of any other type:

BOOK Novel;                            // Declare variable Novel of type BOOK

This declares a variable with the name Novel that you can now use to store information about a book.
All you need now is to understand how you get data into the various members that make up a variable
of type BOOK.

Initializing a struct
The first way to get data into the members of a struct is to define initial values in the declaration.
Suppose you wanted to initialize the variable Novel to contain the data for one of your favorite books,
Paneless Programming, published in 1981 by the Gutter Press. This is a story of a guy performing heroic
code development while living in an igloo, and as you probably know, inspired the famous Hollywood
box office success, Gone with the Window. It was written by I.C. Fingers, who is also the author of that
seminal three-volume work, The Connoisseur’s Guide to the Paper Clip. With this wealth of information
you can write the declaration for the variable Novel as:

BOOK Novel =
{
“Paneless Programming”,              // Initial value for Title
“I.C. Fingers”,                      // Initial value for Author
“Gutter Press”,                      // Initial value for Publisher
1981                                 // Initial value for Year

};

The initializing values appear between braces, separated by commas, in much the same way that you
defined initial values for members of an array. As with arrays, the sequence of initial values obviously
needs to be the same as the sequence of the members of the struct in its definition. Each member of the
structure Novel has the corresponding value assigned to it, as indicated in the comments.

Accessing the Members of a struct
To access individual members of a struct, you can use the member selection operator, which is a period;
this is sometimes referred to as the member access operator. To refer to a particular member, you write the
struct variable name, followed by a period, followed by the name of the member that you want to access.
To change the Year member of the Novel structure, you could write:

Novel.Year = 1988;

This would set the value of the Year member to 1988. You can use a member of a structure in exactly the
same way as any other variable of the same type as the member. To increment the member Year by two,
for example, you can write:

Novel.Year += 2;

This increments the value of the Year member of the struct, just like any other variable.

333

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 333



Try It Out Using structs
You can use another console application example to exercise a little further how referencing the members
of a struct works. Suppose you want to write a program to deal with some of the things you might find
in a yard, such as those illustrated in the professionally landscaped yard in Figure 7-1.

Figure 7-1

I have arbitrarily assigned the coordinates 0,0 to the top-left corner of the yard. The bottom-right corner
has the coordinates 100,120. Thus, the first coordinate value is a measure of the horizontal position rela-
tive to the top-left corner, with values increasing from left to right, and the second coordinate is a meas-
ure of the vertical position from the same reference point, with values increasing from top to bottom.
Figure 7-1 also shows the position of the pool and that of the two huts relative to the top-left corner of
the yard. Because the yard, huts, and pool are all rectangular, you could define a struct type to repre-
sent any of these objects:

struct RECTANGLE
{

House

Pool

Position 0,0

Position 100,120

Hut

70

30

10

25

25

70

9
0

1
1

0

4
0

8
0

1
0

3
0

Hut

334

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  10:15 AM  Page 334



int Left;                            // Top-left point
int Top;                             // coordinate pair

int Right;                           // Bottom-right point
int Bottom;                          // coordinate pair

};

The first two members of the RECTANGLE structure type correspond to the coordinates of the top-left point
of a rectangle, and the next two to the coordinates of the bottom-right point. You can use this in an elemen-
tary example dealing with the objects in the yard as follows:

// Ex7_01.cpp
// Exercising structures in the yard
#include <iostream>
using std::cout;
using std::endl;

// Definition of a struct to represent rectangles
struct RECTANGLE
{
int Left;                            // Top-left point
int Top;                             // coordinate pair

int Right;                           // Bottom-right point
int Bottom;                          // coordinate pair

};

// Prototype of function to calculate the area of a rectangle
long Area(RECTANGLE& aRect);

// Prototype of a function to move a rectangle
void MoveRect(RECTANGLE& aRect, int x, int y);

int main(void)
{
RECTANGLE Yard = { 0, 0, 100, 120 };
RECTANGLE Pool = { 30, 40, 70, 80 };
RECTANGLE Hut1, Hut2;

Hut1.Left = 70;
Hut1.Top = 10;
Hut1.Right = Hut1.Left + 25;
Hut1.Bottom = 30;

Hut2 = Hut1;                         // Define Hut2 the same as Hut1
MoveRect(Hut2, 10, 90);              // Now move it to the right position

cout << endl
<< “Coordinates of Hut2 are “
<< Hut2.Left << “,” << Hut2.Top << “ and “
<< Hut2.Right << “,” << Hut2.Bottom;

cout << endl
<< “The area of the yard is “
<< Area(Yard);

335

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 335



cout << endl
<< “The area of the pool is “
<< Area(Pool)
<< endl;

return 0;
}

// Function to calculate the area of a rectangle
long Area(RECTANGLE& aRect)
{
return (aRect.Right - aRect.Left)*(aRect.Bottom - aRect.Top);

}

// Function to Move a Rectangle
void MoveRect(RECTANGLE& aRect, int x, int y)
{
int length = aRect.Right - aRect.Left;    // Get length of rectangle
int width = aRect.Bottom - aRect.Top;     // Get width of rectangle

aRect.Left = x;                           // Set top-left point
aRect.Top = y;                            // to new position
aRect.Right = x + length;                 // Get bottom-right point as
aRect.Bottom = y + width;                 // increment from new position

return;
}

The output from this example is:

Coordinates of Hut2 are 10,90 and 35,110
The area of the yard is 12000
The area of the pool is 1600

How It Works
Note that the struct definition appears at global scope in this example. You’ll be able to see it in the
Class View tab for the project. Putting the definition of the struct at global scope allows you to declare
a variable of type RECTANGLE anywhere in the .cpp file. In a program with a more significant amount of
code, such definitions would normally be stored in a .h file and then added to each .cpp file where nec-
essary by using a #include directive.

You have defined two functions to process RECTANGLE objects. The function Area() calculates the area of
the RECTANGLE object that you pass as a reference argument as the product of the length and the width,
where the length is the difference between the horizontal positions of the defining points, and the width is
the difference between the vertical positions of the defining points. By passing a reference, the code runs a
little faster because the argument is not copied. The MoveRect() function modifies the defining points of
a RECTANGLE object to position it at the coordinates x, y which are passed as arguments. The position of a
RECTANGLE object is assumed to be the position of the Left, Top point. Because the RECTANGLE object is
passed as a reference, the function is able to modify the members of the RECTANGLE object directly. After

336

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 336



calculating the length and width of the RECTANGLE object passed, the Left and Top members are set to x
and y respectively, and the new Right and Bottom members are calculated by incrementing x and y by
the length and width of the original RECTANGLE object.

In the main() function, you initialize the Yard and Pool RECTANGLE variables with their coordinate
positions, as shown in Figure 7-1. The variable Hut1 represents the hut at the top-right in the illustration
and its members are set to the appropriate values using assignment statements. The variable Hut2, cor-
responding to the hut at the bottom-left of the yard, is first set to be the same as Hut1 in the assignment
statement:

Hut2 = Hut1;                           // Define Hut2 the same as Hut1

This statement results in the values of the members of Hut1 being copied to the corresponding members
of Hut2. You can only assign a struct of a given type to another of the same type. You can’t increment a
struct directly or use a struct in an arithmetic expression.

To alter the position of Hut2 to its place at the bottom-left of the yard, you call the MoveRect() function
with the coordinates of the required position as arguments. This roundabout way of getting the coordi-
nates of Hut2 is totally unnecessary and serves only to show how you can use a struct as an argument
to a function.

IntelliSense Assistance with Structures
You’ve probably noticed that the editor in Visual C++ 2008 is quite intelligent — it knows the types of vari-
ables, for instance. This is because of the IntelliSense feature. If you hover the mouse cursor over a variable
name in the editor window, it pops up a little box showing its definition. It also can help a lot with struc-
tures (and classes, as you will see) because not only does it know the types of ordinary variables, it also
knows the members that belong to a variable of a particular structure type. If your computer is reasonably
fast, as you type the member selection operator following a structure variable name, the editor pops a win-
dow showing the list of members. If you click one of the members, it shows the comment that appeared in
the original definition of the structure, so you know what it is. This is shown in Figure 7-2 using a fragment
of the previous example.

Figure 7-2

337

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 337



Now there’s a real incentive to add comments, and to keep them short and to the point. If you double-click
on a member in the list or press the Enter key when the item is highlighted, it is automatically inserted
after the member selection operator, thus eliminating one source of typos in your code. Great, isn’t it?

You can turn any or all of the IntelliSense features off if you want to via the Text Editor folder that you
get to by clicking the Tools > Options menu item, but I guess the only reason you would want to is if
your machine is too slow to make them useful. You can turn the statement-completion features on or off
on the C/C++ editor page that you select in the right options pane. If you turn them off, you can still call
them up when you want too, either through the Edit menu or through the keyboard. Pressing Ctrl+J,
for example, pops up the members for an object under the cursor. The editor also shows the parameter
list for a function when you are typing the code to call it — it pops up as soon as you enter the left paren-
thesis for the argument list. This is particularly helpful with library functions as its tough to remember
the parameter list for all of them. Of course, the #include directive for the header file must already be
there in the source code for this to work. Without it the editor has no idea what the library function is.
You will see more things that the editor can help with as you learn more about classes.

After that interesting little diversion, let’s get back to structures.

The struct RECT
Rectangles are used a great deal in Windows programs. For this reason, there is a RECT structure prede-
fined in the header file windows.h. Its definition is essentially the same as the structure that you defined
in the last example:

struct RECT
{
int left;                            // Top-left point
int top;                             // coordinate pair

int right;                           // Bottom-right point
int bottom;                          // coordinate pair

};

This struct is usually used to define rectangular areas on your display for a variety of purposes. Because
RECT is used so extensively, windows.h also contains prototypes for a number of functions to manipulate
and modify rectangles. For example, windows.h provides the function InflateRect() to increase the
size of a rectangle and the function EqualRect() to compare two rectangles.

MFC also defines a class called CRect, which is the equivalent of a RECT structure. After you understand
classes, you will be using this in preference to the RECT structure. The CRect class provides a very exten-
sive range of functions for manipulating rectangles, and you will be using a number of these when you
are writing Windows programs using MFC.

Using Pointers with a struct
As you might expect, you can create a pointer to a variable of a structure type. In fact, many of the func-
tions declared in windows.h that work with RECT objects require pointers to a RECT as arguments because
this avoids the copying of the whole structure when a RECT argument is passed to a function. To define a
pointer to a RECT object for example, the declaration is what you might expect:

RECT* pRect = NULL;                    // Define a pointer to RECT

338

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 338



Assuming that you have defined a RECT object, aRect, you can set the pointer to the address of this vari-
able in the normal way, using the address-of operator:

pRect = &aRect;                        // Set pointer to the address of aRect

As you saw when the idea of a struct was introduced, a struct can’t contain a member of the same type
as the struct being defined, but it can contain a pointer to a struct, including a pointer to a struct of
the same type. For example, you could define a structure like this:

struct ListElement
{
RECT aRect;                          // RECT member of structure
ListElement* pNext;                  // Pointer to a list element

};

The first element of the ListElement structure is of type RECT, and the second element is a pointer to a
structure of type ListElement — the same type as that being defined. (Remember that this element isn’t
of type ListElement, it’s of type ‘pointer to ListElement’.) This allows objects of type ListElement to
be daisy-chained together, where each ListElement can contain the address of the next ListElement
object in a chain, the last in the chain having the pointer as zero. This is illustrated in Figure 7-3.

Figure 7-3

Each box in the diagram represents an object of type ListElement and the pNext member of each
object stores the address of the next object in the chain, except for the last object where pNext is 0. This
kind of arrangement is usually referred to as a linked list. It has the advantage that as long as you know
the first element in the list, you can find all the others. This is particularly important when variables are
created dynamically, since a linked list can be used to keep track of them all. Every time a new one is cre-
ated, it’s simply added to the end of the list by storing its address in the pNext member of the last object
in the chain.

Accessing Structure Members through a Pointer
Consider the following statements:

RECT aRect = {0, 0, 100, 100};
RECT* pRect = &aRect;

LE1

members:
 aRect
 pnext = &LE2

LE4

members:
 aRect
 pnext = &LE5

LE2

members:
 aRect
 pnext = &LE3

LE3

members:
 aRect
 pnext = &LE4

LE5

No next
element

members:
 aRect
 pnext = 0

339

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 339



The first declares and defines the aRect object to be of type RECT with the first pair of members initial-
ized to (0, 0) and the second pair to (100, 100). The second statement declares pRect as a pointer to type
RECT and initializes it with the address of aRect. You can now access the members of aRect through the
pointer with a statement such as this:

(*pRect).Top += 10;                    // Increment the Top member by 10

The parentheses to dereference the pointer here are essential because the member access operator takes
precedence over the dereferencing operator. Without the parentheses, you would be attempting to treat
the pointer as a struct and to dereference the member, so the statement would not compile. After exe-
cuting this statement, the Top member will have the value 10 and, of course, the remaining members
will be unchanged.

The method that you used here to access the member of a struct through a pointer looks rather clumsy.
Because this kind of operation crops up very frequently in C++, the language includes a special operator to
enable you to express the same thing in a much more readable and intuitive form, so let’s look at that next.

The Indirect Member Selection Operator
The indirect member selection operator, ->, is specifically for accessing members of a struct (or a class)
through a pointer; this operator is also referred to as the indirect member access operator. The operator
looks like a little arrow (->) and is formed from a minus sign (-) followed by the symbol for greater than
(>). You could use it to rewrite the statement to access the Top member of aRect through the pointer pRect,
as follows:

pRect->Top += 10;                      // Increment the Top member by 10

This is much more expressive of what is going on, isn’t it? The indirect member selection operator is also
used with classes, and you’ll see a lot more of it throughout the rest of the book.

Data Types, Objects, 
Classes, and Instances

Before I get into the language, syntax, and programming techniques of classes, I’ll start by considering how
your existing knowledge relates to the concept of classes.

So far, you’ve learned that native C++ lets you create variables that can be any of a range of fundamental
data types: int, long, double and so on. You have also seen how you can use the struct keyword to
define a structure that you could then use as the type for a variable representing a composite of several
other variables.

The variables of the fundamental types don’t allow you to model real-world objects (or even imaginary
objects) adequately. It’s hard to model a box in terms of an int, for example; however, you can use the
members of a struct to define a set of attributes for such an object. You could define variables, length,
width, and height to represent the dimensions of the box and bind them together as members of a Box
structure, as follows:

struct Box
{

340

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 340



double length;
double width;
double height;

};

With this definition of a new data type called Box, you define variables of this type just as you did with
variables of the basic types. You can then create, manipulate, and destroy as many Box objects as you
need to in your program. This means that you can model objects using structs and write your pro-
grams around them. So — that’s object-oriented programming all wrapped up then?

Well, not quite. You see, object-oriented programming (OOP) is based on a number of foundations
(famously encapsulation, polymorphism, and inheritance) and what you have seen so far doesn’t quite fit
the bill. Don’t worry about what these terms mean for the moment — you’ll explore that in the rest of
this chapter and throughout the book.

The notion of a struct in C++ goes far beyond the original concept of struct in C — it incorporates the
object-oriented notion of a class. This idea of classes, from which you can create your own data types and
use them just like the native types, is fundamental to C++, and the new keyword class was introduced
into the language to describe this concept. The keywords struct and class are almost identical in C++,
except for the access control to the members, which you will find out more about later in this chapter. The
keyword struct is maintained for backwards compatibility with C, but everything that you can do with
a struct and more, you can achieve with a class.

Take a look at how you might define a class representing boxes:

class CBox
{
public:
double m_Length;
double m_Width;
double m_Height;

};

When you define CBox as a class you are essentially defining a new data type, similar to when you defined
the Box structure. The only differences here are the use of the keyword class instead of struct, and the
use of the keyword public followed by a colon that precedes the definition of the members of the class.
The variables that you define as part of the class are called data members of the class, because they are
variables that store data.

You have also called the class CBox instead of Box. You could have called the class Box, but the MFC
adopts the convention of using the prefix C for all class names, so you might as well get used to it.
MFC also prefixes data members of classes with m_ to distinguish them from other variables, so I’ll 
use this convention, too. Remember though that in other contexts where you might use C++ and in
C++/CLI in particular, this will not be the case; in some instances the convention for naming classes
and their members may be different, and in others there may be no particular convention adopted for
naming entities.

The public keyword is a clue as to the difference between a structure and a class. It just defines the
members of the class as being generally accessible, in the same way as the members of a structure are.
The members of a struct, however, are public by default. As you’ll see a little later in the chapter,
though, it’s also possible to place restrictions on the accessibility of the class members.

341

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 341



You can declare a variable, bigBox say, which represents an instance of the CBox class type like this:

CBox bigBox;

This is exactly the same as declaring a variable for a struct, or indeed for any other variable type. After
you have defined the class CBox, declarations for variables of this type are quite standard.

First Class
The notion of class was invented by an Englishman to keep the general population happy. It derives
from the theory that people who knew their place and function in society would be much more secure
and comfortable in life than those who did not. The famous Dane, Bjarne Stroustrup, who invented C++,
undoubtedly acquired a deep knowledge of class concepts while at Cambridge University in England
and appropriated the idea very successfully for use in his new language.

Class in C++ is similar to the English concept, in that each class usually has a very precise role and a per-
mitted set of actions. However, it differs from the English idea because class in C++ has largely socialist
overtones, concentrating on the importance of working classes. Indeed, in some ways it is the reverse of
the English ideal, because, as you will see, working classes in C++ often live on the backs of classes that
do nothing at all.

Operations on Classes
In C++ you can create new data types as classes to represent whatever kinds of objects you like. As you’ll
come to see, classes (and structures) aren’t limited to just holding data; you can also define member func-
tions or even operations that act between objects of your classes using the standard C++ operators. You
can define the class CBox, for example, so that the following statements work and have the meanings you
want them to have:

CBox box1;
CBox box2;

if(box1 > box2)          // Fill the larger box
box1.fill();

else
box2.fill();

You could also implement operations as part of the CBox class for adding, subtracting or even multiply-
ing boxes — in fact, almost any operation to which you could ascribe a sensible meaning in the context
of boxes.

I’m talking about incredibly powerful medicine here and it constitutes a major change in the approach
that you can take to programming. Instead of breaking down a problem in terms of what are essentially
computer-related data types (integer numbers, floating point numbers and so on) and then writing a pro-
gram, you’re going to be programming in terms of problem-related data types, in other words classes.
These classes might be named CEmployee, or CCowboy, or CCheese, or CChutney, each defined specifi-
cally for the kind of problem that you want to solve, complete with the functions and operators that are
necessary to manipulate instances of your new types.

342

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 342



Program design now starts with deciding what new application-specific data types you need to solve the
problem in hand and writing the program in terms of operations on the specifics that the problem is con-
cerned with, be it CCoffins or CCowpokes.

Terminology
I’ll first summarize some of the terminology that I will be using when discussing classes in C++:

❑ A class is a user-defined data type.

❑ Object-oriented programming (OOP) is the programming style based on the idea of defining
your own data types as classes.

❑ Declaring an object of a class type is sometimes referred to as instantiation because you are 
creating an instance of a class.

❑ Instances of a class are referred to as objects.

❑ The idea of an object containing the data implicit in its definition, together with the functions
that operate on that data, is referred to as encapsulation.

When I get into the detail of object-oriented programming, it may seem a little complicated in places, but
getting back to the basics of what you’re doing can often help to make things clearer, so always keep in
mind what objects are really about. They are about writing programs in terms of the objects that are spe-
cific to the domain of your problem. All the facilities around classes in C++ are there to make this as com-
prehensive and flexible as possible. Let’s get down to the business of understanding classes.

Understanding Classes
A class is specification of a data type that you define. It can contain data elements that can either be vari-
ables of the basic types in C++, or of other user-defined types. The data elements of a class may be single
data elements, arrays, pointers, arrays of pointers of almost any kind, or objects of other classes, so you
have a lot of flexibility in what you can include in your data type. A class also can contain functions that
operate on objects of the class by accessing the data elements that they include. So, a class combines both
the definition of the elementary data that makes up an object and the means of manipulating the data
that belongs to individual objects of the class.

The data and functions within a class are called members of the class. Oddly enough, the members of a
class that are data items are called data members and the members that are functions are called function
members or member functions. The member functions of a class are also sometimes referred to as methods;
I will not use this term in this book but keep it in mind as you may see it used elsewhere. The data members
are also referred to as fields, and this terminology is used with C++/CLI, so I will be using this terminology
from time to time.

When you define a class, you define a blueprint for a data type. This doesn’t actually define any data but
it does define what the class name means, that is, what an object of the class will consist of and what oper-
ations can be performed on such an object. It’s much the same as if you wrote a description of the basic
type double. This wouldn’t be an actual variable of type double, but a definition of how it’s made up
and how it operates. To create a variable of a basic data type, you need to use a declaration statement.
It’s exactly the same with classes, as you will see.

343

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 343



Defining a Class
Take a look again at the class example mentioned earlier — a class of boxes. You defined the CBox data
type using the keyword class as follows:

class CBox
{
public:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

The name of the class appears following the class keyword, and the three data members are defined
between the curly braces. The data members are defined for the class using the declaration statements that
you already know and love and the whole class definition is terminated with a semicolon. The names of
all the members of a class are local to the class. You can therefore use the same names elsewhere in a pro-
gram without causing any problems.

Access Control in a Class
The public keyword looks a bit like a label, but in fact it is more than that. It determines the access
attributes of the members of the class that follow it. Specifying the data members as public means that
these members of an object of the class can be accessed anywhere within the scope of the class object to
which they belong. You can also specify the members of a class as private or protected. In fact, if you
omit the access specification altogether, the members have the default attribute, private. (This is the
only difference between a class and a struct in C++ — the default access specifier for a struct is public.)
You will look into the effect of these keywords in a class definition a bit later.

Remember that all you have defined so far is a class, which is a data type. You haven’t declared any objects
of the class type. When I talk about accessing a class member, say m_Height, I’m talking about accessing
the data member of a particular object, and that object needs to be defined somewhere.

Declaring Objects of a Class
You declare objects of a class with exactly the same sort of declaration that you use to declare objects of
basic types, so you could declare objects of the CBox class type with these statements:

CBox box1;                             // Declare box1 of type CBox
CBox box2;                             // Declare box2 of type CBox

Both of the objects box1 and box2 will, of course, have their own data members. This is illustrated in
Figure 7-4.

Figure 7-4

box1

m_Length

8 bytes 8 bytes 8 bytes

m_Width m_Height

box2

m_Length

8 bytes 8 bytes 8 bytes

m_Width m_Height

344

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 344



The object name box1 embodies the whole object, including its three data members. They are not initial-
ized to anything, however — the data members of each object will simply contain junk values, so you need
to look at how you can access them for the purpose of setting them to some specific values.

Accessing the Data Members of a Class
You can refer to the data members of objects of a class using the direct member selection operator that
you used to access members of a struct. So, to set the value of the data member m_Height of the object
box2 to, say, 18.0, you could write this assignment statement:

box2.m_Height = 18.0;                  // Setting the value of a data member

You can only access the data member in this way in a function that is outside the class because the m_Height
member was specified as having public access. If it wasn’t defined as public, this statement would not
compile. You’ll see more about this shortly.

Try It Out Your First Use of Classes
Verify that you can use your class in the same way as the structure. Try it out in the following console
application:

// Ex7_02.cpp
// Creating and using boxes
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{
public:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int main()
{
CBox box1;                           // Declare box1 of type CBox
CBox box2;                           // Declare box2 of type CBox

double boxVolume = 0.0;              // Stores the volume of a box

box1.m_Height = 18.0;                // Define the values
box1.m_Length = 78.0;                // of the members of
box1.m_Width = 24.0;                 // the object box1

box2.m_Height = box1.m_Height - 10;  // Define box2
box2.m_Length = box1.m_Length/2.0;   // members in
box2.m_Width = 0.25*box1.m_Length;   // terms of box1

// Calculate volume of box1
boxVolume = box1.m_Height*box1.m_Length*box1.m_Width;

345

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 345



cout << endl
<< “Volume of box1 = “ << boxVolume;

cout << endl
<< “box2 has sides which total “
<< box2.m_Height+ box2.m_Length+ box2.m_Width
<< “ inches.”;

cout << endl                         // Display the size of a box in memory
<< “A CBox object occupies “
<< sizeof box1 << “ bytes.”;

cout <<endl;
return 0;

}

As you type in the code for main(), you should see the editor prompting you with a list of member names
whenever you enter a member selection operator following the name of a class object. You can then select
the member you want from the list by double-clicking it. Hovering the mouse cursor for a moment over
any of the variables in your code will result in the type being displayed.

How It Works
Back to console application examples again for the moment, so the project should be defined accordingly.
Everything here works, as you would have expected from your experience with structures. The definition
of the class appears outside of the function main() and, therefore, has global scope. This enables you to
declare objects in any function in the program and causes the class to show up in the Class View tab once
the program has been compiled.

You have declared two objects of type CBox within the function main(), box1 and box2. Of course, as
with variables of the basic types, the objects box1 and box2 are local to main(). Objects of a class type
obey the same rules with respect to scope as variables declared as one of the basic types (such as the
variable boxVolume used in this example).

The first three assignment statements set the values of the data members of box1. You define the val-
ues of the data members of box2 in terms of the data members of box1 in the next three assignment
statements.

You then have a statement that calculates the volume of box1 as the product of its three data mem-
bers, and this value is output to the screen. Next, you output the sum of the data members of box2
by writing the expression for the sum of the data members directly in the output statement. The final
action in the program is to output the number of bytes occupied by box1, which is produced by the
operator sizeof.

If you run this program, you should get this output:

Volume of box1 = 33696
box2 has sides which total 66.5 inches.
A CBox object occupies 24 bytes.

346

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 346



The last line shows that the object box1 occupies 24 bytes of memory, which is a result of having 3 data
members of 8 bytes each. The statement that produced the last line of output could equally well have
been written like this:

cout << endl                         // Display the size of a box in memory
<< “A CBox object occupies “
<< sizeof (CBox) << “ bytes.”;

Here, I have used the type name between parentheses, rather than a specific object name as the operand
for the sizeof operator. You’ll remember that this is standard syntax for the sizeof operator, as you saw
in Chapter 4.

This example has demonstrated the mechanism for accessing the public data members of a class. It also
shows that they can be used in exactly the same way as ordinary variables. You are now ready to break
new ground by taking a look at member functions of a class.

Member Functions of a Class
A member function of a class is a function that has its definition or its prototype within the class defini-
tion. It operates on any object of the class of which it is a member, and has access to all the members of a
class for that object.

Try It Out Adding a Member Function to CBox
To see how you access the members of the class from within a function member, create an example
extending the CBox class to include a member function that calculates the volume of the CBox object.

// Ex7_03.cpp
// Calculating the volume of a box with a member function
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{

public:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

// Function to calculate the volume of a box
double Volume()
{
return m_Length*m_Width*m_Height;

}
};

int main()
{

347

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 347



CBox box1;                           // Declare box1 of type CBox
CBox box2;                           // Declare box2 of type CBox

double boxVolume = 0.0;              // Stores the volume of a box

box1.m_Height = 18.0;                // Define the values
box1.m_Length = 78.0;                // of the members of
box1.m_Width = 24.0;                 // the object box1

box2.m_Height = box1.m_Height - 10;  // Define box2
box2.m_Length = box1.m_Length/2.0;   // members in
box2.m_Width = 0.25*box1.m_Length;   // terms of box1

boxVolume = box1.Volume();           // Calculate volume of box1
cout << endl

<< “Volume of box1 = “ << boxVolume;

cout << endl
<< “Volume of box2 = “
<< box2.Volume();

cout << endl
<< “A CBox object occupies “
<< sizeof box1 << “ bytes.”;

cout << endl;
return 0;

}

How It Works
The new code that you add to the CBox class definition is shaded. It’s just the definition of the Volume()
function, which is a member function of the class. It also has the same access attribute as the data mem-
bers: public. This is because every class member that you declare following an access attribute will have
that access attribute, until another access attribute is specified within the class definition. The Volume()
function returns the volume of a CBox object as a value of type double. The expression in the return
statement is just the product of the three data members of the class.

There’s no need to qualify the names of the class members in any way when you access them in member
functions. The unqualified member names automatically refer to the members of the object that is cur-
rent when the member function is executed.

The member function Volume() is used in the highlighted statements in main(), after initializing the data
members (as in the first example). Using the same name for a variable in main() causes no conflict or prob-
lem. You can call a member function of a particular object by writing the name of the object to be processed,
followed by a period, followed by the member function name. As noted previously, the function automati-
cally accesses the data members of the object for which it was called, so the first use of Volume() calculates
the volume of box1. Using only the name of a member will always refer to the member of the object for
which the member function has been called.

348

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 348



The member function is used a second time directly in the output statement to produce the volume of
box2. If you execute this example, it produces this output:

Volume of box1 = 33696
Volume of box2 = 6084
A CBox object occupies 24 bytes.

Note that the CBox object is still the same number of bytes. Adding a function member to a class doesn’t
affect the size of the objects. Obviously, a member function has to be stored in memory somewhere,
but there’s only one copy regardless of how many class objects you create, and the memory occupied
by member functions isn’t counted when the sizeof operator produces the number of bytes that an
object occupies.

The names of the class data members in the member function automatically refer to the data members of
the specific object used to call the function, and the function can only be called for a particular object of the
class. In this case, this is done by using the direct member access operator with the name of an object.

If you try to call a member function without specifying an object name, your program will not compile.

Positioning a Member Function Definition
A member function definition need not be placed inside the class definition. If you want to put it outside
the class definition, you need to put the prototype for the function inside the class. If you rewrite the pre-
vious class with the function definition outside, the class definition looks like this:

class CBox                             // Class definition at global scope
{
public:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches
double Volume(void);               // Member function prototype

};

Now you need to write the function definition, but because it appears outside the definition of the class,
there has to be some way of telling the compiler that the function belongs to the class CBox. This is done
by prefixing the function name with the name of the class and separating the two with the scope resolu-
tion operator, ::, which is formed from two successive colons. The function definition would now look
like this:

// Function to calculate the volume of a box
double CBox::Volume()
{
return m_Length*m_Width*m_Height;

}

349

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 349



It produces the same output as the last example; however, it isn’t exactly the same program. In the second
case, all calls to the function are treated in the way that you’re already familiar with. However, when you
define a function within the definition of the class, as in Ex7_03.cpp, the compiler implicitly treats the
function as an inline function.

Inline Functions
With an inline function, the compiler tries to expand the code in the body of the function in place of a
call to the function. This avoids much of the overhead of calling the function and, therefore, speeds up
your code. This is illustrated in Figure 7-5.

Figure 7-5

Of course, the compiler ensures that expanding a function inline doesn’t cause any problems with 
variable names or scope.

The compiler may not always be able to insert the code for a function inline (such as with recursive func-
tions or functions for which you have obtained an address), but generally it will work. It’s best used for
very short, simple functions, such as our function Volume() in the CBox class because such functions exe-
cute faster and inserting the body code does not significantly increase the size of the executable module.

With the function definition outside of the class definition, the compiler treats the function as a normal
function and a call of the function will work in the usual way; however, it’s also possible to tell the com-
piler that, if possible, you would like the function to be considered as inline. This is done by simply
placing the keyword inline at the beginning of the function header. So, for this function, the defini-
tion would be as follows:

// Function to calculate the volume of a box
inline double CBox::Volume()
{
return m_Length*m_Width*m_Height;

}

int main(void) 

{ 

 ... 

 function(); 

 { body } 

 ... 

 function(); 

 { body } 

 .... 

} 

Function declared as 
inline in a class 

inline void function() 
{ body } 

The compiler replaces calls
of inline function with body

code for the function,
suitably adjusted to avoid

problems with variable
names or scope.

350

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 350



With this definition for the function, the program would be exactly the same as the original. This enables
you to put the member function definitions outside of the class definition, if you so choose, and still retain
the execution performance benefits of inlining.

You can apply the keyword inline to ordinary functions in your program that have nothing to do with
classes and get the same effect. Remember, however, that it’s best used for short, simple functions.

You now need to understand a little more about what happens when you declare an object of a class.

Class Constructors
In the previous program example, you declared the CBox objects, box1 and box2, and then laboriously
worked through each of the data members for each object in order to assign an initial value to it. This is
unsatisfactory from several points of view. First of all, it would be easy to overlook initializing a data
member, particularly with a class that had many more data members than our CBox class. Initializing 
the data members of several objects of a complex class could involve pages of assignment statements.
The final constraint on this approach arises when you get to defining data members of a class that don’t
have the attribute public — you won’t be able to access them from outside the class anyway. There has
to be a better way, and of course there is — it’s known as the class constructor.

What Is a Constructor?
A class constructor is a special function in a class that is responsible for creating new objects when
required. A constructor therefore provides the opportunity to initialize objects as they are created and 
to ensure that data members only contain valid values. A class may have several constructors enabling
you to create objects in various ways.

You have no leeway in naming the constructors in a class — they always have the same name as the class
in which they are defined. The function CBox(), for example, is a constructor for our class CBox. It also has
no return type. It’s wrong to specify a return type for a constructor; you must not even write it as void. The
primary purpose of a class constructor is to assign initial values to the data elements of the class, and no
return type for a constructor is necessary or permitted. If you inadvertently specify a return type for a con-
structor, the compiler will report it as an error with error number C2380.

Try It Out Adding a Constructor to the CBox class
Let’s extend our CBox class to incorporate a constructor.

// Ex7_04.cpp
// Using a constructor
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{

351

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 351



public:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

// Constructor definition
CBox(double lv, double bv, double hv)
{
cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

// Function to calculate the volume of a box
double Volume()
{

return m_Length* m_Width* m_Height;
}

};

int main()
{
CBox box1(78.0,24.0,18.0);           // Declare and initialize box1
CBox cigarBox(8.0,5.0,1.0);          // Declare and initialize cigarBox

double boxVolume = 0.0;              // Stores the volume of a box

boxVolume = box1.Volume();           // Calculate volume of box1
cout << endl

<< “Volume of box1 = “ << boxVolume;

cout << endl
<< “Volume of cigarBox = “
<< cigarBox.Volume();

cout << endl;
return 0;

}

How It Works
The CBox()constructor has been written with three parameters of type double, corresponding to the ini-
tial values for the m_Length, m_Width, and m_Height members of a CBox object. The first statement in
the constructor outputs a message so that you can tell when it’s been called. You wouldn’t do this in pro-
duction programs, but because it’s very helpful in showing when a constructor is called, it’s often used
when testing a program. I’ll use it regularly for the purposes of illustration. The code in the body of the
constructor is very simple. It just assigns the arguments that you pass to the constructor when you call it
to the corresponding data members. If necessary, you could also include checks that valid, non-negative
arguments are supplied and, in a real context, you probably would want to do this, but our primary inter-
est here is in seeing how the mechanism works.

Within main(), you declare the object box1 with initializing values for the data members m_Length,
m_Width, and m_Height, in sequence. These are in parentheses following the object name. This uses 

352

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 352



the functional notation for initialization that, as you saw in Chapter 2, can also be applied to initializing
ordinary variables of basic types. You also declare a second object of type CBox, called cigarBox, which
also has initializing values.

The volume of box1 is calculated using the member function Volume() as in the previous example and
is then displayed on the screen. You also display the value of the volume of cigarBox. The output from
the example is:

Constructor called.
Constructor called.
Volume of box1 = 33696
Volume of cigarBox = 40

The first two lines are output from the two calls of the constructor CBox(), once for each object
declared. The constructor that you have supplied in the class definition is automatically called when a
CBox object is declared, so both CBox objects are initialized with the initializing values appearing in the
declaration. These are passed to the constructor as arguments, in the sequence that they are written in 
the declaration. As you can see, the volume of box1 is the same as before and cigarBox has a volume
looking suspiciously like the product of its dimensions, which is quite a relief.

The Default Constructor
Try modifying the last example by adding the declaration for box2 that you had previously in Ex7_03.cpp:

CBox box2;                             // Declare box2 of type CBox

Here, you’ve left box2 without initializing values. When you rebuild this version of the program, you
get the error message:

error C2512: ‘CBox’: no appropriate default constructor available

This means that the compiler is looking for a default constructor for box2 (also referred to as the noarg
constructor because it doesn’t require arguments when it is called) because you haven’t supplied any
initializing values for the data members. A default constructor is one that does not require any arguments
to be supplied, which can be either a constructor that has no parameters specified in the constructor
definition, or one whose arguments are all optional. Well, this statement was perfectly satisfactory in
Ex7_02.cpp, so why doesn’t it work now?

The answer is that the previous example used a default no-argument constructor that was supplied by the
compiler, and the compiler provided this constructor because you didn’t supply one. Because in this exam-
ple you did supply a constructor, the compiler assumed that you were taking care of everything and didn’t
supply the default. So, if you still want to use declarations for CBox objects that aren’t initialized, you have
to include the default constructor yourself. What exactly does the default constructor look like? In the sim-
plest case, it’s just a constructor that accepts no arguments; it doesn’t even need to do anything:

CBox()                       // Default constructor
{}                           // Totally devoid of statements

You can see such a constructor in action.

353

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 353



Try It Out Supplying a Default Constructor
Let’s add our version of the default constructor to the last example, along with the declaration for box2,
plus the original assignments for the data members of box2. You must enlarge the default constructor
just enough to show that it is called. Here is the next version of the program:

// Ex7_05.cpp
// Supplying and using a default constructor
#include <iostream >
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{
public:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

// Constructor definition
CBox(double lv, double bv, double hv)
{

cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

// Default constructor definition
CBox()
{
cout << endl << “Default constructor called.”;

}

// Function to calculate the volume of a box
double Volume()
{

return m_Length*m_Width*m_Height;
}

};

int main()
{
CBox box1(78.0,24.0,18.0);           // Declare and initialize box1
CBox box2;                           // Declare box2 - no initial values
CBox cigarBox(8.0, 5.0, 1.0);        // Declare and initialize cigarBox

double boxVolume = 0.0;              // Stores the volume of a box

boxVolume = box1.Volume();           // Calculate volume of box1
cout << endl

<< “Volume of box1 = “ << boxVolume;

354

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 354



box2.m_Height = box1.m_Height - 10;  // Define box2
box2.m_Length = box1.m_Length / 2.0; // members in
box2.m_Width = 0.25*box1.m_Length;   // terms of box1

cout << endl
<< “Volume of box2 = “
<< box2.Volume();

cout << endl
<< “Volume of cigarBox = “
<< cigarBox.Volume();

cout << endl;
return 0;

}

How It Works
Now that you have included your own version of the default constructor, there are no error messages
from the compiler and everything works. The program produces this output:

Constructor called.
Default constructor called.
Constructor called.
Volume of box1 = 33696
Volume of box2 = 6084
Volume of cigarBox = 40

All that the default constructor does is display a message. Evidently, it was called when you declared the
object box2. You also get the correct value for the volumes of all three CBox objects, so the rest of the pro-
gram is working as it should.

One aspect of this example that you may have noticed is that you now know you can overload construc-
tors just as you overloaded functions in Chapter 6. You have just executed an example with two constructors
that differ only in their parameter list. One has three parameters of type double and the other has no param-
eters at all.

Assigning Default Parameter Values in a Class
When discussing functions, you saw how you could specify default values for the parameters to a func-
tion in the function prototype. You can also do this for class member functions, including constructors. If
you put the definition of the member function inside the class definition, you can put the default values
for the parameters in the function header. If you include only the prototype of a function in the class def-
inition, the default parameter values should go in the prototype.

If you decided that the default size for a CBox object was a unit box with all sides of length 1, you could
alter the class definition in the last example to this:

class CBox                             // Class definition at global scope
{

355

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 355



public:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

// Constructor definition
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)
{

cout << endl << “Constructor called.”;
m_Length = lv;                      // Set values of
m_Width = bv;                       // data members
m_Height = hv;

}

// Default constructor definition
CBox()
{

cout << endl << “Default constructor called.”;
}

// Function to calculate the volume of a box
double Volume()
{

return m_Length*m_Width*m_Height;
}

};

If you make this change to the last example, what happens? You get another error message from the
compiler, of course. Amongst a lot of other stuff, you get these useful comments from the compiler:

warning C4520: ‘CBox’: multiple default constructors specified
error C2668: ‘CBox::CBox’: ambiguous call to overloaded function

This means that the compiler can’t work out which of the two constructors to call — the one for which
you have set default values for the parameters or the constructor that doesn’t accept any parameters.
This is because the declaration of box2 requires a constructor without parameters and either constructor
can now be called without parameters. The immediately obvious solution to this is to get rid of the con-
structor that accepts no parameters. This is actually beneficial. Without this constructor, any CBox object
declared without being explicitly initialized will automatically have its members initialized to 1.

Try It Out Supplying Default Values for Constructor Arguments
You can demonstrate this with the following simplified example:

// Ex7_06.cpp
// Supplying default values for constructor arguments
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{

356

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 356



public:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

// Constructor definition
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)
{
cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

// Function to calculate the volume of a box
double Volume()
{
return m_Length*m_Width*m_Height;

}
};

int main()
{
CBox box2;                           // Declare box2 - no initial values

cout << endl
<< “Volume of box2 = “
<< box2.Volume();

cout << endl;
return 0;

}

How It Works
You only declare a single uninitialized CBox variable — box2 — because that’s all you need for demon-
stration purposes. This version of the program produces the following output:

Constructor called.
Volume of box2 = 1

This shows that the constructor with default parameter values is doing its job of setting the values of
objects that have no initializing values specified.

You should not assume from this that this is the only, or even the recommended, way of implementing
the default constructor. There will be many occasions where you won’t want to assign default values in
this way, in which case you’ll need to write a separate default constructor. There will even be times when
you don’t want to have a default constructor operating at all, even though you have defined another con-
structor. This would ensure that all declared objects of a class must have initializing values explicitly spec-
ified in their declaration.

357

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 357



Using an Initialization List in a Constructor
Previously, you initialized the members of an object in the class constructor using explicit assignment.
You could also have used a different technique, using what is called an initialization list. I can demon-
strate this with an alternative version of the constructor for the class CBox:

// Constructor definition using an initialization list
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(bv), m_Height(hv)
{
cout << endl << “Constructor called.”;

}

The way this constructor definition is written assumes that it appears within the body of the class defini-
tion. Now the values of the data members are not set in assignment statements in the body of the construc-
tor. As in a declaration, they are specified as initializing values using functional notation and appear in the
initializing list as part of the function header. The member m_Length is initialized by the value of lv, for
example. This can be more efficient than using assignments as you did in the previous version. If you sub-
stitute this version of the constructor in the previous example, you will see that it works just as well.

Note that the initializing list for the constructor is separated from the parameter list by a colon and each
of the initializers is separated by a comma. This technique for initializing parameters in a constructor is
important, because, as you will see later, it’s the only way of setting values for certain types of data mem-
bers of an object. The MFC also relies heavily on the initialization list technique.

Private Members of a Class
Having a constructor that sets the values of the data members of a class object but still admits the pos -
sibility of any part of a program being able to mess with what are essentially the guts of an object is
almost a contradiction in terms. To draw an analogy, after you have arranged for a brilliant surgeon
such as Dr. Kildare, whose skills were honed over years of training, to do things to your insides, let-
ting the local plumber or bricklayer have a go hardly seems appropriate. You need some protection 
for your class data members.

You can get the security you need by using the keyword private when you define the class members.
Class members that are private can, in general, be accessed only by member functions of a class. There’s
one exception, but we’ll worry about that later. A normal function has no direct means of accessing the
private members of a class. This is shown in Figure 7-6.

Having the possibility of specifying class members as private also enables you to separate the interface
to the class from its internal implementation. The interface to a class is composed of the public members
and the public member functions in particular because they can provide indirect access to all the mem-
bers of a class, including the private members. By keeping the internals of a class private, you can later
modify them to improve performance for example without necessitating modifications to the code that
uses the class through its public interface. To keep data and function members of a class safe from unnec-
essary meddling, it’s good practice to declare those that don’t need to be exposed as private. Only make
public what is essential to the use of your class.

358

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 358



Figure 7-6

Try It Out Private Data Members
You can rewrite the CBox class to make its data members private.

// Ex7_07.cpp
// A class with private members
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{
public:
// Constructor definition using an initialisation list
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(bv), m_Height(hv)
{
cout << endl << “Constructor called.”;

}

// Function to calculate the volume of a box

Class Object 

public 
Data Members 

public 
Function Members 

private 
Data Members 

private 
Function Members 

Normal Function that 
is not in the Class 

Error 
No Access 

Error 

Free access to all m
em

bers by any m
em

ber function 

OK 

OK 

No 

No 

359

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 359



double Volume()
{
return m_Length*m_Width*m_Height;

}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int main()
{
CBox match(2.2, 1.1, 0.5);           // Declare match box
CBox box2;                           // Declare box2 - no initial values

cout << endl
<< “Volume of match = “
<< match.Volume();

// Uncomment the following line to get an error
// box2.m_Length = 4.0;

cout << endl
<< “Volume of box2 = “
<< box2.Volume();

cout << endl;

return 0;
}

How It Works
The definition of the CBox class now has two sections. The first is the public section containing the con-
structor and the member function Volume(). The second section is specified as private and contains the
data members. Now the data members can only be accessed by the member functions of the class. You
don’t have to modify any of the member functions — they can access all the data members of the class any-
way. If you uncomment the statement in the function main() that assigns a value to the m_Length member
of the object box2, however, you’ll get a compiler error message confirming that the data member is inac-
cessible. If you haven’t already done so, take a look at the members of the CBox class in Class View; you’ll
see that the icon alongside each member indicates its accessibility; a small padlock in the icon shows when
a member is private.

A point to remember is that using a constructor or a member function is now the only way to get a value
into a private data member of an object. You have to make sure that all the ways in which you might want
to set or modify private data members of a class are provided for through member functions.

You can also put functions into the private section of a class. In this case, they can only be called by other
function members of the same class. If you put the function Volume() in the private section, you will get
a compiler error from the statements that attempt to use it in the function main(). If you put the construc-
tor in the private section, you won’t be able to declare any objects of the class type.

360

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 360



The preceding example generates this output:

Constructor called.
Constructor called.
Volume of match = 1.21
Volume of box2 = 1

The output demonstrates that the class is still working satisfactorily, with its data members defined as
having the access attribute private. The major difference is that they are now completely protected
from unauthorized access and modification.

If you don’t specify otherwise, the default access attribute that applies to members of a class is
private. You could, therefore, put all your private members at the beginning of the class definition
and let them default to private by omitting the keyword. It’s better, however, to take the trouble to
explicitly state the access attribute in every case, so there can be no doubt about what you intend.

Of course, you don’t have to make all your data members private. If the application for your class
requires it, you can have some data members defined as private and some as public. It all depends 
on what you’re trying to do. If there’s no reason to make members of a class public, it is better to make
them private as it makes the class more secure. Ordinary functions won’t be able to access any of the
private members of your class.

Accessing private Class Members
On reflection, declaring the data members of a class as private is rather extreme. It’s all very well pro-
tecting them from unauthorized modification, but that’s no reason to keep their values a secret. What you
need is a Freedom of Information Act for private members.

You don’t have to start writing to your state senator to get it — it’s already available to you. All that’s
necessary is to write a member function to return the value of a data member. Look at this member
function for the class CBox:

inline double CBox::GetLength()
{
return m_Length;

}

Just to show how it looks, this has been written as a member function definition, which is external to the
class. I’ve specified it as inline, since we’ll benefit from the speed increase without increasing the size
of the code too much. Assuming that you have the declaration of the function in the public section of
the class, you can use it by writing statements such as this:

int len = box2.GetLength();            // Obtain data member length

All you need to do is to write a similar function for each data member that you want to make available to
the outside world, and their values can be accessed without prejudicing the security of the class. Of course,
if you put the definitions for these functions within the class definition, they will be inline by default.

361

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 361



The friend Functions of a Class
There may be circumstances when, for one reason or another, you want certain selected functions which
are not members of a class to, nonetheless, be able to access all the members of a class — a sort of elite
group with special privileges. Such functions are called friend functions of a class and are defined using
the keyword friend. You can either include the prototype of a friend function in the class definition, or
you can include the whole function definition. Functions that are friends of a class and are defined within
the class definition are also by default inline.

Friend functions are not members of the class, and therefore the access attributes do not apply to them.
They are just ordinary global functions with special privileges.

Imagine that you want to implement a friend function in the CBox class to compute the surface area of a
CBox object.

Try It Out Using a friend to Calculate the Surface Area
You can see how a friend function works in the following example:

// Ex7_08.cpp
// Creating a friend function of a class
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{
public:

// Constructor definition
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)
{

cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

// Function to calculate the volume of a box
double Volume()
{

return m_Length*m_Width*m_Height;
}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

// Friend function
friend double BoxSurface(CBox aBox);

362

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 362



};

// friend function to calculate the surface area of a Box object
double BoxSurface(CBox aBox)
{
return 2.0*(aBox.m_Length*aBox.m_Width +

aBox.m_Length*aBox.m_Height +
aBox.m_Height*aBox.m_Width);

}

int main()
{

CBox match(2.2, 1.1, 0.5);           // Declare match box
CBox box2;                           // Declare box2 - no initial values

cout << endl
<< “Volume of match = “
<< match.Volume();

cout << endl
<< “Surface area of match = “
<< BoxSurface(match);

cout << endl
<< “Volume of box2 = “
<< box2.Volume();

cout << endl
<< “Surface area of box2 = “
<< BoxSurface(box2);

cout << endl;
return 0;

}

How It Works
You declare the function BoxSurface() as a friend of the CBox class by writing the function prototype
with the keyword friend at the front. Since the BoxSurface() function itself is a global function, it makes
no difference where you put the friend declaration within the definition of the class, but it’s a good idea
to be consistent when you position this sort of declaration. You can see that I have chosen to position ours
after all the public and private members of the class. Remember that a friend function isn’t a member
of the class, so access attributes don’t apply.

The definition of the function follows that of the class. Note that you specify access to the data members
of the object within the definition of BoxSurface(), using the CBox object passed to the function as a
parameter. Because a friend function isn’t a class member, the data members can’t be referenced just by
their names. They each have to be qualified by the object name in exactly the same way as they might in
an ordinary function, except, of course, that an ordinary function can’t access the private members of a
class. A friend function is the same as an ordinary function, except that it can access all the members of
the class or classes for which it is a friend without restriction.

363

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 363



The example produces the following output:

Constructor called.
Constructor called.
Volume of match = 1.21
Surface area of match = 8.14
Volume of box2 = 1
Surface area of box2 = 6

This is exactly what you would expect. The friend function is computing the surface area of the CBox
objects from the values of the private members.

Placing friend Function Definitions Inside the Class
You could have combined the definition of the function with its declaration as a friend of the CBox class
within the class definition and the code would run as before. The function definition in the class would be:

friend double BoxSurface(CBox aBox)
{
return 2.0*(aBox.m_Length*aBox.m_Width +

aBox.m_Length*aBox.m_Height +
aBox.m_Height*aBox.m_Width);

}

However, this has a number of disadvantages relating to the readability of the code. Although the func-
tion would still have global scope, this might not be obvious to readers of the code, because the function
would be hidden in the body of the class definition.

The Default Copy Constructor
Suppose that you declare and initialize a CBox object box1 with this statement:

CBox box1(78.0, 24.0, 18.0);

You now want to create another CBox object, identical to the first. You would like to initialize the second
CBox object with box1. Let’s try it.

Try It Out Copying Information Between Instances
The following example shows this in action:

// Ex7_09.cpp
// Initializing an object with an object of the same class
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{

364

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 364



public:
// Constructor definition
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)
{
cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

// Function to calculate the volume of a box
double Volume()
{
return m_Length*m_Width*m_Height;

}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int main()
{

CBox box1(78.0, 24.0, 18.0);
CBox box2 = box1;                   // Initialize box2 with box1

cout << endl
<< “box1 volume = “ << box1.Volume()
<< endl
<< “box2 volume = “ << box2.Volume();

cout << endl;
return 0;

}

This example produces the following output:

Constructor called.
box1 volume = 33696
box2 volume = 33696

How It Works
Clearly, the program is working as you would want, with both boxes having the same volume. However,
as you can see from the output, our constructor was called only once for the creation of box1. The ques-
tion is, how was box2 created? The mechanism is similar to the one that you experienced when you had
no constructor defined and the compiler supplied a default constructor to allow an object to be created.
In this case, the compiler generates a default version of what is referred to as a copy constructor.

A copy constructor does exactly what we’re doing here — it creates an object of a class by initializing it
with an existing object of the same class. The default version of the copy constructor creates the new object
by copying the existing object, member by member.

365

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 365



This is fine for simple classes such as CBox, but for many classes — classes that have pointers or arrays
as members for example — it won’t work properly. Indeed, with such classes the default copy construc-
tor can create serious errors in your program. In these cases, you must create your own class copy con-
structor. This requires a special approach that you’ll look into more fully towards the end of this chapter
and again in the next chapter.

The Pointer this
In the CBox class, you wrote the Volume() function in terms of the class member names in the definition
of the class. Of course, every object of type CBox that you create contains these members so there has to
be a mechanism for the function to refer to the members of the particular object for which the function 
is called.

When any member function executes, it automatically contains a hidden pointer with the name this,
which points to the object used with the function call. Therefore, when the member m_Length is accessed
in the Volume() function during execution, it’s actually referring to this>m_Length, which is the fully
specified reference to the object member that is being used. The compiler takes care of adding the neces-
sary pointer name this to the member names in the function.

If you need to, you can use the pointer this explicitly within a member function. You might, for example,
want to return a pointer to the current object.

Try It Out Explicit Use of this
You could add a public function to the CBox class that compares the volume of two CBox objects.

// Ex7_10.cpp
// Using the pointer this
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{
public:
// Constructor definition
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)
{

cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

// Function to calculate the volume of a box
double Volume()
{

366

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 366



return m_Length*m_Width*m_Height;
}

// Function to compare two boxes which returns true (1)
// if the first is greater than the second, and false (0) otherwise
int Compare(CBox xBox)
{
return this->Volume() > xBox.Volume();

}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int main()
{
CBox match(2.2, 1.1, 0.5);           // Declare match box
CBox cigar(8.0, 5.0,1.0);            // Declare cigar box

if(cigar.Compare(match))
cout << endl

<< “match is smaller than cigar”;
else
cout << endl

<< “match is equal to or larger than cigar”;

cout << endl;
return 0;

}

How It Works
The member function Compare() returns true if the prefixed CBox object in the function call has a
greater volume than the CBox object specified as an argument, and false if it doesn’t. In the return
statements, the prefixed object is referred to through the pointer this, used with the indirect member
access operator, ->, that you saw earlier in this chapter.

Remember that you use the direct member access operator when accessing members through objects 
and the indirect member access operator when accessing members through pointers to objects. this
is a pointer so you use the -> operator.

The -> operator works the same for pointers to class objects as it did when you were dealing with a struct.
Here, using the pointer this demonstrates that it exists and does work, but it’s quite unnecessary to use it
explicitly in this case. If you change the return statement in the Compare() function to be

return Volume() > xBox.Volume();

you’ll find that the program works just as well. Any references to unadorned member names are auto-
matically assumed to be the members of the object pointed to by this.

367

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 367



You use the Compare() function in main() to check the relationship between the volumes of the objects
match and cigar. The output from the program is:

Constructor called.
Constructor called.
match is smaller than cigar

This confirms that the cigar object is larger than the match object.

It also wasn’t essential to define the Compare() function as a class member. You could just as well have
written it as an ordinary function with the objects as arguments. Note that this isn’t true of the function
Volume(), because it needs to access the private data members of the class. Of course, if you imple-
mented the Compare() function as an ordinary function, it wouldn’t have access to the pointer this,
but it would still be very simple:

// Comparing two CBox objects - ordinary function version
int Compare(CBox B1, CBox B2)
{

return B1.Volume() > B2.Volume();
}

This has both objects as arguments and returns true if the volume of the first is greater than the last.
You would use this function to perform the same function as in the last example with this statement:

if(Compare(cigar, match))
cout << endl

<< “match is smaller than cigar”;
else

cout << endl
<< “match is equal to or larger than cigar”;

If anything, this looks slightly better and easier to read than the original version; however, there’s a much
better way to do this, which you will learn about in the next chapter.

const Objects of a Class
The Volume() function that you defined for the CBox class does not alter the object for which it is called;
neither does a function such as getHeight() that returns the value of the m_Height member. Likewise,
the Compare() function in the previous example didn’t change the class objects at all. This may seem at
first sight to be a mildly interesting but largely irrelevant observation, but it isn’t — it’s quite important.
Let’s think about it.

You will undoubtedly want to create class objects that are fixed from time to time, just like values such
as pi or inchesPerFoot that you might declare as const double. Suppose you wanted to define a
CBox object as const — because it was a very important standard sized box, for instance. You might
define it with the following statement:

const CBox standard(3.0, 5.0, 8.0);

368

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 368



Now that you have defined your standard box having dimensions 3 × 5 × 8, you don’t want it messed
about with. In particular, you don’t want to allow the values stored in its data members to be altered.
How can you be sure they won’t be?

Well, you already are. If you declare an object of a class as const, the compiler will not allow any mem-
ber function to be called for it that might alter it. You can demonstrate this quite easily by modifying the
declaration for the object, cigar, in the previous example to:

const CBox cigar(8.0, 5.0,1.0);            // Declare cigar box

If you try recompiling the program with this change, it won’t compile. You see the error message:

error C2662: ‘compare’ : cannot convert ‘this’ pointer from ‘const class CBox’ to
‘class CBox &’         Conversion loses qualifiers

This is produced for the if statement that calls the Compare() member of cigar. An object that you declare
as const will always have a this pointer that is const, so the compiler will not allow any member func-
tion to be called that does not assume the this pointer that is passed to it is const. You need to find out
how to make the this pointer in a member function const.

const Member Functions of a Class
To make the this pointer in a member function const, you must declare the function as const within
the class definition. Take a look at how you do that with the Compare() member of CBox. The class defi-
nition needs to be modified to the following:

class CBox                             // Class definition at global scope
{

public:
// Constructor definition
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)
{

cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

// Function to calculate the volume of a box
double Volume()
{

return m_Length*m_Width*m_Height;
}

// Function to compare two boxes which returns true (1)
// if the first is greater than the second, and false (0) otherwise
int Compare(CBox xBox) const
{

return this->Volume() > xBox.Volume();
}

private:

369

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 369



double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

To specify that a member function is const, you just append the const keyword to the function header.
Note that you can only do this with class member functions, not with ordinary global functions. Declaring
a function as const is only meaningful in the case of a function that is a member of a class. The effect is to
make the this pointer in the function const, which in turn means that you cannot write a data member
of the class on the left of an assignment within the function definition; it will be flagged as an error by the
compiler. A const member function cannot call a non-const member function of the same class, since
this would potentially modify the object.

When you declare an object as const, the member functions that you call for it must be declared as const;
otherwise the program will not compile.

Member Function Definitions Outside the Class
When the definition of a const member function appears outside the class, the header for the definition
must have the keyword const added, just as the declaration within the class does. In fact, you should
always declare all member functions that do not alter the class object for which they are called as const.
With this in mind, the CBox class could be defined as:

class CBox                             // Class definition at global scope
{
public:
// Constructor
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0);

double Volume() const;             // Calculate the volume of a box
int Compare(CBox xBox) const;      // Compare two boxes

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

This assumes that all function members are defined separately, including the constructor. Both the
Volume() and Compare() members have been declared as const. The Volume() function is now
defined outside the class as:

double CBox::Volume() const
{
return m_Length*m_Width*m_Height;

}

The Compare() function definition is:

int CBox::Compare(CBox xBox) const
{

370

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 370



return this->Volume() > xBox.Volume();
}

As you can see, the const modifier appears in both definitions. If you leave it out, the code will not com-
pile. A function with a const modifier is a different function from one without, even though the name and
parameters are exactly the same. Indeed you can have both const and non-const versions of a function in
a class, and sometimes this can be very useful.

With the class declared as shown, the constructor also needs to be defined separately, like this:

CBox::CBox(double lv, double bv, double hv):
m_Length(lv), m_Width(bv), m_Height(hv)

{
cout << endl << “Constructor called.”;

}

Arrays of Objects of a Class
You can declare an array of objects of a class in exactly the same way that you have declared an ordinary
array where the elements were one of the built-in types. Each element of an array of class objects causes
the default constructor to be called.

Try It Out Arrays of Class Objects
We can use the class definition of CBox from the last example but modified to include a specific default
constructor:

// Ex7_11.cpp
// Using an array of class objects
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{

public:
// Constructor definition
CBox(double lv, double bv = 1.0, double hv = 1.0)
{

cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

CBox()                             // Default constructor
{
cout << endl

<< “Default constructor called.”;
m_Length = m_Width = m_Height = 1.0;

371

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 371



}

// Function to calculate the volume of a box
double Volume() const
{

return m_Length*m_Width*m_Height;
}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int main()
{
CBox boxes[5];                       // Array of CBox objects declared
CBox cigar(8.0, 5.0, 1.0);           // Declare cigar box

cout << endl
<< “Volume of boxes[3] = “ << boxes[3].Volume()
<< endl
<< “Volume of cigar = “ << cigar.Volume();

cout << endl;
return 0;

}

The program produces this output:

Default constructor called.
Default constructor called.
Default constructor called.
Default constructor called.
Default constructor called.
Constructor called.
Volume of boxes[3] = 1
Volume of cigar = 40

How It Works
You have modified the constructor-accepting arguments so that only two default values are supplied, and
you have added a default constructor that initializes the data members to 1 after displaying a message that
it was called. You are now able to see which constructor was called when. The constructors now have quite
distinct parameter lists, so there’s no possibility of the compiler confusing them.

You can see from the output that the default constructor was called five times, once for each element of the
boxes array. The other constructor was called to create the cigar object. It’s clear from the output that the
default constructor initialization is working satisfactorily, as the volume of the array element is 1.

372

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 372



Static Members of a Class
Both data members and function members of a class can be declared as static. Because the context is a
class definition, there’s a little more to it than the effect of the static keyword outside of a class, so let’s
look at static data members.

Static Data Members of a Class
When you declare data members of a class to be static, the effect is that the static data members are
defined only once and are shared between all objects of the class. Each object gets its own copies of each
of the ordinary data members of a class, but only one instance of each static data member exists, regard-
less of how many class objects have been defined. Figure 7-7 illustrates this.

One use for a static data member is to count how many objects actually exist. You could add a static data
member to the public section of the CBox class by adding the following statement to the previous class
definition:

static int objectCount;                // Count of objects in existence

Figure 7-7

Class Definition 

class CBox 
{ 
 public: 
  static int objectCount; 
 
   ... 
 private: 
  double m_Length; 
  double m_Width; 
  double m_Height; 
   ... 

object1 

m_Length 
m_Width 
m_Height 
... 

object2 

objectCount 

m_Length 
m_Width 
m_Height 
... 

object3 

m_Length 
m_Width 
m_Height 
... 

One copy of each static data member is 
shared between all objects of the class type 

373

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 373



You now have a problem. How do you initialize the static data member?

You can’t initialize the static data member in the class definition — that’s simply a blueprint for an object,
and initializing values are not allowed. You don’t want to initialize it in a constructor because you want to
increment it every time the constructor is called so the count of the number of objects created is accumu-
lated. You can’t initialize it in another member function because a member function is associated with an
object, and you want it initialized before any object is created. The answer is to write the initialization of
the static data member outside of the class definition with this statement:

int CBox::objectCount = 0;        // Initialize static member of class CBox

Notice that the static keyword is not included here; however, you do need to qualify the member name 
by using the class name and the scope resolution operator so that the compiler understands that you are
referring to a static member of the class. Otherwise, you would simply create a global variable that had
nothing to do with the class.

Try It Out Counting Instances
Let’s add the static data member and the object-counting capability to the last example.

// Ex7_12.cpp
// Using a static data member in a class
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{
public:
static int objectCount;            // Count of objects in existence

// Constructor definition
CBox(double lv, double bv = 1.0, double hv = 1.0)
{

cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;
objectCount++;

}

CBox()                             // Default constructor
{

cout << endl
<< “Default constructor called.”;

m_Length = m_Width = m_Height = 1.0;
objectCount++;

}

// Function to calculate the volume of a box
double Volume() const
{

374

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 374



return m_Length*m_Width*m_Height;
}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int CBox::objectCount = 0;             // Initialize static member of CBox class

int main()
{
CBox boxes[5];                       // Array of CBox objects declared
CBox cigar(8.0, 5.0, 1.0);           // Declare cigar box

cout << endl << endl
<< “Number of objects (through class) = “
<< CBox::objectCount;

cout << endl
<< “Number of objects (through object) = “
<< boxes[2].objectCount;

cout << endl;
return 0;

}

This example produces the following output:

Default constructor called.
Default constructor called.
Default constructor called.
Default constructor called.
Default constructor called.
Constructor called.
Number of objects (through class) = 6
Number of objects (through object) = 6

How It Works
This code shows that it doesn’t matter how you refer to the static member ObjectCount (whether through
the class itself or any of the objects of that class). The value is the same and it is equal to the number of
objects of that class that have been created. The six objects are obviously the five elements of the Boxes
array, plus the cigar object. It’s interesting to note that static members of a class exist even though there
may be no members of the class in existence. This is evidently the case, because you initialized the static
member ObjectCount before any class objects were declared.

Static data members are automatically created when your program begins, and they will be initialized
with 0 unless you initialize them with some other value. Thus you need only to initialize static data
members of a class if you want them to start out with a value other than 0.

375

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 375



Static Function Members of a Class
By declaring a function member as static, you make it independent of any particular object of the class.
Referencing members of the class from within a static function must be done using qualified names (as
you would do with an ordinary global function accessing a public data member). The static member
function has the advantage that it exists, and can be called, even if no objects of the class exist. In this case,
only static data members can be used because they are the only ones that exist. Thus, you can call a static
function member of a class to examine static data members, even when you do not know for certain that
any objects of the class exist. You could, therefore, use a static member function to determine whether
some objects of the class have been created or, indeed, how many have been created.

Of course, after the objects have been defined, a static member function can access private as well as
public members of class objects. A static function might have this prototype:

static void Afunction(int n);

A static function can be called in relation to a particular object by a statement such as the following:

aBox.Afunction(10);

where aBox is an object of the class. The same function could also be called without reference to an object.
In this case, the statement would take the following form,

CBox::Afunction(10);

where CBox is the class name. Using the class name and the scope resolution operator serves to tell the
compiler to which class the function Afunction() belongs.

Pointers and References to Class Objects
Using pointers, and particularly references to class objects, is very important in object-oriented program-
ming and in particular in the specification of function parameters. Class objects can involve considerable
amounts of data, so using the pass-by-value mechanism by specifying parameters to a function to be objects
can be very time-consuming and inefficient because each argument object will be copied. There are also
some techniques involving the use of references that are essential to some operations with classes. As you’ll
see, you can’t write a copy constructor without using a reference parameter.

Pointers to Class Objects
You declare a pointer to a class object in the same way that you declare other pointers. For example, a
pointer to objects of the class CBox is declared in this statement:

CBox* pBox = 0;                   // Declare a pointer to CBox

You can now use this to store the address of a CBox object in an assignment in the usual way, using the
address operator:

pBox = &cigar;                    // Store address of CBox object cigar in pBox

376

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 376



As you saw when you used the this pointer in the definition of the Compare() member function, you
can call a function using a pointer to an object. You can call the function Volume() for the pointer pBox
in a statement like this:

cout << pBox->Volume();           // Display volume of object pointed to by pBox

Again, this uses the indirect member selection operator. This is the typical notation used by most pro-
grammers for this kind of operation, so from now on I’ll use it universally.

Try It Out Pointers to Classes
Let’s try exercising the indirect member access operator a little more. We will use the example Ex7_10.cpp
as a base, but change it a little.

// Ex7_13.cpp
// Exercising the indirect member access operator
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{

public:
// Constructor definition
CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)
{

cout << endl << “Constructor called.”;
m_Length = lv;                   // Set values of
m_Width = bv;                    // data members
m_Height = hv;

}

// Function to calculate the volume of a box
double Volume() const
{

return m_Length*m_Width*m_Height;
}

// Function to compare two boxes which returns true (1)
// if the first is greater that the second, and false (0) otherwise
int Compare(CBox* pBox) const
{
return this->Volume() > pBox->Volume();

}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int main()
{

377

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 377



CBox boxes[5];                       // Array of CBox objects declared
CBox match(2.2, 1.1, 0.5);           // Declare match box
CBox cigar(8.0, 5.0, 1.0);           // Declare cigar Box
CBox* pB1 = &cigar;             // Initialize pointer to cigar object address
CBox* pB2 = 0;                       // Pointer to CBox initialized to null

cout << endl
<< “Address of cigar is “ << pB1     // Display address
<< endl
<< “Volume of cigar is “
<< pB1->Volume();                    // Volume of object pointed to

pB2 = &match;
if(pB2->Compare(pB1))                     // Compare via pointers
cout << endl

<< “match is greater than cigar”;
else
cout << endl

<< “match is less than or equal to cigar”;

pB1 = boxes;                              // Set to address of array
boxes[2] = match;                         // Set 3rd element to match
cout << endl                              // Now access thru pointer

<< “Volume of boxes[2] is “ << (pB1 + 2)->Volume();

cout << endl;
return 0;

}

If you run the example, the output looks something like that shown here:

Constructor called.
Constructor called.
Constructor called.
Constructor called.
Constructor called.
Constructor called.
Constructor called.
Address of cigar is 0012FE20
Volume of cigar is 40
match is less than or equal to cigar
Volume of boxes[2] is 1.21

Of course, the value of the address for the object cigar may well be different on your PC.

How It Works
The only change to the class definition isn’t one of great substance. You have only modified the Compare()
function to accept a pointer to a CBox object as an argument, and now you know about const member
functions. You declare it as const because it doesn’t alter the object. The function main() merely exercises
pointers to CBox type objects in various, rather arbitrary, ways.

378

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 378



Within the main()function you declare two pointers to CBox objects after declaring an array, Boxes, and
the CBox objects cigar and match. The first, pB1, is initialized with the address of the object cigar,
and the second, pB2, is initialized to NULL. All of this uses the pointer in exactly the same way you would
when you’re applying a pointer to a basic type. The fact that you are using a pointer to a type that you
have defined yourself makes no difference.

You use pB1 with the indirect member access operator to generate the volume of the object pointed to,
and the result is displayed. You then assign the address of match to pB2 and use both pointers in calling
the compare function. Because the argument of the function Compare() is a pointer to a CBox object, the
function uses the indirect member selection operator in calling the Volume() function for the object.

To demonstrate that you can use address arithmetic on the pointer pB1 when using it to select the member
function, you set pB1 to the address of the first element of the array of type CBox, boxes. In this case, you
select the third element of the array and calculate its volume. This is the same as the volume of match.

You can see from the output that there were seven calls of the constructor for CBox objects: five because
of the array Boxes, plus one each for the objects cigar and match.

Overall, there’s virtually no difference between using a pointer to a class object and using a pointer to a
basic type, such as double.

References to Class Objects
References really come into their own when they are used with classes. As with pointers, there is virtu-
ally no difference between the way you declare and use references to class objects and the way in which
we’ve already declared and used references to variables of basic types. To declare a reference to the object
cigar, for instance, you would write this:

CBox& rcigar = cigar;                  // Define reference to object cigar

To use a reference to calculate the volume of the object cigar, you would just use the reference name
where the object name would otherwise appear:

cout << rcigar.Volume();               // Output volume of cigar thru a reference

As you may remember, a reference acts as an alias for the object it refers to, so the usage is exactly the
same as using the original object name.

Implementing a Copy Constructor
The importance of references is really in the context of arguments and return values in functions, partic-
ularly class member functions. Let’s return to the question of the copy constructor as a first toe in the
water. For the moment, I’ll sidestep the question of when you need to write your own copy constructor
and concentrate on the problem of how you can write one. I’ll use the CBox class just to make the discus-
sion more concrete.

379

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 379



The copy constructor is a constructor that creates an object by initializing it with an existing object of the
same class. It therefore needs to accept an object of the class as an argument. You might consider writing
the prototype like this:

CBox(CBox initB);

Now consider what happens when this constructor is called. If you write this declaration:

CBox myBox = cigar;

this generates a call of the copy constructor as follows:

CBox::CBox(cigar);

This seems to be no problem, until you realize that the argument is passed by value. So, before the object
cigar can be passed, the compiler needs to arrange to make a copy of it. Therefore, it calls the copy con-
structor to make a copy of the argument for the call of the copy constructor. Unfortunately, since it is passed
by value, this call also needs a copy of its argument to be made, so the copy constructor is called, and so on
and so on. You end up with an infinite number of calls to the copy constructor.

The solution, as I’m sure you have guessed, is to use a const reference parameter. You can write the pro-
totype of the copy constructor like this:

CBox(const CBox& initB);

Now, the argument to the copy constructor doesn’t need to be copied. It is used to initialize the reference
parameter, so no copying takes place. As you remember from the discussion on references, if a parameter
to a function is a reference, no copying of the argument occurs when the function is called. The function
accesses the argument variable in the caller function directly. The const qualifier ensures that the argu-
ment can’t be modified in the function.

This is another important use of the const qualifier. You should always declare a reference parameter 
of a function as const unless the function will modify it.

You could implement the copy constructor as follows:

CBox::CBox(const CBox& initB)
{
m_Length = initB.m_Length;
m_Width = initB.m_Width;
m_Height = initB.m_Height;

}

This definition of the copy constructor assumes that it appears outside of the class definition. The con-
structor name is therefore qualified with the class name using the scope resolution operator. Each data
member of the object being created is initialized with the corresponding member of the object passed as
an argument. Of course, you could equally well use the initialization list to set the values of the object.

This case is not an example of when you need to write a copy constructor. As you have seen, the default
copy constructor works perfectly well with CBox objects. I will get to why and when you need to write
your own copy constructor in the next chapter.

380

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 380



C++/CLI Programming
The C++/CLI programming language has its own struct and class types. In fact C++/CLI allows the
definition of two different struct and class types that have different characteristics; value struct
types and value class types, and ref struct types and ref class types. Each of the two word com-
binations, value struct, ref struct, value class, and ref class, is a keyword and distinct from
the keywords struct and class; value and ref are not by themselves keywords. As in native C++, the
only difference between a struct and a class in C++/CLI is that members of a struct are public by default
whereas members of a class are private by default. One essential difference between value classes (or
value structs) and reference classes (or ref structs) is that variables of value class types contain their own
data whereas variables to access reference class types must be handles and therefore contain an address.

Note that member functions of C++/CLI classes cannot be declared as const. Another difference from
native C++ is that the this pointer in a non-static function member of a value class type T is an interior
pointer of type interior_ptr<T>, whereas the this pointer in a ref class type T is a handle of type T^.
You need to keep this in mind when returning the this pointer from a C++/CLI function or storing it in
a local variable. There are three other restrictions that apply to both value classes and reference classes:

❑ A value class or ref class cannot contain fields that are native C++ arrays or native C++ class
types.

❑ Friend functions are not allowed.

❑ A value class or ref class cannot have members that are bit-fields.

You have already heard back in Chapter 4 that the fundamental type names such as type int and type
double are shorthand for value class types in a CLR program. When you declare a data item of a value
class type, memory for it will be allocated on the stack but you can create value class objects on the heap
using the gcnew operator, in which case the variable that you use to access the value class object must be
a handle. For example:

double pi = 3.142;           // pi is stored on the stack
int^ lucky = gcnew int(7);   // lucky is a handle and 7 is stored on the heap
double^ two = 2.0;           // two is a handle, and 2.0 is stored on the heap

You can use any of these variables in arithmetic expression but you must use the * operator to dereference
the handle to access the value. For example:

Console::WriteLine(L”2pi = {0}”, *two*pi);

Note that you could write the product as pi**two and get the right result but it is better to use parentheses
in such instances and write pi*(*two), as this makes the code clearer.

Defining Value Class Types
I won’t discuss value struct types separately from value class types as the only difference is that
the members of a value struct type are public by default whereas value class members are pri-
vate by default. A value class is intended to be a relatively simple class type that provides the possibility
for you to define new primitive types that can be used in a similar way to the fundamental types; how-
ever, you won’t be in a position to do this fully until you learn about a topic called operator overloading
in the next chapter. A variable of a value class type is created on the stack and stores the value directly,

381

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 381



but as you have already seen, you can also use a tracking handle to reference a value class type stored on
the CLR heap.

Take an example of a simple value class definition:

// Class representing a height
value class Height
{
private:
// Records the height in feet and inches
int feet;
int inches;

public:
// Create a height from inches value
Height(int ins)
{
feet = ins/12;
inches = ins%12;

}

// Create a height from feet and inches
Height(int ft, int ins) : feet(ft), inches(ins){}

};

This defines a value class type with the name Height. It has two private fields that are both of type int
that record a height in feet and inches. The class has two constructors — one to create a Height object
from a number of inches supplied as the argument, and the other to create a Height object from both a
feet and inches specification. The latter should really check that the number of inches supplied as an argu-
ment is less than 12, but I’ll leave you to add that as a fine point. To create a variable of type Height you
could write:

Height tall = Height(7, 8);            // Height is 7 feet 8 inches

This creates the variable, tall, containing a Height object representing 7 feet 8 inches; this object is created
by calling the constructor with two parameters.

Height baseHeight;

This statement creates a variable, baseHeight, that will be automatically initialized to a height of zero.
The Height class does not have a no-arg constructor specified and because it is a value class, you are not
permitted to supply one in the class definition. There will be a no-arg constructor included automatically
in a value class that will initialize all value type fields to the equivalent of zero and all fields that are han-
dles to nullptr and you cannot override the implicit constructor with your own version. It’s this default
constructor that will be used to create the value of baseHeight.

There are a couple of other restrictions on what a value class can contain:

❑ You must not include a copy constructor in a value class definition.

❑ You cannot override the assignment operator in a value class (I’ll discuss how you override
operators in a class in Chapter 8).

382

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 382



Value class objects are always copied by just copying fields and the assignment of one value class object
to another is done in the same way. Value classes are intended to be used to represent simple objects defined
by a limited amount of data, so for objects that don’t fit this specification or where the value class restrictions
are problematical you should use ref class types to represent them.

Let’s take the Height class for a test drive.

Try It Out Defining and Using a Value Class Type
Here’s the code to exercise the Height value class:

// Ex7_14.cpp : main project file.
// Defining and using a value class type

#include “stdafx.h”

using namespace System;

// Class representing a height
value class Height
{
private:
// Records the height in feet and inches
int feet;
int inches;

public:
// Create a height from inches value
Height(int ins)
{
feet = ins/12;
inches = ins%12;

}

// Create a height from feet and inches
Height(int ft, int ins) : feet(ft), inches(ins){}

};

int main(array<System::String ^> ^args)
{
Height myHeight = Height(6,3);
Height^ yourHeight = Height(70);
Height hisHeight = *yourHeight;

Console::WriteLine(L”My height is {0}”, myHeight);
Console::WriteLine(L”Your height is {0}”, yourHeight);
Console::WriteLine(L”His height is {0}”, hisHeight);
return 0;

}

Executing this program results in the following output:

My height is Height
Your height is Height
His height is Height

383

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 383



How It Works
Well, the output is a bit monotonous and perhaps less than we were hoping for, but let’s come back to
that a little later. In the main() function, you create three variables with the following statement:

Height myHeight = Height(6,3);
Height^ yourHeight = Height(70);
Height hisHeight = *yourHeight;

The first variable is of type Height so the object that represents a height of 6 feet 3 inches is allocated on
the stack. The second variable is a handle of type Height^ so the object representing a height of 5 feet 10
inches is created on the CLR heap. The third variable is another stack variable that is a copy of the object
referenced by yourHeight. Because yourHeight is a handle, you have to dereference it to assign it to
the hisHeight variable and the result is that hisHeight contains a duplicate of the object referenced by
yourHeight. Variables of a value class type always contain a unique object so two such variables cannot
reference the same object; assigning one variable of a value class type to another always involves copying.
Of course, several handles can reference a single object and assigning the value of one handle to another
simply copies the address (or nullptr) from one to the other so that both objects reference the same object.

The output is produced by the three calls of the Console::WriteLine() function. Unfortunately the out-
put is not the values of the value class objects, but simply the class name. So how did this come about?
It was optimistic to expect the values to be produced — after all, how is the compiler to know how they
should be presented? Height objects contain two values — which one should be presented as the value?
The class has to have a way to make the value available in this context.

The ToString() Function in a Class
Every C++/CLI class that you define has a ToString() function — I’ll explain how this comes about in
the next chapter when I discuss class inheritance — that returns a handle to a string that is supposed to
represent the class object. The compiler arranges for the ToString() function for an object to be called
whenever it recognizes that a string representation of an object is required and you can call it explicitly 
if necessary. For example, you could write this:

double pi = 3.142;
Console::WriteLine(pi.ToString());

This outputs the value of pi as a string and it is the ToString() function that is defined in the
System::Double class that provides the string. Of course, you would get the same output without
explicitly calling the ToString() function.

The default version of the ToString() function that you get in the Height class just outputs the class
name because there is no way to know ahead of time what value should be returned as a string for an
object of your class type. To get an appropriate value output by the Console::WriteLine() function in
the previous example, you must add a ToString() function to the Height class that presents the value
of an object in the form that you want.

Here’s how the class looks with a ToString() function:

// Class representing a height
value class Height

384

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 384



{
private:

// Records the height in feet and inches
int feet;
int inches;

public:
// Create a height from inches value
Height(int ins)
{

feet = ins/12;
inches = ins%12;

}

// Create a height from feet and inches
Height(int ft, int ins) : feet(ft), inches(ins){}

// Create a string representation of the object
virtual String^ ToString() override
{
return feet + L” feet “+ inches + L” inches”;

}
};

The combination of the virtual keyword before the return type for ToString() and the override key-
word following the parameter list for the function indicates that this version of the ToString() function
overrides the version of the function that is present in the class by default. You’ll hear a lot more about
this in Chapter 8. Our new version of the ToString() function now outputs a string expressing a height
in feet and inches. If you add this function to the class definition in the previous example, you get the fol-
lowing output when you compile and execute the program:

My height is 6 feet 3 inches
Your height is 5 feet 10 inches
His height is 5 feet 10 inches

This is more like what you were expecting to get before. You can see from the output that the WriteLine()
function quite happily deals with an object on the CLR heap that you reference through the yourHeight
handle, as well as the myHeight and hisHeight objects that were created on the stack.

Literal Fields
The factor 12 that you use to convert from feet to inches and vice versa is a little troubling. It is an example
of what is called a “magic number,” where a person reading the code has to guess or deduce its signifi-
cance and origin. In this case it’s fairly obvious what the 12 is but there will be many instances where the
origin of a numerical constant in a calculation is not so apparent. C++/CLI has a literal field facility for
introducing named constants into a class that will solve the problem in this case. Here’s how you can
eliminate the magic number from the code in the single-argument constructor in the Height class:

value class Height
{
private:

// Records the height in feet and inches
int feet;
int inches;

385

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 385



literal int inchesPerFoot = 12;

public:
// Create a height from inches value
Height(int ins)
{
feet = ins/ inchesPerFoot;
inches = ins% inchesPerFoot;

}

// Create a height from feet and inches
Height(int ft, int ins) : feet(ft), inches(ins){}

// Create a string representation of the object
virtual  String^ ToString() override
{
return feet + L” feet “+ inches + L” inches”;

}
};

Now the constructor uses the name inchesPerFoot instead of 12, so there is no doubt as to what is
going on.

You can define the value of a literal field in terms of other literal fields as long as the names of the fields
you are using to specify the value are defined first. For example:

value class Height
{
// Other code...
literal int inchesPerFoot = 12;
literal double millimetersPerInch = 25.4;
literal double millimetersPerFoot = inchesPerFoot*millimetersPerInch;

// Other code...
};

Here you define the value for the literal field millimetersPerFoot as the product of the other two literal
fields. If you were to move the definition of the millimetersPerFoot field so that it precedes either or
both of the other two, the code would not compile.

A literal field can only be initialized with a value that is a constant integral value, an enum value, or a
string; this obviously limits the possible types for a literal field to those you can initialize in this way.

Defining Reference Class Types
A reference class is comparable to a native C++ class in capabilities and does not have the restrictions
that a value class has. Unlike a native C++ class, however, a reference class does not have a default copy
constructor or a default assignment operator. If your class needs to support either of these operators, you
must explicitly add a function for the capability — you’ll see how in the next chapter.

386

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 386



You define a reference class using the ref class keyword — both words together separated by one or
more spaces represent a single keyword. Here’s the CBox class from the Ex7_07 example redefined as a
reference class.

ref class Box
{
public:
// No-arg constructor supplying default field values
Box(): Length(1.0), Width(1.0), Height(1.0)
{
Console::WriteLine(L”No-arg constructor called.”);

}

// Constructor definition using an initialisation list
Box(double lv, double bv, double hv):

Length(lv), Width(bv), Height(hv)
{
Console::WriteLine(L”Constructor called.”);

}

// Function to calculate the volume of a box
double Volume()
{
return Length*Width*Height;

}

private:
double Length;                     // Length of a box in inches
double Width;                      // Width of a box in inches
double Height;                     // Height of a box in inches

};

Note first that I have removed the C prefix for the class name and the m_ prefix for member names because
this notation is not recommended for C++/CLI classes. You cannot specify default values for function and
constructor parameters in C++/CLI classes so you have to add a no-arg constructor to the Box class to ful-
fill this function. The no-arg constructor just initializes the three private fields with 1.0.

Try It Out Using a Reference Class Type
Here’s an example that uses the Box class that you saw in the previous section.

// Ex7_15.cpp : main project file.
// Using the Box reference class type

#include “stdafx.h”

using namespace System;

ref class Box
{

387

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 387



public:
// No-arg constructor supplying default field values
Box(): Length(1.0), Width(1.0), Height(1.0)
{
Console::WriteLine(L”No-arg constructor called.”);

}

// Constructor definition using an initialisation list
Box(double lv, double bv, double hv):

Length(lv), Width(bv), Height(hv)
{
Console::WriteLine(L”Constructor called.”);

}

// Function to calculate the volume of a box
double Volume()
{
return Length*Width*Height;

}

private:
double Length;                     // Length of a box in inches
double Width;                      // Width of a box in inches
double Height;                     // Height of a box in inches

};

int main(array<System::String ^> ^args)
{
Box^ aBox;                           // Handle of type Box^
Box^ newBox = gcnew Box(10, 15, 20);
aBox = gcnew Box;                    // Initialize with default Box
Console::WriteLine(L”Default box volume is {0}”, aBox->Volume());
Console::WriteLine(L”New box volume is {0}”, newBox->Volume());
return 0;

}

The output from this example is:

Constructor called.
No-arg constructor called.
Default box volume is 1
New box volume is 3000

How It Works
The first statement in main() creates a handle to a Box object.

Box^ aBox;                           // Handle of type Box^

No object is created by this statement, just the tracking handle, aBox. The aBox variable is initialized by
default with nullptr so it does not point to anything yet. In contrast, a variable of a value class type
always contains an object.

388

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 388



The next statement creates a handle to a new Box object.

Box^ newBox = gcnew Box(10, 15, 20);

The constructor accepting three arguments is called to create the Box object on the heap and the address
is stored in the handle, newBox. As you know, objects of ref class types are always created on the CLR
heap and are referenced generally using a handle.

You create a Box object by calling the no-arg constructor and store its address in aBox.

aBox = gcnew Box;                    // Initialize with default Box

This object has the Length, Width, and Height fields set to 1.0.

Finally you output the volumes of the two Box objects you have created.

Console::WriteLine(L”Default box volume is {0}”, aBox->Volume());
Console::WriteLine(L”New box volume is {0}”, newBox->Volume());

Because aBox and newBox are handles, you use the -> operator to call the Volume() function for the
objects to which they refer.

Defining a Copy Constructor for a Reference Class Type
You are unlikely to be doing it very often but if you do pass objects of a reference class type to a func-
tion by value, you must implement a public copy constructor; this situation can arise with the Standard
Template Library implementation for the CLR, which you will learn about in Chapter 10. The parame-
ter to the copy constructor must be a const reference, so you would define the copy constructor for the
Box class like this:

Box(const Box% box) : Length(box.Length), Width(box.Width), Height(box.Height)
{}

In general, the form of the copy constructor for a ref class T that allows a ref type object of type T to be
passed by value to a function is:

T(const T% t)
{
if(*this != t)
{
// Code to make the copy...

}
return *this;

}

389

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 389



Occasionally you may also need to implement a copy constructor that takes an argument that is a handle.
Here’s how you could do that for the Box class:

Box(const Box^ box) : Length(box->Length), Width(box->Width), Height(box->Height)
{}

As you can see, there is little difference between this and the previous version.

Class Properties
A property is a member of either a value class or a reference class that you access as though it were a
field, but it really isn’t a field. The primary difference between a property and a field is that the name of
a field refers to a storage location whereas the name of a property does not — it calls a function. A prop-
erty has get() and set() accessor functions to retrieve and set its value respectively so when you use a
property name to obtain its value, behind the scenes you are calling the get() function for the property
and when you use the name of a property on the right of an assignment statement you are calling its
set() function. If a property only provides a definition for the get() function, it is called a read-only
property because the set() function is not available to set the property value. A property may just have
the set() function defined for it, in which case it is described as a write-only property.

A class can contain two different kinds of properties: scalar properties and indexed properties. Scalar
properties are a single value accessed using the property name whereas indexed properties are a set of
values that you access using an index between square brackets following the property name. The String
class has the scalar property, Length, that provides you with the number of characters in a string, and for
a String object str you access the Length property using the expression str>Length because str is a
handle. Of course, to access a property with the name MyProp for a value class object store in the variable
val, you would use the expression val.MyProp, just like accessing a field. The Length property for a
string is an example of a read-only property because no set() function is defined for it — you cannot set
the length of a string as a String object is immutable. The String class also gives you access to individ-
ual characters in the string as indexed properties. For a string handle, str, you can access the third indexed
property with the expression str[2], which corresponds to the third character in the string.

Properties can be associated with, and specific to, a particular object, in which case the properties are
described as instance properties. The Length property for a String object is an example of an instance
property. You can also specify a property as static, in which case the property is associated with the
class and the property value will be the same for all objects of the class type. Let’s explore properties in
a little more depth.

Defining Scalar Properties
As scalar property has a single value and you define a scalar property in a class using the property key-
word. The get() function for a scalar property must have a return type that is the same as the property
type and the set() function must have a parameter of the same type as the property. Here’s an example
of a property in the Height value class that you saw earlier.

value class Height
{
private:
// Records the height in feet and inches
int feet;

390

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 390



int inches;
literal int inchesPerFoot = 12;
literal double inchesToMeters = 2.54/100;

public:
// Create a height from inches value
Height(int ins)
{

feet = ins / inchesPerFoot;
inches = ins % inchesPerFoot;

}

// Create a height from feet and inches
Height(int ft, int ins) : feet(ft), inches(ins){}

// The height in meters as a property
property double meters
{
// Returns the property value
double get()
{
return inchesToMeters*(feet*inchesPerFoot+inches);

}

// You would define the set() function for the property here...
}

// Create a string representation of the object
virtual  String^ ToString() override
{

return feet + L” feet “+ inches + L” inches”;
}

};

The Height class now contains a property with the name meters. The definition of the get function for
the property appears between the braces following the property name. You would put the set() func-
tion for the property here too, if there were one. Note that there is no semicolon following the braces that
enclose the get() and set() function definitions for a property. The get() function for the meters prop-
erty makes use of a new literal class member, inchesToMeters, to convert the height in inches to meters.
Accessing the meters property for an object of type Height makes the height available in meters. Here’s
how you could do that:

Height ht = Height(6, 8);              // Height of 6 feet 8 inches
Console::WriteLine(L”The height is {0} meters”, ht.meters);

The second statement outputs the value of ht in meters using the expression ht.meters.

You are not obliged to define the get() and set() functions for a property inline; you can define them
outside the class definition in a .cpp file. For example, you could specify the meters property in the
Height class like this:

value class Height
{

391

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 391



// Code as before...

public:
// Code as before...

// The height in meters
property double meters
{
double get();                      // Returns the property value

// You would define the set() function for the property here...
}

// Code as before...
};

The get() function for the meters property is now declared but not defined in the Height class, so a
definition must be supplied outside the class definition. In the get() function definition in the
Height.cpp file the function name must be qualified by the class name and the property name so the
definition looks like this:

Height::meters::get()
{
return inchesToMeters*(feet*inchesPerFoot+inches);

}

The Height qualifier indicates that this function definition belongs to the Height class and the meters
qualifier indicates the function is for the meters property in the class.

Of course, you can define properties for a reference class. Here’s an example:

ref class Weight
{
private:
int lbs;
int oz;

public:
property int pounds
{
int get() { return lbs;  }
void set(int value) {  lbs = value;  }

}

property int ounces
{
int get() { return oz;  }
void set(int value) {  oz = value;  }

}
};

392

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 392



Here the pounds and ounces properties are used to provide access to the values of the private fields, lbs
and oz. You can set values for the properties of a Weight object and access them subsequently like this:

Weight^ wt = gcnew Weight;
wt->pounds = 162;
wt->ounces = 12;
Console::WriteLine(L”Weight is {0} lbs {1} oz.”, wt->pounds, wt->ounces);

A variable accessing a ref class object is generally a handle so you must use the -> operator to access
properties of an object of a reference class type.

Trivial Scalar Properties
You can define a scalar property for a class without providing definitions for the get() and set() func-
tions, in which case it is called a trivial scalar property. To specify a trivial scalar property you just omit
the braces containing the get() and set() function definitions and end the property declaration with a
semi-colon. Here’s an example of a value class with trivial scalar properties:

value class Point
{
public:
property int x;                                // Trivial property
property int y;                                // Trivial property

virtual String^ ToString() override
{
return L”(“ + x + L”,” + y + L”)”;           // Returns “(x,y)”

}
};

Default get() and set() function definitions are supplied automatically for each trivial scalar property
and these return the property value and set the property value to the argument of the type specified for
the property. Private space is allocated to accommodate the property value behind the scenes.

Let’s see some scalar properties working.

Try It Out Using Scalar Properties
This example uses three classes, two value classes, and a ref class:

// Ex7_16.cpp : main project file.
// Using scalar properties

#include “stdafx.h”

using namespace System;

// Class defining a person’s height
value class Height
{

393

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 393



private:
// Records the height in feet and inches
int feet;
int inches;

literal int inchesPerFoot = 12;
literal double inchesToMeters = 2.54/100;

public:
// Create a height from inches value
Height(int ins)
{
feet = ins / inchesPerFoot;
inches = ins % inchesPerFoot;

}

// Create a height from feet and inches
Height(int ft, int ins) : feet(ft), inches(ins){}

// The height in meters
property double meters                         // Scalar property
{
// Returns the property value
double get()
{
return inchesToMeters*(feet*inchesPerFoot+inches);

}

// You would define the set() function for the property here...
}

// Create a string representation of the object
virtual  String^ ToString() override
{
return feet + L” feet “+ inches + L” inches”;

}
};

// Class defining a person’s weight
value class Weight
{
private:
int lbs;
int oz;

literal int ouncesPerPound = 16;
literal double lbsToKg = 1.0/2.2;

public:
Weight(int pounds, int ounces)
{
lbs = pounds;
oz = ounces;

}

394

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 394



property int pounds                            // Scalar property
{
int get() { return lbs;  }
void set(int value) {  lbs = value;  }

}

property int ounces                            // Scalar property
{
int get() { return oz;  }
void set(int value) {  oz = value;  }

}

property double kilograms                      // Scalar property
{
double get() { return lbsToKg*(lbs + oz/ouncesPerPound);  }

}

virtual String^ ToString() override
{ return lbs + L” pounds “ + oz + L” ounces”; }

};

// Class defining a person
ref class Person
{
private:
Height ht;
Weight wt;

public:
property String^ Name;                         // Trivial scalar property
Person(String^ name, Height h, Weight w) : ht(h), wt(w)
{
Name = name;

}

Height getHeight(){ return ht;  }
Weight getWeight(){ return wt;  }

};

int main(array<System::String ^> ^args)
{
Weight hisWeight = Weight(185, 7);
Height hisHeight = Height(6, 3);
Person^ him = gcnew Person(L”Fred”, hisHeight, hisWeight);

Weight herWeight = Weight(105, 3);
Height herHeight = Height(5, 2);
Person^ her = gcnew Person(L”Freda”, herHeight, herWeight);

Console::WriteLine(L”She is {0}”, her->Name);
Console::WriteLine(L”Her weight is {0:F2} kilograms.”,

her->getWeight().kilograms);
Console::WriteLine(L”Her height is {0} which is {1:F2} meters.”,

her->getHeight(),her->getHeight().meters);

395

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 395



Console::WriteLine(L”He is {0}”, him->Name);
Console::WriteLine(L”His weight is {0}.”, him->getWeight());
Console::WriteLine(L”His height is {0} which is {1:F2} meters.”,

him->getHeight(),him->getHeight().meters);
return 0;

}

This example produces the following output:

She is Freda
Her weight is 47.73 kilograms.
Her height is 5 feet 2 inches which is 1.57 meters.
He is Fred
His weight is 185 pounds 7 ounces.
His height is 6 feet 3 inches which is 1.91 meters.

How It Works
The two value classes, Height and Weight, define the height and weight of a person. The Person class
has fields of type Height and Weight to store the height and weight of a person and the name of a per-
son is stored in the Name property, which is a trivial property because no explicit get() and set() func-
tions have been defined for it; it therefore has the default get() and set() functions.

The first two statements in main() define Height and Weight objects and these are then used to define him:

Weight hisWeight = Weight(185, 7);
Height hisHeight = Height(6, 3);
Person^ him = gcnew Person(L”Fred”, hisHeight, hisWeight);

Height and Weight are value classes so the variables of these types store the values directly. Person is 
a reference class so him is a handle. The first argument to the Person class constructor is a string literal
so the compiler arranges for a String object to be created from this and the handle to this object is passed
as the argument. The second and third arguments are the value class objects that you create in the first two
statements. Of course, copies of these are passed as arguments because of the pass-by-value mechanism for
function arguments. Within the Person class constructor, the assignment statement sets the value of the
Name parameter and the values of the two fields, ht and wt, are set in the initialization list. The only way to
set a property is through an implicit call of its set() function; a property cannot be initialized in the initial-
izer list of a constructor.

There is a similar sequence of three statements to those for him that define her. With two Person objects
created on the heap you first output information about her with these statements:

Console::WriteLine(L”She is {0}”, her->Name);
Console::WriteLine(L”Her weight is {0:F2} kilograms.”,

her->getWeight().kilograms);
Console::WriteLine(L”Her height is {0} which is {1:F2} meters.”,

her->getHeight(),her->getHeight().meters);

In the first statement, you access the Name property for the object referenced by the handle, her, with 
the expression her->Name; the result of executing this is a handle to the string that the property’s get()
value returns, so it is of type String^.

396

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 396



In the second statement, you access the kilograms property of the wt field for the object referenced by her
with the expression her->getWeight().kilograms. The her->getWeight() part of this expression
returns a copy of the wt field, and this is used to access the kilograms property; thus the value returned
by the get() function for the kilograms property becomes the value of the second argument to the
WriteLine() function.

In the third output statement, the second argument is the result of the expression, her>getHeight(),
which returns a copy of ht. To produce the value of this in a form suitable for output the compiler
arranges for the ToString() function for the object to be called, so the expression is equivalent to
her>getHeight().ToString(), and in fact you could write it like this if you want. The third argu-
ment to the WriteLine() function is the meters property for the Height object that is returned by
the getHeight() function the the Person object, her.

The last three output statements output information about the him object in a similar fashion to the her
object. In this case the weight is produced by an implicit call of the ToString() function for the wt field
in the him object.

Defining Indexed Properties
Indexed properties are a set of property values in a class that you access using an index between square
brackets, just like accessing an array element. You have already made use of indexed properties for strings
because the String class makes characters from the string available as indexed properties. As you have
seen, if str is the handle to a String object then the expression str[4] accesses the fifth indexed prop-
erty value, which corresponds to the fifth character in the string. A property that you access by placing 
an index in square brackets following the name of the variable referencing the object, this is an example 
of a default indexed property. An indexed property that has a property name is described as a named
indexed property.

Here’s a class containing a default indexed property:

ref class Name
{
private:
array<String^>^ Names;               // Stores names as array elements

public:
Name(...array<String^>^ names) : Names(names) {}

// Indexed property to return any name
property String^ default[int]
{
// Retrieve indexed property value
String^ get(int index)
{
if(index >= Names->Length)
throw gcnew Exception(L”Index out of range”);

return Names[index];
}

}
};

397

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 397



The idea of the Name class is to store a person’s name as an array of individual names. The constructor
accepts an arbitrary number of arguments of type String^ that are then stored in the Names field so a
Name object can accommodate any number of names.

The indexed property here is a default indexed property because the name is specified by the default
keyword. If you supplied a regular name in this position in the property specification it would be a
named indexed property. The square brackets following the default keyword indicate that it is indeed
an indexed property and the type they enclose — type int in this case — is the type of the index values
that is to be used when retrieving values for the property. The type of the index does not have to be a
numeric type and you can have more than one index parameter for accessing indexed property values.

For an indexed property accessed by a single index, the get() function must have a parameter specifying
the index that is of the same type as that which appears between the square brackets following the property
name. The set() function for such an indexed property must have two parameters: the first parameter is
the index, and the second is the new value to be set for the property corresponding to the first parameter.

Let’s see how indexed properties behave in practice.

Try It Out Using a Default Indexed Property
Here’s an example that makes use of a slightly extended version of the Name class:

// Ex7_17.cpp : main project file.
// Defining and using default indexed properties

#include “stdafx.h”

using namespace System;

ref class Name
{
private:
array<String^>^ Names;

public:
Name(...array<String^>^ names) : Names(names) {}

// Scalar property specifying number of names
property int NameCount
{
int get() {return Names->Length; }

}

// Indexed property to return names
property String^ default[int]
{
String^ get(int index)
{
if(index >= Names->Length)

398

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 398



throw gcnew Exception(L”Index out of range”);
return Names[index];

}
}

};

int main(array<System::String ^> ^args)
{
Name^ myName = gcnew Name(L”Ebenezer”, L”Isaiah”, L”Ezra”, L”Inigo”,

L”Whelkwhistle”);

// List the names
for(int i = 0 ; i < myName->NameCount ; i++)
Console::WriteLine(L”Name {0} is  {1}”, i+1, myName[i]);

return 0;
}

This example produces the following output:

Name 1 is  Ebenezer
Name 2 is  Isaiah
Name 3 is  Ezra
Name 4 is  Inigo
Name 5 is  Whelkwhistle

How It Works
The Name class in the example is basically the same as in the previous section but with a scalar property
with the name NameCount added that returns the number of names in the Name object. In main() you
first create a Name object with five names:

Name^ myName = gcnew Name(L”Ebenezer”, L”Isaiah”, L”Ezra”, L”Inigo”,
L”Whelkwhistle”);

The parameter list for the constructor in the Name class starts with an ellipsis so it accepts any number of
arguments. The arguments that are supplied when it is called will be stored in the elements of the names
array, so initializing the Names field with names makes Names reference the names array. In the previous
statement, you supply five arguments to the constructor, so the Names field in the object referenced by
myName is an array with five elements.

You access the properties for myName in a for loop to list the names the object contains:

for(int i = 0 ; i < myName->NameCount ; i++)
Console::WriteLine(L”Name {0} is  {1}”, i+1, myName[i]);

You use the NameCount property value to control the for loop. Without this property you would not
know how many names there are to be listed. Within the loop the last argument to the WriteLine()
function accesses the ith indexed property. As you see, accessing the default indexed property just
involves placing the index value in square brackets after the myName variable name. The output demon-
strates that the indexed properties are working as expected.

399

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 399



The indexed property is read-only because the Name class only includes a get() function for the prop-
erty. To allow properties to be changed you could add a definition for the set() function for the default
indexed property like this:

ref class Name
{
// Code as before...

// Indexed property to return names
property String^ default[int]
{
String^ get(int index)
{

if(index >= Names->Length)
throw gcnew Exception(L”Index out of range”);

return Names[index];
}

void set(int index, String^ name)
{
if(index >= Names->Length)
throw gcnew Exception(L”Index out of range”);

Names[index] = name;
}

}
};

You can now use the ability to set indexed properties by adding a statement in main() to set the last
indexed property value:

Name^ myName = gcnew Name(L”Ebenezer”, L”Isaiah”, L”Ezra”,
L”Inigo”, L”Whelkwhistle”);

myName[myName->NameCount - 1] = L”Oberwurst”;  // Change last indexed property

// List the names
for(int i = 0 ; i < myName->NameCount ; i++)

Console::WriteLine(L”Name {0} is  {1}”, i+1, myName[i]);

With this addition you’ll see from the output for the new version of the program that the last name 
has indeed been updated by the statement assigning a new value to the property at index position
myName>NameCount-1.

You could also try adding a named indexed property to the class:

ref class Name
{
// Code as before...

// Indexed property to return initials
property wchar_t Initials[int]
{
wchar_t get(int index)
{

400

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 400



if(index >= Names->Length)
throw gcnew Exception(L”Index out of range”);

return Names[index][0];
}

}
};

The indexed property has the name Initials because its function is to return the initial of a name speci-
fied by an index. You define a named indexed property in essentially the same way as a default indexed
property but with the property name replacing the default keyword.

If you recompile the program and execute it once more, you see the following output.

Name 1 is  Ebenezer
Name 2 is  Isaiah
Name 3 is  Ezra
Name 4 is  Inigo
Name 4 is  Oberwurst
The initials are: E.I.E.I.O.

The initials are produced by accessing the named indexed property in the for loop and the output
shows that they work as expected.

More Complex Indexed Properties
As mentioned, indexed properties can be defined so that more than one index is necessary to access a
value and the indexes need not be numeric. Here’s an example of a class with such an indexed property:

enum class Day{Monday, Tuesday, Wednesday,Thursday, Friday, Saturday, Sunday};

// Class defining a shop
ref class Shop
{
public:
property String^ Opening[Day, String^]         // Opening times
{
String^ get(Day day, String^ AmOrPm)
{
switch(day)
{
case Day::Saturday:                     // Saturday opening:
if(AmOrPm == L”am”)
return L”9:00”;                     //         morning is 9 am

else
return L”14:30”;                    //         afternoon is 2:30 pm

break;

case Day::Sunday:                       // Saturday opening:
return L”closed”;                     //         closed all day
break;

401

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 401



default:
if(AmOrPm == L”am”)                   // Monday to Friday opening:
return L”9:30”;                     //         morning is 9:30 am

else
return L”14:00”;                    //         afternoon is 2 pm

break;
}

}
}

};

The class representing a shop has an indexed property specifying opening times. The first index is an
enumeration value of type Day that identifies the day of the week and the second index is a handle to 
a string that determines whether it is morning or afternoon. You could output the Opening property
value for a Shop object like this:

Shop^ shop = gcnew Shop;
Console::WriteLine(shop->Opening[Day::Saturday, L”pm”]);

The first statement creates the Shop object and the second displays the opening time for the shop for
Saturday afternoon. As you see, you just place the two index values for the property between square
brackets and separate them by a comma. The output from the second statement is the string “14:30”. If
you can dream up a reason why you need them, you could also define indexed properties with three or
more indexes in a class.

Static Properties
Static properties are similar to static class members in that they are defined for the class and are the same
for all objects of the class type. You define a static property by adding the static keyword in the defini-
tion of the property. Here’s how you might define a static property in the Length class you saw earlier:

value class Length
{
// Code as before...

public:
static property String^ Units
{
String^ get() {  return L”feet and inches”;  }

}
};

This is a simple property that makes available the units assumed by the class as a string. You access a static
property by qualifying the property name with the name of the class, just as you would any other static
member of the class:

Console::WriteLine(L”Class units are {0}.”, Length::Units);

Static class properties exist whether or not any objects of the class type have been created. This differs from
instance properties, which are specific to each object of the class type. Of course, if you have defined a class

402

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 402



object, you can access a static property using the variable name. If you have created a Length object with
the name len for example, you could output the value of the static Units property with the statement:

Console::WriteLine(L”Class units are {0}.”, len.Units);

For accessing a static property in a reference class through a handle to an object of that type you would
use the -> operator.

Reserved Property Names
Although properties are different from fields, the values for properties still have to be stored somewhere
and the storage locations need to be identified somehow. Internally, properties have names created for
the storage locations that are needed, and such names are reserved in a class that has properties so you
must not use these names for other purposes.

If you define a scalar or named indexed property with the name NAME in a class, the names get_NAME
and set_NAME are reserved in the class so you must not use them for other purposes. Both names are
reserved regardless of whether or not you define the get() and set() functions for the property. When
you define a default indexed property in a class, the names get_Item and set_Item are reserved. The
possibility of there being reserved names that use underscore characters is a good reason for avoiding
the use of the underscore character in your own names in a C++/CLI program.

initonly Fields
Literal fields are a convenient way of introducing constants into a class, but they have the limitation that
their values must be defined when you compile the program. C++/CLI also provides initonly fields in
a class that are constants that you can initialize in a constructor. Here’s an example of an initonly field
in a skeleton version of the Length class:

value class Length
{
private:
int feet;
int inches;

public:
initonly int inchesPerFoot;                    // initonly field

// Constructor
Length(int ft, int ins) :

feet(ft), inches(ins),               // Initialize fields
inchesPerFoot(12)                    // Initialize initonly field

{}
};

Here the initonly field has the name inchesPerFoot and is initialized in the initializer list for the con-
structor. This is an example of a non-static initonly field and each object will have its own copy, just
like the ordinary fields, feet and inches. Of course, the big difference between initonly fields and

403

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 403



ordinary fields is that you cannot subsequently change the value of an initonly field — after it has
been initialized, it is fixed for all time. Note that you must not specify an initial value for a non-static
initonly field when you declare it; this implies that you must initialize all non-static initonly fields
in a constructor.

You don’t have to initialize non-static initonly fields in the constructor’s initializer list — you could do
it in the body of the constructor:

Length(int ft, int ins) :
feet(ft), inches(ins),               // Initialize fields

{
inchesPerFoot = 12;                          // Initialize initonly field

}

Now the field is initialized in the body of the constructor. You would typically pass the value for a non-
static initonly field as an argument to the constructor rather than use an explicit literal as we have done
here because the point of such fields is that their values are instance specific. If the value is known when
you write the code you might as well use a literal field.

You can also define an initonly field in a class to be static, in which case it is shared between all
members of the class, and if it is a public initonly field it’s accessible by qualifying the field name
with the class name. The inchesPerFoot field would make much more sense as a static initonly
field — the value really isn’t going to vary from one object to another. Here’s a new version of the
Length class with a static initonly field:

value class Length
{
private:
int feet;
int inches;

public:
initonly static int inchesPerFoot = 12;        // Static initonly field

// Constructor
Length(int ft, int ins) :

feet(ft), inches(ins)                // Initialize fields
{}

};

Now the inchesPerFoot field is static, and it has its value specified in the declaration rather than in the
constructor initializer list. Indeed, you are not permitted to set values for static fields of any kind in the
constructor. If you think about it, this makes sense because static fields are shared among all objects of
the class and therefore setting values for such fields each time a constructor is called would conflict with
this notion.

You now seem to be back with initonly fields only being initialized at compile time where literal
fields could do the job anyway; however, you have another way to initialize static initonly fields at
runtime — through a static constructor.

404

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 404



Static Constructors
A static constructor is a constructor that you declare using the static keyword and that you use to ini-
tialize static fields and static initonly fields. A static constructor has no parameters and cannot have an
initializer list. A static constructor is always private, regardless of whether or not you put it in a public
section of the class. You can define a static constructor for value classes and for reference classes. You can-
not call a static constructor directly — it will be called automatically prior to the execution of a normal con-
structor. Any static fields that have initial values specified in their declarations will be initialized prior to
the execution of the static constructor. Here’s how you could initialize the initonly field in the Length
class using a static constructor:

value class Length
{
private:

int feet;
int inches;

// Static constructor
static Length() { inchesPerFoot = 12; }

public:
initonly static int inchesPerFoot;             // Static initonly field

// Constructor
Length(int ft, int ins) :

feet(ft), inches(ins)                // Initialize fields
{}

}

This example of using a static constructor has no particular advantage over explicit initialization of
inchesPerFoot, but bear in mind that the big difference is that the initialization is now occurring at
runtime and the value could be acquired from an external source.

Summary
You now understand the basic ideas behind classes in C++. You’re going to see more and more about
using classes throughout the rest of the book. The key points to keep in mind from this chapter are:

❑ A class provides a means of defining your own data types. They can reflect whatever types of
objects your particular problem requires.

❑ A class can contain data members and function members. The function members of a class
always have free access to the data members of the same class. Data members of a C++/CLI
class are referred to as fields.

❑ Objects of a class are created and initialized using functions called constructors. These are auto-
matically called when an object declaration is encountered. Constructors may be overloaded to
provide different ways of initializing an object.

405

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 405



❑ Classes in a C++/CLI program can be value classes or ref class.

❑ Variables of a value class type store data directly whereas variables referencing ref class objects
are always handles.

❑ C++/CLI classes can have a static constructor defined that initializes the static members of a
class.

❑ Members of a class can be specified as public, in which case they are freely accessible by any
function in a program. Alternatively, they may be specified as private, in which case they may
only be accessed by member functions or friend functions of the class.

❑ Members of a class can be defined as static. Only one instance of each static member of a class
exists, which is shared amongst all instances of the class, no matter how many objects of the
class are created.

❑ Every non-static object of a class contains the pointer this, which points to the current object
for which the function was called.

❑ In non-static function members of a value class type, the this pointer is an interior pointer
whereas in a ref class type it is a handle.

❑ A member function that is declared as const has a const this pointer, and therefore cannot
modify data members of the class object for which it is called. It also cannot call another mem-
ber function that is not const.

❑ You can only call const member functions for a class object declared as const.

❑ Function members of value classes and ref classes cannot be declared as const.

❑ Using references to class objects as arguments to function calls can avoid substantial overheads
in passing complex objects to a function.

❑ A copy constructor, which is a constructor for an object initialized with an existing object of the
same class, must have its parameter specified as a const reference.

❑ You cannot define a copy constructor in a value class because copying value class objects is
always done by member-by-member copying.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Define a struct Sample that contains two integer data items. Write a program which declares
two object of type Sample, called a and b. Set values for the data items that belong to a and 
then check that you can copy the values into b by simple assignment.

2. Add a char* member to struct Sample in the previous exercise called sPtr. When you fill in the
data for a, dynamically create a string buffer initialized with “Hello World!” and make a.sptr
point to it. Copy a into b. What happens when you change the contents of the character buffer
pointed to by a.sPtr and then output the contents of the string pointed to by b.sPtr? Explain
what is happening. How would you get around this?

406

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 406



3. Create a function which takes a pointer to an object of type Sample as an argument, and which
outputs the values of the members of any object Sample that is passed to it. Test this function by
extending the program that you created for the previous exercise.

4. Define a class CRecord with two private data members that store a name up to 14 characters long
and an integer item number. Define a getRecord() function member of the CRecord class that
will set values for the data members by reading input from the keyboard and a putRecord()
function member that outputs the values of the data members. Implement the getRecord() func-
tion so that a calling program can detect when a zero item number is entered. Test your CRecord
class with a main() function that reads and outputs CRecord objects until a zero item number is
entered.

5. Write a class called CTrace that you can use to show you at run time when code blocks have
been entered and exited, by producing output like this:

function ‘f1’ entry
‘if’ block entry
‘if’ block exit
function ‘f1’ exit

6. Can you think of a way to automatically control the indentation in the last exercise, so that the
output looks like this?

function ‘f1’ entry
‘if’ block entry
‘if’ block exit

function ‘f1’ exit

7. Define a class to represent a push-down stack of integers. A stack is a list of items that permits
adding (‘pushing’) or removing (‘popping’) items only from one end and works on a last-in,
first-out principle. For example, if the stack contained [10 4 16 20], pop() would return 10, and
the stack would then contain [4 16 20]; a subsequent push(13) would leave the stack as [13 4 16 20].
You can’t get at an item that is not at the top without first popping the ones above it. Your class
should implement push() and pop() functions, plus a print() function so that you can check
the stack contents. Store the list internally as an array, for now. Write a test program to verify the
correct operation of your class.

8. What happens with your solution to the previous exercise if you try to pop() more items than
you’ve pushed, or save more items than you have space for? Can you think of a robust way to
trap this? Sometimes you might want to look at the number at the top of the stack without remov-
ing it; implement a peek() function to do this.

9. Repeat Ex7-4 but as a CLR console program using ref classes.

407

Chapter 7: Defining Your Own Data Types

25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 407



25905c07.qxd:WroxPro  2/21/08  8:51 AM  Page 408



8
More on Classes

In this chapter, you will extend your knowledge of classes by understanding how you can make
your class objects work more like the basic types in C++. You will learn:

❑ What a class destructor is and when and why it is necessary

❑ How to implement a class destructor

❑ How to allocate data members of a native C++ class in the free store and how to delete
them when they are no longer required

❑ When you must write a copy constructor for a class

❑ What a union is and how it can be used

❑ How to make objects of your class work with C++ operators such as + or *

❑ What class templates are and how you define and use them

❑ How to use the standard string class for string operations in native C++ programs

❑ How to overload operators in C++/CLI classes

Class Destructors
Although this section heading refers to destructors, it’s also about dynamic memory allocation. When
you allocate memory in the free store for class members, you are invariably obliged to make use of a
destructor, in addition to a constructor of course, and, as you’ll see later in this chapter, using dynami-
cally allocated class members will also require you to write your own copy constructor.

What Is a Destructor?
A destructor is a function that destroys an object when it is no longer required or when it goes out
of scope. The class destructor is called automatically when an object goes out of scope. Destroying
an object involves freeing the memory occupied by the data members of the object (except for static
members which continue to exist even when there are no class objects in existence). The destructor
for a class is a member function with the same name as the class, preceded by a tilde (~). The class

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 409



destructor doesn’t return a value and doesn’t have parameters defined. For the CBox class, the prototype
of the class destructor is:

~CBox();                 // Class destructor prototype

Because a destructor has no parameters, there can only ever be one destructor in a class.

It’s an error to specify a return value or parameters for a destructor.

The Default Destructor
All the objects that you have been using up to now have been destroyed automatically by the default
destructor for the class. The default destructor is always generated automatically by the compiler if you
do not define your own class destructor. The default destructor doesn’t delete objects or object members
that have been allocated in the free store by the operator new. If space for class members has been allocated
dynamically in a contructor, then you must define your own destructor that will explicitly use the delete
operator to release the memory that has been allocated by the constructor using the operator new, just as
you would with ordinary variables. You need some practice in writing destructors, so let’s try it out.

Try It Out A Simple Destructor
To get an appreciation of when the destructor for a class is called, you can include a destructor in the
class CBox. Here’s the definition of the example including the CBox class with a destructor:

// Ex8_01.cpp
// Class with an explicit destructor
#include <iostream>
using std::cout;
using std::endl;

class CBox                     // Class definition at global scope
{
public:
// Destructor definition
~CBox()
{
cout << “Destructor called.” << endl;

}

// Constructor definition
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(wv), m_Height(hv)
{
cout << endl << “Constructor called.”;

}

// Function to calculate the volume of a box
double Volume() const
{
return m_Length*m_Width*m_Height;

}

// Function to compare two boxes which returns true

410

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 410



// if the first is greater that the second, and false otherwise
int compare(CBox* pBox) const
{
return this->Volume()  >  pBox->Volume();

}

private:
double m_Length;         // Length of a box in inches
double m_Width;          // Width of a box in inches
double m_Height;         // Height of a box in inches

};

// Function to demonstrate the CBox class destructor in action
int main()
{
CBox boxes[5];              // Array of CBox objects declared
CBox cigar(8.0, 5.0, 1.0);  // Declare cigar box
CBox match(2.2, 1.1, 0.5);  // Declare match box
CBox* pB1 = &cigar;         // Initialize pointer to cigar object address
CBox* pB2 = 0;              // Pointer to CBox initialized to null

cout << endl
<< “Volume of cigar is “
<< pB1->Volume();      // Volume of obj. pointed to

pB2 = boxes;                // Set to address of array
boxes[2] = match;           // Set 3rd element to match
cout << endl

<< “Volume of boxes[2] is “
<< (pB2 + 2)->Volume();  // Now access thru pointer

cout << endl;
return 0;

}

How It Works
The only thing that the CBox class destructor does is to display a message showing that it was called. The
output is:

Constructor called.
Constructor called.
Constructor called.
Constructor called.
Constructor called.
Constructor called.
Constructor called.
Volume of cigar is 40
Volume of boxes[2] is 1.21
Destructor called.
Destructor called.
Destructor called.
Destructor called.
Destructor called.
Destructor called.
Destructor called.

411

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 411



You get one call of the destructor at the end of the program for each of the objects that exist at that time. For
each constructor call that occurred, there’s a matching destructor call. You don’t need to call the destructor
explicitly here. When an object of a class goes out of scope, the compiler will arrange for the destructor for
the class to be called automatically. In our example, the destructor calls occur after main() has finished
executing, so it’s quite possible for an error in a destructor to cause a program to crash after main() has
safely terminated.

Destructors and Dynamic Memory Allocation
You will find that you often want to allocate memory for class data members dynamically. You can use
the operator new in a constructor to allocate memory for an object member. In such a case, you must
assume responsibility for releasing the memory when the object is no longer required by providing a
suitable destructor. Let’s first define a simple class where we can do this.

Suppose you want to define a class where each object is a message of some description, for example, a
text string. The class should be as memory efficient as possible so, rather than defining a data member 
as a char array big enough to hold the maximum length string that you might require, you’ll allocate
memory in the free store for the message when an object is created. Here’s the class definition:

//Listing 08_01
class CMessage
{
private:
char* pmessage;                   // Pointer to object text string

public:

// Function to display a message
void ShowIt() const
{
cout << endl << pmessage;

}

// Constructor definition
CMessage(const char* text = “Default message”)
{
pmessage = new char[strlen(text) + 1];   // Allocate space for text
strcpy(pmessage, text);                  // Copy text to new memory

}

~CMessage();                               // Destructor prototype
};

This class has only one data member defined, pmessage, which is a pointer to a text string. This is defined
in the private section of the class, so that it can’t be accessed from outside the class.

In the public section, you have the ShowIt() function that will output a CMessage object to the
screen. You also have the definition of a constructor and you have the prototype for the class destruc-
tor, ~CMessage(), which I’ll come to in a moment.

412

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 412



The constructor for the class requires a string as an argument, but if none is passed, it uses the default
string that is specified for the parameter. The constructor obtains the length of the string supplied as the
argument, excluding the terminating NULL, by using the library function strlen(). For the constructor to
use this library function, there must be an #include statement for the <cstring> header file. The construc-
tor determines the number of bytes of memory necessary to store the string in the free store by adding 1 to
the value that the function strlen() returns.

Of course, if the memory allocation fails, an exception will be thrown that will terminate the program.
If you want to manage such a failure to provide a more graceful end to the program, you would catch
the exception within the constructor code. (See Chapter 6 for information on handling out-of-memory
conditions.)

Having obtained the memory for the string using the operator new, you use the strcpy() library function
that is also declared in the <cstring> header file to copy the string supplied as the argument to the con-
structor into the memory allocated for it. The strcpy() function copies the string specified by the second
pointer argument to the address contained in the first pointer argument.

You now need to write a class destructor that will free up the memory allocated for a message. If you don’t
provide a destructor for the class, there’s no way to delete the memory allocated for an object. If you use this
class as it stands in a program where a large number of CMessage objects are created, the free store will be
gradually eaten away until the program fails. It’s easy for this to occur in circumstances where it may not be
obvious that it is happening. For example, if you create a temporary CMessage object in a function that is
called many times in a program, you might assume that the objects are being destroyed at the return from
the function. You’d be right about that, of course, but the free store memory will not be released. Thus for
each call of the function, more of the free store will be occupied by memory for discarded CMessage objects.

The code for the CMessage class destructor is as follows:

// Listing 08_02
// Destructor to free memory allocated by new
CMessage::~CMessage()
{
cout << “Destructor called.”         // Just to track what happens

<< endl;
delete[] pmessage;                   // Free memory assigned to pointer

}

Because you’re defining the destructor outside of the class definition, you must qualify the name of the
destructor with the class name, CMessage. All the destructor does is to first display a message so that you
can see what’s going on, and then use the delete operator to free the memory pointed to by the member
pmessage. Note that you have to include the square brackets with delete because you’re deleting an
array (of type char).

Try It Out Using the Message Class
You can exercise the CMessage class with a little example:

// Ex8_02.cpp
// Using a destructor to free memory
#include <iostream>          // For stream I/O
#include <cstring>           // For strlen() and strcpy()
using std::cout;

413

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 413



using std::endl;

// Put the CMessage class definition here (Listing 08_01)

// Put the destructor definition here (Listing 08_02)

int main()
{
// Declare object
CMessage motto(“A miss is as good as a mile.”);

// Dynamic object
CMessage* pM = new CMessage(“A cat can look at a queen.”);

motto.ShowIt();            // Display 1st message
pM->ShowIt();              // Display 2nd message
cout << endl;

// delete pM;              // Manually delete object created with new
return 0;

}

Don’t forget to replace the comments in the code with the CMessage class and destructor definitions
from the previous section; it won’t compile without this (the source code in the download contains all
the code for the example).

How It Works
At the beginning of main(), you declare and define an initialized CMessage object, motto, in the usual
manner. In the second declaration you define a pointer to a CMessage object, pM, and allocate memory
for the CMessage object that is pointed to by using the operator new. The call to new invokes the
CMessage class constructor, which has the effect of calling new again to allocate space for the message 
text pointed to by the data member pmessage. If you build and execute this example, it will produce 
the following output:

A miss is as good as a mile.
A cat can look at a queen.
Destructor called.

You have only one destructor call recorded in the output, even though you created two CMessage objects. I
said earlier that the compiler doesn’t take responsibility for objects created in the free store. The compiler
arranged to call your destructor for the object motto because this is a normal automatic object, even though
the memory for the data member was allocated in the free store by the constructor. The object pointed to by
pM is different. You allocated memory for the object in the free store, so you have to use delete to remove it.
You need to uncomment the following statement that appears just before the return statement in main():

// delete pM;               // Manually delete object created with new

If you run the code now, it will produce this output:

A miss is as good as a mile.
A cat can look at a queen.
Destructor called.
Destructor called.

414

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 414



Now you get an extra call of your destructor. This is surprising in a way. Clearly, delete is only dealing
with the memory allocated by the call to new in the function main(). It only freed the memory pointed
to by pM. Because your pointer pM points to a CMessage object (for which a destructor has been defined),
delete also calls your destructor to allow you to release the memory for the members of the object. So
when you use delete for an object created dynamically with new, it will always call the destructor for
the object before releasing the memory that the object occupies. This ensures that any memory allocated
dynamically for members of the class will also be freed.

Implementing a Copy Constructor
When you allocate space for class members dynamically, there are demons lurking in the free store. For the
CMessage class, the default copy constructor is woefully inadequate. Suppose you write these statements:

CMessage motto1(“Radiation fades your genes.”);
CMessage motto2(motto1);     // Calls the default copy constructor

The effect of the default copy constructor will be to copy the address that is stored in the pointer member of
the class from motto1 to motto2 because the copying process implemented by the default copy construc-
tor involves simply copying the values stored in the data members of the original object to the new object.
Consequently, there will be only one text string shared between the two objects, as Figure 8-1 illustrates.

Figure 8-1

motto1 

address pmessage 

CMessage motto1 ( “ Radiation fades your genes .” ) ; 

CMessage motto2 (motto1) ; the default copy constructor //  Calls

copy 
motto2 

address 

Radiation fades your genes. 

pmessage 

motto1 

address pmessage 

Radiation fades your genes. 

415

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 415



If the string is changed from either of the objects, it will be changed for the other object as well because both
objects share the same string. If motto1 is destroyed, the pointer in motto2 will be pointing at a memory
area that has been released, and may now be used for something else, so chaos will surely ensue. Of course,
the same problem arises if motto2 is deleted; motto1 would then contain a member pointing to a nonexist-
ent string.

The solution is to supply a class copy constructor to replace the default version. You could implement this
in the public section of the class as follows:

CMessage(const CMessage& initM)        // Copy Constructor definition
{
// Allocate space for text
pmessage = new char[ strlen(initM.pmessage) + 1 ];

// Copy text to new memory
strcpy(pmessage, initM.pmessage);

}

Remember from the previous chapter that, to avoid an infinite spiral of calls to the copy constructor, the
parameter must be specified as a const reference. This copy constructor first allocates enough memory
to hold the string in the object initM, storing the address in the data member of the new object, and then
copies the text string from the initializing object. Now, the new object will be identical to, but quite inde-
pendent of, the old one.

Just because you don’t initialize one CMessage class object with another, don’t think that you’re safe and
need not bother with the copy constructor. Another monster lurks in the free store that can emerge to bite
you when you least expect it. Consider the following statements:

CMessage thought(“Eye awl weighs yews my spell checker.”);
DisplayMessage(thought);     // Call a function to output a message

where the function DisplayMessage() is defined as:

void DisplayMessage(CMessage localMsg)
{
cout << endl << “The message is: “

<< localMsg.ShowIt();
return;

}

Looks simple enough doesn’t it? What could be wrong with that? A catastrophic error, that’s what! What
the function DisplayMessage() does is actually irrelevant. The problem lies with the parameter. The
parameter is a CMessage object so the argument in a call is passed by value. With the default copy con-
structor, the sequence of events is as follows:

1. The object thought is created with the space for the message “Eye awl weighs yews my
spell checker” allocated in the free store.

2. The function DisplayMessage() is called and, because the argument is passed by value, a copy,
localMsg, is made using the default copy constructor. Now the pointer in the copy points to the
same string in the free store as the original object.

416

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 416



3. At the end of the function, the local object goes out of scope, so the destructor for the CMessage
class is called. This deletes the local object (the copy) by deleting the memory pointed to by the
pointer pmessage.

4. On return from the function DisplayMessage(), the pointer in the original object, thought,
still points to the memory area that has just been deleted. Next time you try to use the original
object (or even if you don’t, since it will need to be deleted sooner or later) your program will
behave in weird and mysterious ways.

Any call to a function that passes by value an object of a class that has a member defined dynamically
will cause problems. So, out of this, you have an absolutely 100 percent, 24 carat golden rule:

If you allocate space for a member of a native C++ class dynamically, always implement a copy 
constructor.

Sharing Memory Between Variables
As a relic of the days when 64KB was quite a lot of memory, you have a facility in C++ that allows more
than one variable to share the same memory (but obviously not at the same time). This is called a union,
and there are four basic ways in which you can use one:

❑ You can use it so that a variable A occupies a block of memory at one point in a program, which is
later occupied by another variable B of a different type, because A is no longer required. I recom-
mend that you don’t do this. It’s not worth the risk of error that is implicit in such an arrangement.
You can achieve the same effect by allocating memory dynamically.

❑ Alternatively, you could have a situation in a program where a large array of data is required, but
you don’t know in advance of execution what the data type will be — it will be determined by the
input data. I also recommend that you don’t use unions in this case, since you can achieve the same
result using a couple of pointers of different types and again allocating the memory dynamically.

❑ A third possible use for a union is one that you may need now and again — when you want 
to interpret the same data in two or more different ways. This could happen when you have a
variable that is of type long, and you want to treat it as two values of type short. Windows will
sometimes package two short values in a single parameter of type long passed to a function.
Another instance arises when you want to treat a block of memory containing numeric data as a
string of bytes, just to move it around.

❑ You can use a union as a means of passing an object or a data value around where you don’t
know in advance what its type is going to be. The union can provide for storing any one of the
possible range of types that you might have.

Defining Unions
You define a union using the keyword union. It is best understood by taking an example of a definition:

union shareLD                // Sharing memory between long and double
{
double dval;
long lval;

};

417

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 417



This defines a union type shareLD that provides for the variables of type long and double to occupy
the same memory. The union type name is usually referred to as a tag name. This statement is rather like
a class definition, in that you haven’t actually defined a union instance yet, so you don’t have any vari-
ables at this point. Once the union type has been defined, you can define instances of a union in a decla-
ration. For example:

shareLD myUnion;

This defined an instance of the union type, shareLD, that you defined previously. You could also have
defined myUnion by including it in the union definition statement:

union shareLD                  // Sharing memory between long and double
{
double dval;
long lval;

} myUnion;

To refer to a member of the union, you use the direct member selection operator (the period) with the
union instance name, just as you have done when accessing members of a class. So, you could set the
long variable lval to 100 in the union instance MyUnion with this statement:

myUnion.lval = 100;            // Using a member of a union

Using a similar statement later in a program to initialize the double variable dval will overwrite lval.
The basic problem with using a union to store different types of values in the same memory is that,
because of the way a union works, you also need some means of determining which of the member
values is current. This is usually achieved by maintaining another variable that acts as an indicator 
of the type of value stored.

A union is not limited to sharing between two variables. If you wish, you can share the same memory
between several variables. The memory occupied by the union will be that which is required by its
largest member. For example, suppose you define this union:

union shareDLF
{
double dval;
long lval;
float fval;

} uinst = {1.5};

An instance of shareDLF will occupy 8 bytes, as illustrated in Figure 8-2.

In the example, you defined an instance of the union, uinst, as well as the tag name for the union. You
also initialized the instance with the value 1.5.

You can only initialize the first member of the union when you declare an instance.

418

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 418



Figure 8-2

Anonymous Unions
You can define a union without a union type name, in which case an instance of the union is automatically
declared. For example, suppose you define a union like this:

union
{
char* pval;
double dval;
long lval;

};

This statement defines both a union with no name and an instance of the union with no name. Con -
sequently, you can refer the variables that it contains just by their names, as they appear in the union defi-
nition, pval, dval, and lval. This can be more convenient than a normal union with a type name, but you
need to be careful that you don’t confuse the union members with ordinary variables. The members of the
union will still share the same memory. As an illustration of how the anonymous union above works, to
use the double member, you could write this statement:

dval = 99.5;                   // Using a member of an anonymous union

As you can see, there’s nothing to distinguish the variable dval as a union member. If you need to use
anonymous unions, you could use a naming convention to make the members more obvious and thus
make your code a little less obscure.

Unions in Classes and Structures
You can include an instance of a union in a class or in a structure. If you intend to store different types of
value at different times, this usually necessitates maintaining a class data member to indicate what kind
of value is stored in the union. There isn’t usually a great deal to be gained by using unions as class or
struct members.

8 bytes

Ival

fval

dval

419

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 419



Operator Over loading
Operator overloading is a very important capability because it enables you to make standard C++ oper-
ators, such as +, -, * and so on, work with objects of your own data types. It allows you to write a func-
tion that redefines a particular operator so that it performs a particular action when it’s used with objects
of a class. For example, you could redefine the operator > so that, when it was used with objects of the class
CBox that you saw earlier, it would return true if the first CBox argument had a greater volume than the
second.

Operator overloading doesn’t allow you to invent new operators, nor can you change the precedence of an
operator, so your overloaded version of an operator will have the same priority in the sequence of evaluat-
ing an expression as the original base operator. The operator precedence table can be found in Chapter 2 of
this book and in the MSDN Library.

Although you can’t overload all the operators, the restrictions aren’t particularly oppressive. These are
the operators that you can’t overload:

Anything else is fair game, which gives you quite a bit of scope. Obviously, it’s a good idea to ensure that
your versions of the standard operators are reasonably consistent with their normal usage, or at least reason-
ably intuitive in their operation. It wouldn’t be a very sensible approach to produce an overloaded + opera-
tor for a class that performed the equivalent of a multiply on class objects. The best way to understand how
operator overloading works is to work through an example, so let’s implement what I just referred to, the
greater-than operator, >, for the CBox class.

Implementing an Overloaded Operator
To implement an overloaded operator for a class, you have to write a special function. Assuming that it
is a member of the class CBox, the declaration for the function to overload the > operator within the class
definition will be as follows:

class CBox
{
public:
bool operator>(CBox& aBox) const;  // Overloaded ‘greater than’

// Rest of the class definition...
};

The scope resolution operator ::

The conditional operator ?:

The direct member selection operator .

The size-of operator sizeof

The de-reference pointer to class member operator .*

420

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 420



The word operator here is a keyword. Combined with an operator symbol or name, in this case, >, it
defines an operator function. The function name in this case is operator>. You can write an operator
function with or without a space between the keyword operator and the operator itself, as long as
there’s no ambiguity. The ambiguity arises with operators with names rather than symbols such as new
or delete. If you were to write operatornew and operatordelete without a space, they are legal
names for ordinary functions, so for operator functions with these operators, you must leave a space
between the keyword operator and the operator name itself. The strangest looking function name 
for an overloaded operator function is operator()(). This looks like a typing error but it is in fact a
function that overloads the function call operator, (). Note that you declare the operator>() function 
as const because it doesn’t modify the data members of the class.

With the operator>()operator function, the right operand of the operator will be defined by the func-
tion parameter. The left operand will be defined implicitly by the pointer this. So, if you have the fol-
lowing if statement:

if(box1 > box2)
cout << endl << “box1 is greater than box2”;

then the expression between the parentheses in the if will call our operator function, and is equivalent
to this function call:

box1.operator>(box2);

The correspondence between the CBox objects in the expression and the operator function parameters is
illustrated in Figure 8-3.

Figure 8-3

Let’s look at how the code for the operator>() function works:

// Operator function for ‘greater than’ which
// compares volumes of CBox objects.
bool CBox::operator>(const CBox& aBox) const
{
return this->Volume() > aBox.Volume();

}

bool CBox::operator>(const CBox& aBox) const
{

 return (this->volume()) > (aBox.Volume());

}

if( box1 > box2 )

The object pointed to by this 

Function argument 

421

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 421



You use a reference parameter to the function to avoid unnecessary copying when the function is called.
Because the function does not alter the object for which it is called, you can declare it as const. If you
don’t do this, you cannot use the operator to compare const objects of type CBox at all.

The return expression uses the member function Volume() to calculate the volume of the CBox object
pointed to by this, and compares the result with the volume of the object aBox using the basic opera-
tor >. The basic > operator returns a value of type int (not a type bool) and thus, 1 is returned if the
CBox object pointed to by the pointer this has a larger volume than the object aBox passed as a refer-
ence argument, and 0 otherwise. The value that results from the comparison will be automatically con-
verted to the return type of the operator function, type bool.

Try It Out Operator Overloading
You can exercise the operator>() function with an example:

// Ex8_03.cpp
// Exercising the overloaded ‘greater than’ operator
#include <iostream>                      // For stream I/O
using std::cout;
using std::endl;

class CBox                               // Class definition at global scope
{
public:
// Constructor definition
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(wv), m_Height(hv)
{

cout << endl << “Constructor called.”;
}

// Function to calculate the volume of a box
double Volume() const
{

return m_Length*m_Width*m_Height;
}

bool operator>(const CBox& aBox) const;  // Overloaded ‘greater than’

// Destructor definition
~CBox()
{

cout << “Destructor called.” << endl;
}

private:
double m_Length;                         // Length of a box in inches
double m_Width;                          // Width of a box in inches
double m_Height;                         // Height of a box in inches

};

// Operator function for ‘greater than’ that
// compares volumes of CBox objects.

422

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 422



bool CBox::operator>(const CBox& aBox) const
{
return this->Volume() > aBox.Volume();

}

int main()
{
CBox smallBox(4.0, 2.0, 1.0);
CBox mediumBox(10.0, 4.0, 2.0);
CBox bigBox(30.0, 20.0, 40.0);

if(mediumBox > smallBox)
cout << endl

<< “mediumBox is bigger than smallBox”;

if(mediumBox > bigBox)
cout << endl

<< “mediumBox is bigger than bigBox”;
else
cout << endl

<< “mediumBox is not bigger than bigBox”;

cout << endl;
return 0;

}

How It Works
The prototype of the operator>() operator function appears in the public section of the class. As the
function definition is outside the class definition, it won’t default to inline. This is quite arbitrary. You
could just as well have put the definition in place of the prototype in the class definition. In this case, you
wouldn’t need to qualify the function name with CBox:: in front of it. As you’ll remember, this is neces-
sary when you define a function member outside the class definition because this tells the compiler that
the function is a member of the CBox class.

The function main() has two if statements using the operator > with class members. These automati-
cally invoke the overloaded operator function. If you wanted to get confirmation of this, you could add
an output statement to the operator function. The output from this example is:

Constructor called.
Constructor called.
Constructor called.
mediumBox is bigger than smallBox
mediumBox is not bigger than bigBox
Destructor called.
Destructor called.
Destructor called.

The output demonstrates that the if statements work fine with our operator function, so being able 
to express the solution to CBox problems directly in terms of CBox objects is beginning to be a realistic
proposition.

423

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 423



Implementing Full Support for a Comparison Operator
With the current version of the operator function operator>(), there are still a lot of things that you
can’t do. Specifying a problem solution in terms of CBox objects might well involve statements such as
the following:

if(aBox > 20.0)
// Do something...

Our function won’t deal with that. If you try to use an expression comparing a CBox object with a numeri-
cal value, you’ll get an error message. To support this capability, you would need to write another version
of the operator>()function as an overloaded function.

You can quite easily support the type of expression that you’ve just seen. The declaration of the member
function within the class would be:

// Compare a CBox object with a constant
bool operator>(const double& value) const;

This would appear in the definition of the class and the right operand for the > operator corresponds 
to the function parameter here. The CBox object that is the left operand will be passed as the implicit
pointer this.

The implementation of this overloaded operator is also easy. It’s just one statement in the body of the
function:

// Function to compare a CBox object with a constant
bool CBox::operator>(const double& value) const
{
return this->Volume() > value;

}

This couldn’t be much simpler, could it? But you still have a problem using the > operator with CBox
objects. You may well want to write statements such as this:

if(20.0 > aBox)
// do something...

You might argue that this could be done by implementing the operator<() operator function that accepted
a right argument of type double and rewriting the statement above to use it, which is quite true. Indeed,
implementing the < operator is likely to be a requirement for comparing CBox objects anyway, but an imple-
mentation of support for an object type shouldn’t artificially restrict the ways in which you can use the
objects in an expression. The use of the objects should be as natural as possible. The problem is how to do it.

A member operator function always provides the left argument as the pointer this. Because the left argu-
ment, in this case, is of type double, you can’t implement it as a member function. That leaves you with
two choices: an ordinary function or a friend function. Because you don’t need to access the private
members of the class, it doesn’t need to be a friend function, so you can implement the overloaded > oper-
ator with a left operand of type double as an ordinary function. The prototype, placed outside the class
definition of course because it isn’t a member, would need to be:

bool operator>(const double& value, const CBox& aBox);

424

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 424



The implementation would be this:

// Function comparing a constant with a CBox object
bool operator>(const double& value, const CBox& aBox)
{

return value > aBox.Volume();
}

As you have seen already, an ordinary function (and a friend function too for that matter) accesses the
members of an object by using the direct member selection operator and the object name. Of course, an
ordinary function only has access to the public members. The member function Volume() is public, so
there’s no problem using it here.

If the class didn’t have the public function Volume(), you could either declare the operator function a
friend function that could access the private data members directly, or you could provide a set of mem-
ber functions to return the values of the private data members and use those in an ordinary function to
implement the comparison.

Try It Out Complete Overloading of the > Operator
We can put all this together in an example to show how it works:

// Ex8_04.cpp
// Implementing a complete overloaded ‘greater than’ operator
#include <iostream>                    // For stream I/O
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{

public:
// Constructor definition
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(wv), m_Height(hv)
{

cout << endl << “Constructor called.”;
}

// Function to calculate the volume of a box
double Volume() const
{

return m_Length*m_Width*m_Height;
}

// Operator function for ‘greater than’ that
// compares volumes of CBox objects.
bool operator>(const CBox& aBox) const
{
return this->Volume() > aBox.Volume();

}

// Function to compare a CBox object with a constant
bool operator>(const double& value) const
{

425

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 425



return this->Volume() > value;
}

// Destructor definition
~CBox()
{ cout << “Destructor called.” << endl;}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int operator>(const double& value, const CBox& aBox); // Function prototype

int main()
{
CBox smallBox(4.0, 2.0, 1.0);
CBox mediumBox(10.0, 4.0, 2.0);

if(mediumBox > smallBox)
cout << endl

<< “mediumBox is bigger than smallBox”;

if(mediumBox > 50.0)
cout << endl

<< “mediumBox capacity is more than 50”;
else
cout << endl

<< “mediumBox capacity is not more than 50”;

if(10.0 > smallBox)
cout << endl

<< “smallBox capacity is less than 10”;
else
cout << endl

<< “smallBox capacity is not less than 10”;

cout << endl;
return 0;

}

// Function comparing a constant with a CBox object
int operator>(const double& value, const CBox& aBox)
{
return value > aBox.Volume();

}

How It Works
Note the position of the prototype for the ordinary function version of operator>(). It needs to follow
the class definition, because it refers to a CBox object in the parameter list. If you place it before the class
definition, the example will not compile.

426

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 426



There is a way to place it at the beginning of the program file following the #include statement: Use an
incomplete class declaration. This would precede the prototype and would look like this:

class CBox;                                      // Incomplete class declaration
int operator>(const double& value, CBox& aBox);  // Function prototype

The incomplete class declaration identifies CBox to the compiler as a class and is sufficient to allow the
compiler to process the prototype for the function properly, since the compiler now knows that CBox is 
a user-defined type to be specified later.

This mechanism is also essential in circumstances such as those where you have two classes, each of
which has a pointer to an object of the other class as a member. They will each require the other to be
declared first. It is only possible to resolve such an impasse through the use of an incomplete class 
declaration.

The output from the example is:

Constructor called.
Constructor called.
mediumBox is bigger than smallBox
mediumBox capacity is more than 50
smallBox capacity is less than 10
Destructor called.
Destructor called.

After the constructor messages due to the declarations of the objects smallBox and mediumBox, you
have the output lines from the three if statements, each of which is working as you would expect. The
first of these calls the operator function that is a class member and works with two CBox objects. The
second calls the member function that has a parameter of type double. The expression in the third if
statement calls the operator function that you have implemented as an ordinary function.

As it happens, you could have made both the operator functions that are class members ordinary func-
tions, because they only need access to the member function Volume(), which is public.

Any comparison operator can be implemented in much the same way as you have implemented these.
They would only differ in the minor details and the general approach to implementing them would be
exactly the same.

Overloading the Assignment Operator
If you don’t provide an overloaded assignment operator function for your class, the compiler will provide
a default. The default version will simply provide a member-by-member copying process, similar to that of
the default copy constructor. However, don’t confuse the default copy constructor with the default assign-
ment operator. The default copy constructor is called by a declaration of a class object that’s initialized with
an existing object of the same class, or by passing an object to a function by value. The default assignment
operator, on the other hand, is called when the left side and the right side of an assignment statement are
objects of the same class type.

427

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 427



For the CBox class, the default assignment operator works with no problem, but for any class which has
space for members allocated dynamically, you need to look carefully at the requirements of the class in
question. There may be considerable potential for chaos in your program if you leave the assignment
operator out under these circumstances.

For a moment, let’s return to the CMessage class that you used when I was talking about copy construc-
tors. You’ll remember it had a member, pmessage, that was a pointer to a string. Now consider the effect
that the default assignment operator could have. Suppose you had two instances of the class, motto1 and
motto2. You could try setting the members of motto2 equal to the members of motto1 using the default
assignment operator, as follows:

motto2 = motto1;                 // Use default assignment operator

The effect of using the default assignment operator for this class is essentially the same as using the default
copy constructor: disaster will result! Since each object will have a pointer to the same string, if the string is
changed for one object, it’s changed for both. There’s also the problem that when one of the instances of
the class is destroyed, its destructor will free the memory used for the string and the other object will be
left with a pointer to memory that may now be used for something else.

What you need the assignment operator to do is to copy the text to a memory area owned by the desti-
nation object.

Fixing the Problem
You can fix this with your own assignment operator function, which we will assume is defined within
the class definition:

// Overloaded assignment operator for CMessage objects
CMessage& operator=(const CMessage& aMess)
{
// Release memory for 1st operand
delete[] pmessage;
pmessage = new char[ strlen(aMess.pmessage) + 1];

// Copy 2nd operand string to 1st
strcpy(this->pmessage, aMess.pmessage);

// Return a reference to 1st operand
return *this;

}

An assignment might seem very simple, but there’s a couple of subtleties need further investigation. First
of all, note that you return a reference from the assignment operator function. It may not be immediately
apparent why this is so — after all, the function does complete the assignment operation entirely, and the
object on the right of the assignment will be copied to that on the left. Superficially this would suggest
that you don’t need to return anything, but you need to consider in a little more depth how the operator
might be used.

There’s a possibility that you might need to use the result of an assignment operation on the right hand
side of an expression. Consider a statement such as this:

motto1 = motto2 = motto3;

428

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 428



Because the assignment operator is right-associative, the assignment of motto3 to motto2 will be carried
out first, so this will translate into the following statement:

motto1 = (motto2.operator=(motto3));

The result of the operator function call here is on the right of the equals sign, so the statement will finally
become this:

motto1.operator=(motto2.operator=(motto3));

If this is to work, you certainly have to return something. The call of the operator=() function between
the parentheses must return an object that can be used as an argument to the other operator=() function
call. In this case a return type of either CMessage or CMessage& would do it, so a reference is not manda-
tory in this situation, but you must at least return a CMessage object.

However, consider the following example:

(motto1 = motto2) = motto3;

This is perfectly legitimate code — the parentheses serve to make sure the leftmost assignment is carried
out first. This translates into the following statement:

(motto1.operator=(motto2)) = motto3;

When you express the remaining assignment operation as the explicit overloaded function call this ulti-
mately becomes:

(motto1.operator=(motto2)).operator=(motto3);

Now you have a situation where the object returned from the operator=() function is used to call the
operator=() function. If the return type is just CMessage, this will not be legal because a temporary
copy of the original object is actually returned, and the compiler will not allow a member function call
using a temporary object. In other words, the return value when the return type is CMessage is not an
lvalue. The only way to ensure this sort of thing will compile and work correctly is to return a reference,
which is an lvalue, so the only possible return type if want to allow fully flexible use of the assignment
operator with your class objects is CMessage&.

Note that the native C++ language does not enforce any restrictions on the accepted parameter or return
types for the assignment operator, but it makes sense to declare the operator in the way I have just described
if you want your assignment operator functions to support normal C++ usage of assignment.

The second subtlety you need to keep in mind is that each object already has memory for a string allo-
cated, so the first thing that the operator function has to do is to delete the memory allocated to the
first object and reallocate sufficient memory to accommodate the string belonging to the second object.
Once this is done, the string from the second object can be copied to the new memory now owned by
the first.

There’s still a defect in this operator function. What if you were to write the following statement?

motto1 = motto1;

429

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 429



Obviously, you wouldn’t do anything as stupid as this directly, but it could easily be hidden behind a
pointer, for instance, as in the following statement,

Motto1 = *pMess;

If the pointer pMess points to motto1 you essentially have the preceding assignment statement. In this
case, the operator function as it stands would delete the memory for motto1, allocate some more memory
based on the length of the string that has already been deleted and try to copy the old memory which, by
then, could well have been corrupted. You can fix this with a check for identical left and right operands at
the beginning of the function, so now the definition of the operator=() function would become this:

// Overloaded assignment operator for CMessage objects
CMessage& operator=(const CMessage& aMess)
{
if(this == &aMess)                   // Check addresses, if equal
return *this;                      // return the 1st operand

// Release memory for 1st operand
delete[] pmessage;
pmessage = new char[ strlen(aMess.pmessage) +1];

// Copy 2nd operand string to 1st
strcpy(this->pmessage, aMess.pmessage);

// Return a reference to 1st operand
return *this;

}

This code assumes that the function definition appears within the class definition.

Try It Out Overloading the Assignment Operator
Let’s put this together in a working example. We’ll add a function, called Reset(), to the class at the
same time. This just resets the message to a string of asterisks.

// Ex8_05.cpp
// Overloaded copy operator perfection
#include <iostream>
#include <cstring>
using std::cout;
using std::endl;

class CMessage
{
private:
char* pmessage;                    // Pointer to object text string

public:
// Function to display a message
void ShowIt() const
{

cout << endl << pmessage;
}

430

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 430



//Function to reset a message to *
void Reset()
{
char* temp = pmessage;
while(*temp)
*(temp++) = ‘*’;

}

// Overloaded assignment operator for CMessage objects
CMessage& operator=(const CMessage& aMess)
{
if(this == &aMess)               // Check addresses, if equal
return *this;                  // return the 1st operand

// Release memory for 1st operand
delete[] pmessage;
pmessage = new char[ strlen(aMess.pmessage) +1];

// Copy 2nd operand string to 1st
strcpy(this->pmessage, aMess.pmessage);

// Return a reference to 1st operand
return *this;

}

// Constructor definition
CMessage(const char* text = “Default message”)
{

pmessage = new char[ strlen(text) +1 ]; // Allocate space for text
strcpy(pmessage, text);                 // Copy text to new memory

}

// Destructor to free memory allocated by new
~CMessage()
{

cout << “Destructor called.”     // Just to track what happens
<< endl;

delete[] pmessage;               // Free memory assigned to pointer
}

};

int main()
{
CMessage motto1(“The devil takes care of his own”);
CMessage motto2;

cout << “motto2 contains - “;
motto2.ShowIt();
cout << endl;

motto2 = motto1;                       // Use new assignment operator

cout << “motto2 contains - “;
motto2.ShowIt();

431

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 431



cout << endl;

motto1.Reset();                      // Setting motto1 to * doesn’t
// affect motto2

cout << “motto1 now contains - “;
motto1.ShowIt();
cout << endl;

cout << “motto2 still contains - “;
motto2.ShowIt();
cout << endl;

return 0;
}

You can see from the output of this program that everything works exactly as required, with no linking
between the messages of the two objects, except where you explicitly set them equal:

motto2 contains -
Default message
motto2 contains -
The devil takes care of his own
motto1 now contains -
*******************************
motto2 still contains -
The devil takes care of his own
Destructor called.
Destructor called.

So let’s have another golden rule out of all of this:

Always implement an assignment operator if you allocate space dynamically for a data member of a
class.

Having implemented the assignment operator, what happens with operations such as +=? Well, they
don’t work unless you implement them. For each form of op= that you want to use with your class
objects, you need to write another operator function.

Overloading the Addition Operator
Let’s look at overloading the addition operator for our CBox class. This is interesting because it involves
creating and returning a new object. The new object will be the sum (whatever you define that to mean)
of the two CBox objects that are its operands.

432

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 432



So what do we want the sum of two boxes to mean? Well, there are quite a few legitimate possibilities but
we’ll keep it simple here. Let’s define the sum of two CBox objects as a CBox object that is large enough to
contain the other two boxes stacked on top of each other. You can do this by making the new object have
an m_Length member that is the larger of the m_Length members of the objects being added, and an
m_Width member derived in a similar way. The m_Height member will be the sum of the m_Height
members of the two operand objects, so that the resultant CBox object can contain the other two CBox
objects. This isn’t necessarily an optimal solution, but it will be sufficient for our purposes. By altering
the constructor, we’ll also arrange that the m_Length member of a CBox object is always greater than or
equal to the m_Width member.

Our version of the addition operation for boxes is easier to explain graphically, so it’s illustrated in
Figure 8-4.

Figure 8-4

box1

Sum of
heights

maximum
width

maximum
length

box1+box2

box2
W = 20

W = 25

W = 25

L = 30 L = 25

L = 30

H = 15 H = 10

H = 15+10
   = 25

433

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 433



Because you need to get at the members of an object directly, you will make the operator+() a member
function. The declaration of the function member within the class definition will be this:

CBox operator+(const CBox& aBox) const; // Function adding two CBox objects

You define the parameter as a reference to avoid unnecessary copying of the right argument when the func-
tion is called, and you make it a const reference because the function does not modify the argument. If you
don’t declare the parameter as a const reference, the compiler will not allow a const object to be passed to
the function, so it would then not be possible for the right operand of + to be a const CBox object. You also
declare the function as const as it doesn’t change the object for which it is called. Without this, the left
operand of + could not be a const CBox object.

The operator+() function definition would now be as follows:

// Function to add two CBox objects
CBox CBox::operator+(const CBox& aBox) const
{
// New object has larger length and width, and sum of heights
return CBox(m_Length > aBox.m_Length ? m_Length:aBox.m_Length,

m_Width > aBox.m_Width ? m_Width:aBox.m_Width,
m_Height + aBox.m_Height);

}

You construct a local CBox object from the current object (*this) and the object that is passed as the argu-
ment, aBox. Remember that the return process will make a temporary copy of the local object and that is
what is passed back to the calling function, not the local object, which is discarded on return from the
function.

Try It Out Exercising Our Addition Operator
You’ll be able to see how the overloaded addition operator in the CBox class works in this example:

// Ex8_06.cpp
// Adding CBox objects
#include <iostream>                    // For stream I/O
using std::cout;
using std::endl;

class CBox                             // Class definition at global scope
{
public:
// Constructor definition
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0): m_Height(hv)
{
m_Length = lv > wv? lv: wv;      // Ensure that
m_Width = wv < lv? wv: lv;       // length >= width

}

// Function to calculate the volume of a box
double Volume() const

434

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 434



{
return m_Length*m_Width*m_Height;

}

// Operator function for ‘greater than’ which
// compares volumes of CBox objects.
int CBox::operator>(const CBox& aBox) const
{

return this->Volume() > aBox.Volume();
}

// Function to compare a CBox object with a constant
int operator>(const double& value) const
{

return Volume() > value;
}

// Function to add two CBox objects
CBox operator+(const CBox& aBox) const
{
// New object has larger length & width, and sum of heights
return CBox(m_Length > aBox.m_Length? m_Length:aBox.m_Length,

m_Width > aBox.m_Width? m_Width:aBox.m_Width,
m_Height + aBox.m_Height);

}

// Function to show the dimensions of a box
void ShowBox() const
{
cout << m_Length << “ “

<< m_Width  << “ “
<< m_Height << endl;

}

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

int operator>(const double& value, const CBox& aBox); // Function prototype

int main()
{

CBox smallBox(4.0, 2.0, 1.0);
CBox mediumBox(10.0, 4.0, 2.0);
CBox aBox;
CBox bBox;

aBox = smallBox + mediumBox;
cout << “aBox dimensions are “;
aBox.ShowBox();

435

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 435



bBox = aBox + smallBox + mediumBox;
cout << “bBox dimensions are “;
bBox.ShowBox();

return 0;
}

// Function comparing a constant with a CBox object
int operator>(const double& value, const CBox& aBox)
{
return value > aBox.Volume();

}

You’ll be using the CBox class definition again a few pages down the road in this chapter, so make a note
that you’ll want to return to this point in the book.

How It Works
In this example I have changed the CBox class members a little. I have deleted the destructor as it isn’t
necessary for this class, and I have modified the constructor to ensure that the m_Length member isn’t
less than the m_Width member. Knowing that the length of a box is always at least as big as the width
makes the add operation a bit easier. I’ve also added the ShowBox() function to output the dimensions
of a CBox object. Using this, we’ll be able to verify that our overloaded add operation is working as we
expect.

The output from this program is:

aBox dimensions are 10 4 3
bBox dimensions are 10 4 6

This seems to be consistent with the notion of adding CBox objects that we have defined and, as you can
see, the function also works with multiple add operations in an expression. For the computation of bBox,
the overloaded addition operator will be called twice.

You could equally well have implemented the add operation for the class as a friend function. Its proto-
type would then be this:

friend CBox operator+(const CBox& aBox, const CBox& bBox);

The process for producing the result would be much the same, except that you’d need to use the direct
member selection operator to obtain the members for both the arguments to the function. It would work
just as well as the first version of the operator function.

Overloading the Increment and Decrement Operators
I’ll briefly introduce the mechanism for overloading the increment and decrement operators in a class
because they have some special characteristics that make them different from other unary operators. You
need a way to deal with the fact that the ++ and -- operators come in a prefix and postfix form, and the
effect is different depending on whether the operator is applied in its prefix or postfix form. In native

436

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 436



C++ the overloaded operator is different for the prefix and postfix forms of the increment and decrement
operators. Here’s how they would be defined in a class with the name Length for example:

class Length
{
private:
double len;                        // Length value for the class

public:
Length& operator++();              // Prefix increment operator
const Length operator++(int);      // Postfix increment operator

Length& operator--();              // Prefix decrement operator
const Length operator--(int);      // Postfix decrement operator

// rest of the class...

}

This simple class assumes a length is stored just as a value of type double. You would probably in reality
make a length class more sophisticated than this but it will serve to illustrate how you overload the incre-
ment and decrement operators.

The primary way the prefix and postfix forms of the overloaded operators are differentiated is by the
parameter list; for the prefix form there are no parameters and for the postfix form there is a parameter
of type int. The parameter in the postfix operator function is only to distinguish it from the prefix form
and is otherwise unused in the function implementation.

The prefix increment and decrement operators increment or decrement the operand before its value is
used in an expression, so you just return a reference to the current object after it has been incremented
or decremented. Here’s how an implementation of the prefix operator++() function would look for
the Length class:

Length& Length::operator++()
{
++(this->len);
return *this;

}

With the postfix forms, the operand is incremented after its current value is used in an expression. This
is achieved by creating a new object that is a copy of the current object before incrementing the current
object and returning the copy after the current object has been modified. Here’s how you might imple-
ment the function to overload the postfix ++ operator for the Length class:

const Length& Length::operator++(int)
{
Length length = *this;               // Copy the current object
++*this;                             // Increment the current object
return length;                       // Return the original copy

}

After copying the current object, you increment it using the prefix ++ operator for the class. You then
return the original unincremented copy of the current object. Declaring the return value as const pre-
vents expressions such as data++++ from compiling.

437

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 437



Class Templates
You saw back in Chapter 6 that you could define a function template that would automatically generate
functions varying in the type of arguments accepted, or in the type of values returned. C++ has a similar
mechanism for classes. A class template is not in itself a class, it’s a sort of “recipe” for a class that will
be used by the compiler to generate the code for a class. As you can see from Figure 8-5, it’s like the func-
tion template — you determine the class that you want generated by specifying your choice of type for
the parameter (T in this case) that appears between the angled brackets in the template. Doing this gen-
erates a particular class that is referred to as an instance of the class template. The process of creating a
class from a template is described as instantiating the template.

Figure 8-5

An appropriate class definition is generated when you instantiate an object of a template class for a par-
ticular type, so you can generate any number of different classes from one class template. You’ll get a good
idea of how this works in practice by looking at an example.

Defining a Class Template
I’ll choose a simple example to illustrate how you define and use a class template, and I won’t complicate
things by worrying too much about possible errors that can arise if it’s misused. Suppose you want to define
classes that can store a number of data samples of some kind, and each class is to provide a Max() function

T is a parameter for which you
supply an argument value that is a
type.
Each different type value argument
you specify creates a new class.

template<class T>
class CExample
{
 T m_Value;
 ...
}

class CExample
{
 int m_Value;
 ...
}

class
instances

class template

class CExample
{
 double m_Value;
 ...
}

class CExample
{
 CBox m_Value;
 ...
}

The class is created
by using your value in

place of T in the
template

T specified as double

T specified as int

T specified as CBox

438

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 438



to determine the maximum sample value of those stored. This function will be similar to the one you saw in
the function template discussion in Chapter 6. You can define a class template, which will generate a class
CSamples to store samples of whatever type you want:

template <class T>
class CSamples
{
public:
// Constructor definition to accept an array of samples
CSamples(const T values[], int count)
{
m_Free = count < 100? count:100; // Don’t exceed the array
for(int i = 0; i < m_Free; i++)
m_Values[i] = values[i];       // Store count number of samples

}

// Constructor to accept a single sample
CSamples(const T& value)
{
m_Values[0] = value;             // Store the sample
m_Free = 1;                      // Next is free

}

// Default constructor
CSamples(){ m_Free = 0 }           // Nothing stored, so first is free

// Function to add a sample
bool Add(const T& value)
{
bool OK = m_Free < 100;          // Indicates there is a free place
if(OK)
m_Values[m_Free++] = value;   // OK true, so store the value

return OK;
}

// Function to obtain maximum sample
T Max() const
{
// Set first sample or 0 as maximum
T theMax = m_Free ? m_Values[0] : 0;

for(int i = 1; i < m_Free; i++)  // Check all the samples
if(m_Values[i] > theMax)
theMax = m_Values[i];        // Store any larger sample

return theMax;
}

private:
T m_Values[100];              // Array to store samples
int m_Free;                   // Index of free location in m_Values

};

439

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 439



To indicate that you are defining a template rather than a straightforward class, you insert the template
keyword and the type parameter, T, between angled brackets, just before the class keyword and the class
name, CSamples. This is essentially the same syntax that you used to define a function template back in
Chapter 6. The parameter T is the type variable that will be replaced by a specific type when you declare 
a class object. Wherever the parameter T appears in the class definition, it will be replaced by the type that
you specify in your object declaration; this creates a class definition corresponding to this type. You can
specify any type (a basic data type or a class type), but it has to make sense in the context of the class tem-
plate, of course. Any class type that you use to instantiate a class from a template must have all the opera-
tors defined that the member functions of the template will use with such objects. If your class hasn’t
implemented operator>(), for example, it will not work with the CSamples class template above. In
general, you can specify multiple parameters in a class template if you need them. I’ll come back to this
possibility a little later in the chapter.

Getting back to the example, the type of the array in which the samples will be stored is specified as T.
The array will therefore be an array of whatever type you specify for T when you declare a CSamples
object. As you can see, you also use the type T in two of the constructors for the class, as well as in the
Add() and Max() functions. Each of these occurrences will also be replaced when you instantiate a class
object using the template.

The constructors support the creation of an empty object, an object with a single sample, and an object
initialized with an array of samples. The Add() function allows samples to be added to an object one at a
time. You could also overload this function to add an array of samples. The class template includes some
elementary provision to prevent the capacity of the m_Values array being exceeded in the Add() function,
and in the constructor that accepts an array of samples.

As I said earlier, in theory you can create objects of CSamples classes that will handle any data type: type
int, type double, or any class type that you’ve defined. In practice, this doesn’t mean it will necessarily
compile and work as you expect. It all depends on what the template definition does, and usually a tem-
plate will only work for a particular range of types. For example, the Max() function implicitly assumes
that the > operator is available for whatever type is being processed. If it isn’t, your program will not
compile. Clearly, you’ll usually be in the position of defining a template that works for some types but
not others, but there’s no way you can restrict what type is applied to a template.

Template Member Functions
You may want to place the definition of a class template member function outside of the template defini-
tion. The syntax for this isn’t particularly obvious, so let’s look at how you do it. You put the function dec-
laration in the class template definition in the normal way. For instance:

template <class T>
class CSamples
{
// Rest of the template definition...
T Max() const;             // Function to obtain maximum sample
// Rest of the template definition...

}

This declares the Max() function as a member of the class template but doesn’t define it. You now need to
create a separate function template for the definition of the member function. You must use the template

440

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 440



class name plus the parameters in angled brackets to identify the class template to which the function
template belongs:

template<class T>
T CSamples<T>::Max() const
{
T theMax = m_Values[0];              // Set first sample as maximum

for(int i = 1; i < m_Free; i++)      // Check all the samples
if(m_Values[i] > theMax)
theMax = m_Values[i];            // Store any larger sample

return theMax;
}

You saw the syntax for a function template back in Chapter 6. Since this function template is for a member
of the class template with the parameter T, the function template definition here should have the same
parameters as the class template definition. There’s just one in this case — T — but in general there can be
several. If the class template had two or more parameters, then so would each template defining a member
function.

Note how you only put the parameter name, T, along with the class name before the scope resolution oper-
ator. This is necessary — the parameters are fundamental to the identification of the class to which a func-
tion, produced from the template, belongs. The type will be CSamples<T> with whatever type you assign
to T when you create an instance of the class template. Your type is plugged into the class template to gen-
erate the class definition, and into the function template to generate the definition for the Max() function
for the class. Each class that’s produced from the class template needs to have its own definition for the
function Max().

Defining a constructor or a destructor outside of the class template definition is very similar. You could
write the definition of the constructor that accepts an array of samples as:

template<class T>
CSamples<T>::CSamples(T values[], int count)
{
m_Free = count < 100? count:100;     // Don’t exceed the array

for(int i = 0; i < m_Free; i++)
m_Values[i] = values[i];           // Store count number of samples

}

The class to which the constructor belongs is specified in the template in the same way as for an ordinary
member function. Note that the constructor name doesn’t require the parameter specification — it is just
CSamples, but it needs to be qualified by the class template type CSamples<T>. You only use the parame-
ter with the class template name preceding the scope resolution operator.

Creating Objects from a Class Template
When you use a function defined by a function template, the compiler is able to generate the function
from the types of the arguments used. The type parameter for the function template is implicitly defined

441

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 441



by the specific use of a particular function. Class templates are a little different. To create an object based on
a class template, you must always specify the type parameter following the class name in the declaration.

For example, to declare a CSamples<> object to handle samples of type double, you could write the
declaration as:

CSamples<double> myData(10.0);

This defines an object of type CSamples<double> that can store samples of type double, and the object
is created with one sample stored with the value 10.0.

Try It Out Class Templating
You could create an object from the CSamples<> template that stores CBox objects. This will work because
the CBox class implements the operator>() function to overload the greater-than operator. You could
exercise the class template with the main() function in the following listing:

// Ex8_07.cpp
// Using a class template
#include <iostream>
using std::cout;
using std::endl;

// Put the CBox class definition from Ex8_06.cpp here...

// CSamples class template definition
template <class T> class CSamples
{
public:
// Constructors
CSamples(const T values[], int count);
CSamples(const T& value);
CSamples(){ m_Free = 0; }

bool Add(const T& value);          // Insert a value
T Max() const;                     // Calculate maximum

private:
T m_Values[100];                   // Array to store samples
int m_Free;                        // Index of free location in m_Values

};

// Constructor template definition to accept an array of samples
template<class T> CSamples<T>::CSamples(const T values[], int count)
{
m_Free = count < 100? count:100;     // Don’t exceed the array
for(int i = 0; i < m_Free; i++)
m_Values[i] = values[i];           // Store count number of samples

}

// Constructor to accept a single sample
template<class T> CSamples<T>::CSamples(const T& value)

442

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 442



{
m_Values[0] = value;                 // Store the sample
m_Free = 1;                          // Next is free

}

// Function to add a sample
template<class T> bool CSamples<T>::Add(const T& value)
{
bool OK = m_Free < 100;              // Indicates there is a free place
if(OK)
m_Values[m_Free++] = value;        // OK true, so store the value

return OK;
}

// Function to obtain maximum sample
template<class T> T CSamples<T>::Max() const
{
T theMax = m_Free ? m_Values[0] : 0; // Set first sample or 0 as maximum
for(int i = 1; i < m_Free; i++)      // Check all the samples
if(m_Values[i] > theMax)
theMax = m_Values[i];            // Store any larger sample

return theMax;
}

int main()
{
CBox boxes[] = {                          // Create an array of boxes

CBox(8.0, 5.0, 2.0),     // Initialize the boxes...
CBox(5.0, 4.0, 6.0),
CBox(4.0, 3.0, 3.0)

};

// Create the CSamples object to hold CBox objects
CSamples<CBox> myBoxes(boxes, sizeof boxes / sizeof CBox);

CBox maxBox = myBoxes.Max();              // Get the biggest box
cout << endl                              // and output its volume

<< “The biggest box has a volume of “
<< maxBox.Volume()
<< endl;

return 0;
}

You should replace the comment with the CBox class definition from Ex8_06.cpp. You need not worry
about the operator>() function that supports comparison of a CBox object with a value of type double
as this example does not need it. With the exception of the default constructor, all the member functions
of the template are defined by separate function templates, just to show you a complete example of how
it’s done.

In main() you create an array of three CBox objects and then use this array to initialize a CSamples object
that can store CBox objects. The declaration of the CSamples object is basically the same as it would be for
an ordinary class, but with the addition of the type parameter in angled brackets following the template
class name.

443

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 443



The program will generate the following output:

The biggest box has a volume of 120

Note that when you create an instance of a class template, it does not follow that instances of the func-
tion templates for function members will also be created. The compiler will only create instances of tem-
plates for member functions that you actually call in your program. In fact, your function templates can
even contain coding errors, and as long as you don’t call the member function that the template gener-
ates, the compiler will not complain. You can test this out with the example. Try introducing a few errors
into the template for the Add() member. The program will still compile and run because it doesn’t call
the Add() function.

You could try modifying the example and perhaps seeing what happens when you instantiate classes 
by using the template with various other types.

You might be surprised at what happens if you add some output statements to the class constructors.
The constructor for the CBox is being called 103 times! Look at what is happening in the main() func-
tion. First you create an array of three CBox objects, so that’s three calls. You then create a CSamples
object to hold them, but a CSamples object contains an array of 100 variables of type CBox, so you call
the default constructor another 100 times, once for each element in the array. Of course, the maxBox object
will be created by the default copy constructor that is supplied by the compiler.

Class Templates with Multiple Parameters
Using multiple type parameters in a class template is a straightforward extension of the example using a
single parameter that you have just seen. You can use each of the type parameters wherever you want in
the template definition. For example, you could define a class template with two type parameters:

template<class T1, class T2>
class CExampleClass
{
// Class data members

private:
T1 m_Value1;
T2 m_Value2;

// Rest of the template definition...
};

The types of the two class data members shown will be determined by the types you supply for the
parameters when you instantiate an object.

The parameters in a class template aren’t limited to types. You can also use parameters that require constants
or constant expressions to be substituted in the class definition. In our CSamples template, we arbitrarily
defined the m_Values array with 100 elements. You could, however, let the user of the template choose
the size of the array when the object is instantiated, by defining the template as:

template <class T, int Size> class CSamples
{

444

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 444



private:
T m_Values[Size];              // Array to store samples
int m_Free;                    // Index of free location in m_Values

public:
// Constructor definition to accept an array of samples
CSamples(const T values[], int count)
{
m_Free = count < Size? count:Size; // Don’t exceed the array

for(int i = 0; i < m_Free; i++)
m_Values[i] = values[i];         // Store count number of samples

}

// Constructor to accept a single sample
CSamples(const T& value)
{

m_Values[0] = value;             // Store the sample
m_Free = 1;                      // Next is free

}

// Default constructor
CSamples()
{

m_Free = 0;                      // Nothing stored, so first is free
}

// Function to add a sample
int Add(const T& value)
{
int OK = m_Free < Size;          // Indicates there is a free place
if(OK)

m_Values[m_Free++] = value;    // OK true, so store the value
return OK;

}

// Function to obtain maximum sample
T Max() const
{

// Set first sample or 0 as maximum
T theMax = m_Free ? m_Values[0] : 0;

for(int i = 1; i < m_Free; i++)  // Check all the samples
if(m_Values[i] > theMax)

theMax = m_Values[i];        // Store any larger sample
return theMax;

}
};

The value supplied for Size when you create an object will replace the appearance of the parameter
throughout the template definition. Now you can declare the CSamples object from the previous 
example as:

CSamples<CBox, 3> MyBoxes(boxes, sizeof boxes/sizeof CBox);

445

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 445



Because you can supply any constant expression for the Size parameter, you could also have written
this as:

CSamples<CBox, sizeof boxes/sizeof CBox>
MyBoxes(boxes, sizeof boxes/sizeof CBox);

The example is a poor use of a template though — the original version was much more usable. A conse-
quence of making Size a template parameter is that instances of the template that store the same types
of objects but have different size parameter values are totally different classes and cannot be mixed. For
instance, an object of type CSamples<double, 10> cannot be used in an expression with an object of
type CSamples<double, 20>.

You need to be careful with expressions that involve comparison operators when instantiating templates.
Look at this statement:

CSamples<aType, x > y ? 10 : 20 > MyType();      // Wrong!

This will not compile correctly because the > preceding y in the expression will be interpreted as a right-
angled bracket. Instead, you should write this statement as:

CSamples<aType, (x > y ? 10 : 20) > MyType();    // OK

The parentheses ensure that the expression for the second template argument doesn’t get mixed up with
the angled brackets.

Using Classes
I’ve touched on most of the basic aspects of defining a native C++ class, so maybe we should look at how
a class might be used to solve a problem. I’ll need to keep the problem simple in order to keep this book
down to a reasonable number of pages, so we’ll consider problems in which we can use an extended ver-
sion of the CBox class.

The Idea of a Class Interface
The implementation of an extended CBox class should incorporate the notion of a class interface.You are
going to provide a tool kit for anyone wanting to work with CBox objects so you need to assemble a set of
functions that represents the interface to the world of boxes. Because the interface will represent the only
way to deal with CBox objects, it needs to be defined to cover adequately the likely things one would want
to do with a CBox object, and be implemented, as far as possible, in a manner that protects against misuse
or accidental errors.

The first question that you need to consider in designing a class is the nature of the problem you intend
to solve and, from that, determine the kind of functionality you need to provide in the class interface.

Defining the Problem
The principal function of a box is to contain objects of one kind or another so, in a word, the problem is
packaging. We’ll attempt to provide a class that eases packaging problems in general and then see how
it might be used. We will assume that we’ll always be working on packing CBox objects into other CBox

446

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 446



objects since, if you want to pack candy in a box, you can always represent each of the pieces of candy as
an idealized CBox object. The basic operations that you might want to provide in the CBox class include:

❑ Calculate the volume of a CBox. This is a fundamental characteristic of a CBox object and you
have an implementation of this already.

❑ Compare the volumes of two CBox objects to determine which is the larger. You probably should
support a complete set of comparison operators for CBox objects. You already have a version of
the > operator.

❑ Compare the volume of a CBox object with a specified value and vice versa. You also have an
implementation of this for the > operator, but you will also need to implement functions sup-
porting the other comparison operators.

❑ Add two CBox objects to produce a new CBox object that will contain both the original objects.
Thus, the result will be at least the sum of the volumes, but may be larger. You have a version 
of this already that overloads the + operator.

❑ Multiply a CBox object by an integer (and vice versa) to provide a new CBox object that will con-
tain a specified number of the original objects. This is effectively designing a carton.

❑ Determine how many CBox objects of a given size can be packed in another CBox object of a given
size. This is effectively division, so you could implement this by overloading the / operator.

❑ Determine the volume of space remaining in a CBox object after packing it with the maximum
number of CBox objects of a given size.

I had better stop right there! There are undoubtedly other functions that would be very useful but, in
the interest of saving trees, we’ll consider the set to be complete, apart from ancillaries such as access-
ing dimensions, for example.

Implementing the CBox Class
You really need to consider the degree of error protection that you want to build into the CBox class. The
basic class that you defined to illustrate various aspects of classes is a starting point, but you should also
consider some points a little more deeply. The constructor is a little weak in that it doesn’t ensure that the
dimensions for a CBox are valid so perhaps the first thing you should do is to ensure that you always have
valid objects. You could redefine the basic class as follows to do this:

class CBox                             // Class definition at global scope
{
public:
// Constructor definition
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0)
{
lv = lv <= 0? 1.0: lv;           // Ensure positive
wv = wv <= 0? 1.0: wv;           // dimensions for
hv = hv <= 0? 1.0: hv;           // the object

m_Length = lv > wv? lv: wv;      // Ensure that
m_Width = wv < lv? wv: lv;       // length >= width
m_Height = hv;

}

// Function to calculate the volume of a box

447

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 447



double Volume() const
{
return m_Length*m_Width*m_Height;

}

// Function providing the length of a box
double GetLength() const { return m_Length; }

// Function providing the width of a box
double GetWidth() const { return m_Width; }

// Function providing the height of a box
double GetHeight() const { return m_Height; }

private:
double m_Length;                   // Length of a box in inches
double m_Width;                    // Width of a box in inches
double m_Height;                   // Height of a box in inches

};

The constructor is now secure because any dimension that the user of the class tries to set to a negative
number or zero will be set to 1 in the constructor. You might also consider displaying a message for a neg-
ative or zero dimension because there’s obviously an error when this occurs, and arbitrarily and silently
setting a dimension to 1 might not be the best solution.

The default copy constructor is satisfactory for our class, because you have no dynamic memory alloca-
tion for data members, and the default assignment operator will also work as you would like. The default
destructor also works perfectly well in this case so you don’t need to define it. Perhaps now you should
consider what is required to support comparisons of objects of our class.

Comparing CBox Objects
You should include support for the operators >, >=, ==, <, and <= so that they work with both operands
as CBox objects, as well between a CBox object and a value of type double. You can implement these as
ordinary global functions because they don’t need to be member functions. You can write the functions
that compare the volumes of two CBox objects in terms of the functions that compare the volume of a CBox
object with a double value, so let’s start with the latter. You can start by repeating the operator>() func-
tion that you had before:

// Function for testing if a constant is > a CBox object
int operator>(const double& value, const CBox& aBox)
{
return value > aBox.Volume();

}

You can now write the operator<() function in a similar way:

// Function for testing if a constant is < CBox object
int operator<(const double& value, const CBox& aBox)
{
return value < aBox.Volume();

}

448

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 448



You can code the implementations of the same operators with the arguments reversed in terms of the
two functions you have just defined:

// Function for testing if CBox object is > a constant
int operator>(const CBox& aBox, const double& value)
{ return value < aBox; }

// Function for testing if CBox object is < a constant
int operator<(const CBox& aBox, const double& value)
{ return value > aBox; }

You just use the appropriate overloaded operator function that you wrote before, with the arguments
from the call to the new function switched.

The functions implementing the >= and <= operators will be the same as the first two functions but with
the <= operator replacing each use of <, and >= instead of >; there’s little point in reproducing them at
this stage. The operator==() functions are also very similar:

// Function for testing if constant is == the volume of a CBox object
int operator==(const double& value, const CBox& aBox)
{

return value == aBox.Volume();
}

// Function for testing if CBox object is == a constant
int operator==(const CBox& aBox, const double& value)
{

return value == aBox;
}

You now have a complete set of comparison operators for CBox objects. Keep in mind that these will also
work with expressions, as long as the expressions result in objects of the required type, so you will be able
to combine them with the use of other overloaded operators.

Combining CBox Objects
Now you come to the question of overloading the operators +, *, /, and %. I will take them in order. The
add operation that you already have from Ex8_06.cpp has this prototype:

CBox operator+(const CBox& aBox);      // Function adding two CBox objects

Although the original implementation of this isn’t an ideal solution, let’s use it anyway to avoid overcom-
plicating the class. A better version would need to examine whether the operands had any faces with the
same dimensions and if so, join along those faces, but coding that could get a bit messy. Of course, if this
were a practical application, a better add operation could be developed later and substituted for the exist-
ing version, and any programs written using the original would still run without change. The separation
of the interface to a class from its implementation is crucial to good C++ programming.

Notice that I conveniently forgot the subtraction operator. This is a judicious oversight to avoid the com-
plications inherent in implementing this. If you’re really enthusiastic about it, and you think it’s a sensible
idea, you can give it a try — but you need to decide what to do when the result has a negative volume. If
you allow the concept, you need to resolve which box dimension or dimensions are to be negative, and
how such a box is to be handled in subsequent operations.

449

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 449



The multiply operation is very easy. It represents the process of creating a box to contain n boxes, where
n is the multiplier. The simplest solution would be to take the m_Length and m_Width of the object to 
be packed and multiply the height by n to get the new CBox object. You can make it a little cleverer by
checking whether or not the multiplier is even and, if it is, stack the boxes side by side by doubling the
m_Width value and only multiplying the m_Height value by half of n. This mechanism is illustrated in
Figure 8-6.

Figure 8-6

Of course, you don’t need to check which is the larger of the length and width for the new object because
the constructor will sort it out automatically. You can write the version of the operator*() function as
a member function with the left operand as a CBox object:

// CBox multiply operator this*n
CBox operator*(int n) const
{
if(n % 2)
return CBox(m_Length, m_Width, n*m_Height);            // n odd

else
return CBox(m_Length, 2.0*m_Width, (n/2)*m_Height);    // n even

}

CBox Multiply: n odd
: 3*aBox

CBox Multiply: n even
: 6*aBox

Two stacks of three boxes
side by side

L

L

W

2*W

3*H

3*H

L

W

H

aBox

450

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 450



Here, you use the % operator to determine whether n is even or odd. If n is odd, the value of n % 2 is 1
and the if statement is true. If it’s even, n % 2 is 0 and the statement is false.

You can now use the function you have just written in the implementation of the version with the left
operand as an integer. You can write this as an ordinary non-member function:

// CBox multiply operator n*aBox
CBox operator*(int n, const CBox& aBox)
{
return aBox*n;

}

This version of the multiply operation simply reverses the order of the operands so as to use the previous
version of the function directly. That completes the set of arithmetic operators for CBox objects that you
defined. You can finally look at the two analytical operator functions, operator/() and operator%().

Analyzing CBox Objects
As I have said, the division operation will determine how many CBox objects identical to that specified 
by the right operand can be contained in the CBox object specified by the left operand. To keep it relatively
simple, assume that all the CBox objects are packed the right way up, that is, with the height dimensions
vertical. Also assume that they are all packed the same way round, so that their length dimensions are
aligned. Without these assumptions, it can get rather complicated.

The problem will then amount to determining how many of the right-operand objects can be placed in a
single layer, and then deciding how many layers you can get inside the left-operand CBox.

You can code this as a member function like this:

int operator/(const CBox& aBox)
{
int tc1 = 0;        // Temporary for number in horizontal plane this way
int tc2 = 0;        // Temporary for number in a plane that way

tc1 = static_cast<int>((m_Length / aBox.m_Length))*
static_cast<int>((m_Width / aBox.m_Width));  // to fit this way

tc2 = static_cast<int>((m_Length / aBox.m_Width))*
static_cast<int>((m_Width / aBox.m_Length)); // and that way

//Return best fit
return static_cast<int>((m_Height/aBox.m_Height)*(tc1>tc2 ? tc1 : tc2));

}

This function first determines how many of the right-operand CBox objects can fit in a layer with their
lengths aligned with the length dimension of the left-operand CBox. This is stored in tc1. You then cal-
culate how many can fit in a layer with the lengths of the right-operand CBoxes lying in the width direc-
tion of the left-operand CBox. Finally you multiply the larger of tc1 and tc2 by the number of layers you
can pack in, and return that value. This process is illustrated in Figure 8-7.

We look at two possibilities: fitting bBox into aBox with the length aligned with that of aBox, and then
with the length of bBox aligned with the width of aBox. You can see from Figure 8-7 that the best pack-
ing results from rotating bBox so that the width divides into the length of aBox.

451

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 451



Figure 8-7

The other analytical operator function, operator%(), for obtaining the free volume in a packed aBox
is easier because you can use the operator you have just written to implement it. You can write it as an
ordinary global function because you don’t need access to the private members of the class.

// Operator to return the free volume in a packed box
double operator%(const CBox& aBox, const CBox& bBox)
{
return aBox.Volume() - ((aBox/bBox)*bBox.Volume());

}

This computation falls out very easily using existing class functions. The result is the volume of the big box,
aBox, minus the volume of the bBox boxes that can be stored in it. The number of bBox objects packed into
aBox is given by the expression aBox/bBox, which uses the previous overloaded operator. You multiply this
by the volume of bBox objects to get the volume to be subtracted from the volume of the large box, aBox.

That completes the class interface. Clearly, there are many more functions that might be required for a
production problem solver but, as an interesting working model demonstrating how you can produce 
a class for solving a particular kind of problem, it will suffice. Now you can go ahead and try it out on a
real problem.

bBox

aBox

bBox
bBox

bBox
bBox

bBox
bBox

bBox
bBox

bBox bBox

bBox bBox

bBox bBox

How aBox/bBox is calculated

L = 8

W = 6

H = 2

L = 3

W = 2

H = 1

There are two rectangular arrangements possible for fitting a 
number of bBox objects within aBox, as shown below.

With this configuration
12 can be stored

With this configuration
16 can be stored

8/3 = 2

6/2 = 3

2/1 = 2

8/2 = 4

6/3 = 2

2/1 = 2

Result is 16

452

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 452



Try It Out A Multifile Project Using the CBox Class
Before you can actually start writing the code to use the CBox class and its overloaded operators, first you
need to assemble the definition for the class into a coherent whole. You’re going to take a rather different
approach from what you’ve seen previously, in that you’re going to write multiple files for the project.
You’re also going to start using the facilities that Visual C++ 2008 provides for creating and maintaining
code for our classes. This will mean that you do rather less of the work, but it will also mean that the code
will be slightly different in places.

Start by creating a new WIN32 project for a console application called Ex8_08 and check the Empty
project application option. If you select the Class View tab, you’ll see the window shown in Figure 8-8.

Figure 8-8

This shows a view of all the classes in a project but of course, there are none here for the moment.
Although there are no classes defined — or anything else for that matter — Visual C++ 2008 has already
made provision for including some. You can use Visual C++ 2008 to create a skeleton for our CBox class,
and the files that relate to it too. Right-click Ex8_08 in Class View and select Add/Class... from the
pop-up menu that appears. You can then select C++ from the class categories in the left pane of the Add
Class dialog that is displayed and the C++ Class template in the right pane and press Enter. You will
then be able to enter the name of the class that you want to create, CBox, in the Generic Class Wizard 
dialog, as shown in Figure 8-9.

The name of the file that’s indicated on the dialog, Box.cpp, will be used to contain the class implemen-
tation, which consists of the definitions for the function members of the class. This is the executable code
for the class. You can change the name of this file if you want, but Box.cpp looks like a good name for
the file in this case. The class definition will be stored in a file called Box.h. This is the standard way of
structuring a program. Code that consists of class definitions is stored in files with the extension .h, and
code that defines functions is stored in files with the extension .cpp. Usually, each class definition goes
in its own .h file, and each class implementation goes in its own .cpp file.

453

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 453



Figure 8-9

When you click the Finish button in the dialog two things happen:

1. A file Box.h is created containing a skeleton definition for the class CBox. This includes a 
no-argument constructor and a destructor.

2. A file Box.cpp is created containing a skeleton implementation for the functions in the class
with definitions for the constructor and the destructor — both bodies are empty of course.

The editor pane displaying the code should be as shown in Figure 8-10. If it is not presently displayed,
just double-click CBox in Class View, and it should appear.

Figure 8-10

454

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 454



As you can see, above the pane containing the code listing for the class there are two controls. The left
control displays the current class name, CBox, and clicking the button to the right of the class name will
display the list of all the classes in the project. In general you can use this control to switch to another class
by selecting it from the list, but here you have just one class defined. The control to the right relates to the
members defined in the .cpp file for the current class, and clicking its button will display the members of
the class. Selecting a member from the list will cause its code to be visible in the pane below.

Let’s start developing the CBox class based on what Visual C++ has provided automatically for us.

Defining the CBox Class
If you click the + to the left of Ex8_08 in the Class View, the tree will be expanded and you will see that
CBox is now defined for the project. All the classes in a project are displayed in this tree. You can view the
source code supplied for the definition of a class by double-clicking the class name in the tree, or by using
the controls above the pane displaying the code as I described in the previous section.

The CBox class definition that was generated starts with a preprocessor directive:

#pragma once

The effect of this is to prevent the file from being opened and included into the source code more than
once by the compiler in a build. Typically a class definition will be included into several files in a proj-
ect because each file that references the name of a particular class will need access to its definition. In
some instances a header file may itself have #include directives for other header files. This can result
in the possibility of the contents of a header file appearing more than once in the source code. Having
more than one definition of a class in a build is not allowed and will be flagged as an error. Having the
#pragma once directive at the start of every header file will ensure this cannot happen.

Note that #pragma once is a Microsoft-specific directive that may not be supported in other development
environments. If you are developing code that you anticipate may need to be compiled in other environ-
ments you can use the following form of directive in a header file to achieve the same effect:

// Box.h header file
#ifndef BOX_H
#define BOX_H
// Code that must not be included more than once
// such as the CBox class definition
#endif

The important lines are shaded and correspond to directives that are supported by any ISO/ANSI C++
compiler. The lines following the #ifndef directive down to the #endif directive will be included in a
build as long as the symbol BOX_H is not defined. The line following #ifndef defines the symbol BOX_H
thus ensuring that the code in this header file will not be included a second time. Thus this has the same
effect as placing the #pragma once directive at the beginning of a header file. Clearly the #pragma once
directive is simpler and less cluttered so it’s better to use that when you only expect to be using your code

455

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 455



in the Visual C++ 2008 development environment. You will sometimes see the #ifndef/#endif combi-
nation written as:

#if !defined BOX_H
#define BOX_H
// Code that must not be included more than once
// such as the CBox class definition
#endif

The Box.cpp file that was generated by Class Wizard contains the following code:

#include “Box.h”

CBox::CBox(void)
{
}

CBox::~CBox(void)
{
}

The first line is an #include preprocessor directive that has the effect of including the contents of the Box.h
file — the class definition — into this file, Box.cpp. This is necessary because the code in Box.cpp refers to
the CBox class name and the class definition needs to be available to assign meaning to the name CBox.

Adding Data Members
First, you can add the private data members m_Length, m_Width, and m_Height. Right click CBox in
Class View and select Add/Add Variable... from the pop-up menu. You can then specify the name,
type, and access for the first data member that you want to add to the class in the Add Member Variable
Wizard dialog.

The way you specify a new data member in this dialog is quite self-explanatory. If you specify a lower
limit for a data member, you must also specify an upper limit. When you specify limits, the constructor
definition in the .cpp file will be modified to add a default value for the data member corresponding to
the lower limit. You can add a comment in the lower input field if you wish. When you click the OK but-
ton, the variable will be added to the class definition along with the comment if you have supplied one.
You should repeat the process for the other two class data members, m_Width and m_Height. The class
definition in Box.h will then be modified to look like this:

#pragma once

class CBox
{
public:
CBox(void);

public:
~CBox(void);

private:
// Length of a box in inches

456

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 456



double m_Length;
// Width of a box in inches
double m_Width;
// Height of a box in inches
double m_Height;

};

Of course, you’re quite free to enter the declarations for these members manually, directly into the code,
if you want. You always have the choice of whether you use the automation provided by the IDE. You can
also manually delete anything that was generated automatically, but don’t forget that sometimes both the
.h and .cpp file will need to be changed. It’s a good idea to save all the files whenever you make manual
changes as this will cause the information in Class View to be updated.

If you look in the Box.cpp file, you’ll see that the Wizard has also added an initialization list to the con-
structor definition for the data members you have added, with each variable initialized to 0. You’ll modify
the constructor to do what you want next.

Defining the Constructor
You need to change the declaration of the no-arg constructor in the class definition so that it has arguments
with default values, so modify it to:

CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0);

Now you’re ready to implement it. Open the Box.cpp file if it isn’t open already and modify the construc-
tor definition to:

CBox::CBox(double lv, double wv, double hv)
{
lv = lv <= 0.0 ? 1.0 : lv;           // Ensure positive
wv = wv <= 0.0 ? 1.0 : wv;           // dimensions for
hv = hv <= 0.0 ? 1.0 : hv;           // the object

m_Length = lv>wv ? lv : wv;          // Ensure that
m_Width = wv<lv ? wv : lv;           // length >= width
m_Height = hv;

}

Remember that the initializers for the parameters to a member function should only appear in the member
declaration in the class definition, not in the definition of the function. If you put them in the function defi-
nition, your code will not compile. You’ve seen this code already, so I won’t discuss it again. It would be a
good idea to save the file at this point by clicking on the Save toolbar button. Get into the habit of saving
the file you’re editing before you switch to something else. If you need to edit the constructor again, you
can get to it easily by either double-clicking its entry in the lower pane on the Class View tab or by selecting
it from the right drop-down menu above the pane displaying the code.

You can also get to a member function’s definition in a .cpp file or to its declaration in a .h file directly
by right clicking its name in the Class View pane and selecting the appropriate item from the context menu
that appears.

457

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 457



Adding Function Members
You need to add all the functions you saw earlier to the CBox class. Previously, you defined several func-
tion members within the class definition, so that these functions were automatically inline. You can achieve
the same result by entering the code in the class definition for these functions manually, or you can use the
Add Member Function Wizard.

You might think that you can define each inline function in the .cpp file, and add the keyword inline to
the function definitions, but the problem here is that inline functions end up not being “real” functions.
Because the code from the body of each function has to be inserted directly at the position it is called, the
definitions of the functions need to be available when the file containing calls to the functions is compiled.
If they’re not, you’ll get linker errors and your program will not run. If you want member functions to 
be inline, you must include the function definitions in the .h file for the class. They can be defined either
within the class definition, or immediately following it in the .h file. You should put any global inline
functions you need into a .h file, and #include that file into any .cpp file that uses them.

To add the GetHeight() function as inline, right-click CBox on the Class View tab and select Add/Add
Function… from the context menu. You then can enter the data defining the function in the dialog that 
is displayed, as Figure 8-11 shows.

Figure 8-11

You can specify the return type to be double by selecting from the drop-down list, but you could equally
well type it in. Obviously for a type that does not appear in the list you would just enter it from the key-
board. Selecting the inline checkbox ensures that GetHeight() will be created as an inline function.
Note the other options to declare a function as static, virtual, or pure. As you know, a static member

458

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 458



function exists independently of any objects of a class. You’ll get to virtual and pure virtual func-
tions in Chapter 9. The GetHeight() function has no parameters so nothing further needs to be added.
Clicking the OK button will add the function definition to the class definition in Box.h. If you repeat this
process for the GetWidth(), GetLength(), and Volume() member functions, the CBox class definition
in Box.h will look like this:

#pragma once

class CBox
{
public:

CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0);
~CBox(void);

private:
// Length of a box in inches
double m_Length;
// Width of a box in inches
double m_Width;
// Height of a box in inches
double m_Height;

public:
double GetHeight(void)
{
return 0;

}

double GetWidth(void)
{
return 0;

}

double CBox::GetLength(void)
{
return 0;

}

// Calculate the volume of a box
double Volume(void)
{
return 0;

}
};

An additional public section has been added to the class definition that contains the inline function defi-
nitions. You need to modify each of the definitions to provide the correct return value and to declare the
functions to be const. For example, the code for GetHeight() function should be changed to:

double GetHeight(void) const
{
return m_Height;

}

459

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 459



You can change the definitions of the GetWidth() and GetLength() functions in a similar way. The
Volume() function definition should be changed to:

double Volume(void) const
{
return m_Length*m_Width*m_Height;

}

You could enter the other non-inline member functions directly in the editor pane that shows the code,
but of course you can also use the Add Member Function Wizard to do it, and the practice will be useful.
Right-click CBox in the Class View tab and select the Add/Add Function... menu item from the con-
text menu, as before. You can then enter the details of the first function you want to add in the dialog
that appears, as Figure 8-12 shows.

Figure 8-12

Here I have defined the operator+() function as public with a return type of CBox. The parameter type
and name have also been entered in the appropriate fields. You must click the Add button to register
the parameter as being in the parameter list before clicking the Finish button. This will also update
the function signature shown at the bottom of the Add Member Function Wizard dialog. You could
then enter details of another parameter if there were more than one and click Add once again to add it. 
I have also entered a comment in the dialog and the Wizard will insert this in both Box.h and Box.cpp.
When you click Finish, the declaration for the function will be added to the class definition in the
Box.h file, and a skeleton definition for the function will be added to the Box.cpp file. The function
needs to be declared as const so you must add this keyword to the declaration of the operator+()
function within the class definition, and to the definition of the function on Box.cpp. You must also
add the code in the body of the function, like this:

CBox CBox::operator +(const CBox& aBox) const
{

460

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 460



// New object has larger length and width of the two,
// and sum of the two heights
return CBox(m_Length > aBox.m_Length ? m_Length : aBox.m_Length,

m_Width > aBox.m_Width ? m_Width : aBox.m_Width,
m_Height + aBox.m_Height);

}

You need to repeat this process for the operator*() and operator/() functions that you saw earlier.
When you have completed this, the class definition in Box.h will look something like this:

#pragma once

class CBox
{
public:

CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0);
~CBox(void);

private:
// Length of a box in inches
double m_Length;

// Width of a box in inches
double m_Width;

// Height of a box in inches
double m_Height;

public:

double GetHeight(void) const
{
return m_Height;

}
public:

double GetWidth(void) const
{
return m_Width;

}
public:

double GetLength(void) const
{
return m_Length;

}
public:

double Volume(void) const
{
return m_Length*m_Width*m_Height;

}
public:

// Overloaded addition operator
CBox operator+(const CBox& aBox) const;

461

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 461



public
// Multiply a box by an integer
CBox operator*(int n) const;

public:

// Divide one box into another
int operator/(const CBox& aBox) const;

};

You can edit or rearrange the code in any way that you want — as long as it’s still correct of course. I
have added a few empty lines to make the code a bit more readable.

The contents of the Box.cpp file ultimately look something like this:

#include “.\box.h”

CBox::CBox(double lv, double wv, double hv)
{
lv = lv <= 0.0 ? 1.0 : lv;           // Ensure positive
wv = wv <= 0.0 ? 1.0 : wv;           // dimensions for
hv = hv <= 0.0 ? 1.0 : hv;           // the object

m_Length = lv>wv ? lv : wv;          // Ensure that
m_Width = wv<lv ? wv : lv;           // length >= width
m_Height = hv;

}

CBox::~CBox(void)
{
}

// Overloaded addition operator
CBox CBox::operator+(const CBox& aBox) const
{
// New object has larger length and width of the two,
// and sum of the two heights
return CBox(m_Length > aBox.m_Length ? m_Length : aBox.m_Length,

m_Width > aBox.m_Width ? m_Width : aBox.m_Width,
m_Height + aBox.m_Height);

}

// Multiply a box by an integer
CBox CBox::operator*(int n) const
{
if(n%2)
return CBox(m_Length, m_Width, n*m_Height);           // n odd

else
return CBox(m_Length, 2.0*m_Width, (n/2)*m_Height);   // n even

}

// Divide one box into another
int CBox::operator/(const CBox& aBox) const
{

462

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 462



// Temporary for number in horizontal plane this way
int tc1 = 0;
// Temporary for number in a plane that way
int tc2 = 0;

tc1 = static_cast<int>((m_Length/aBox.m_Length))*
static_cast<int>((m_Width/aBox.m_Width)); // to fit this way

tc2 = static_cast<int>((m_Length/aBox.m_Width))*
static_cast<int>((m_Width/aBox.m_Length)); // and that way

//Return best fit
return static_cast<int>((m_Height/aBox.m_Height))*(tc1>tc2 ? tc1 : tc2);

}

The shaded lines are those that you should have modified or added manually.

The very short functions, particularly those that just return the value of a data member, have their defi-
nitions within the class definition so that they are inline. If you take a look at ClassView by clicking on
the tab, and then click the + beside the CBox class name, you’ll see that all the members of the class are
shown in the lower pane.

This completes the CBox class, but you still need to define the global functions that implement operators
to compare the volume of a CBox object with a numerical value.

Adding Global Functions
You need to create a .cpp file that will contain the definitions for the global functions supporting opera-
tions on CBox objects. The file also needs to be part of the project. Click the Solution Explorer tab
to display it (you currently will have the Class View tab displayed) and right click the Source Files
folder. Select Add | New Item... from the context menu to display the dialog. Choose the category as
Code and the template as C++ File (.cpp) in the right pane of the dialog and enter the file name as
BoxOperators.

You can now enter the following code in the editor pane:

// BoxOperators.cpp
// CBox object operations that don’t need to access private members
#include “Box.h”

// Function for testing if a constant is > a CBox object
bool operator>(const double& value, const CBox& aBox)
{ return value > aBox.Volume(); }

// Function for testing if a constant is < CBox object
bool operator<(const double& value, const CBox& aBox)
{ return value < aBox.Volume(); }

// Function for testing if CBox object is > a constant
bool operator>(const CBox& aBox, const double& value)
{ return value < aBox; }

463

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 463



// Function for testing if CBox object is < a constant
bool operator<( const CBox& aBox, const double& value)
{ return value > aBox; }

// Function for testing if a constant is >= a CBox object
bool operator>=(const double& value, const CBox& aBox)
{ return value >= aBox.Volume(); }

// Function for testing if a constant is <= CBox object
bool operator<=(const double& value, const CBox& aBox)
{ return value <= aBox.Volume(); }

// Function for testing if CBox object is >= a constant
bool operator>=( const CBox& aBox, const double& value)
{ return value <= aBox; }

// Function for testing if CBox object is <= a constant
bool operator<=( const CBox& aBox, const double& value)
{ return value >= aBox; }

// Function for testing if a constant is == CBox object
bool operator==(const double& value, const CBox& aBox)
{ return value == aBox.Volume(); }

// Function for testing if CBox object is == a constant
bool operator==(const CBox& aBox, const double& value)
{ return value == aBox; }

// CBox multiply operator n*aBox
CBox operator*(int n, const CBox& aBox)
{ return aBox * n; }

// Operator to return the free volume in a packed CBox
double operator%( const CBox& aBox, const CBox& bBox)
{ return aBox.Volume() - (aBox / bBox) * bBox.Volume(); }

You have an #include directive for Box.h because the functions refer to the CBox class. Save the file.
When you have completed this, you can select the Class View tab. The Class View tab now includes
a Global Functions and Variables folder that will contain all the functions you have just added.

You have seen definitions for all these functions earlier in the chapter, so I won’t discuss their implemen-
tations again. When you want to use any of these functions in another .cpp file, you’ll need to be sure that
you declare all the functions that you use so the compiler will recognize them. You can achieve this by put-
ting a set of declarations in a header file. Switch back to the Solution Explorer pane once more and right-
click the Header Files folder name. Select Add | New Item... from the context menu to display the
dialog, but this time select category as Code and the template to be Header File(.h) and enter the name
as BoxOperators. After clicking the Add button an empty header file is added to the project, and you can
add the following code in the editor window:

// BoxOperators.h - Declarations for global box operators
#pragma once

bool operator>(const double& value, const CBox& aBox);
bool operator<(const double& value, const CBox& aBox);
bool operator>(const CBox& aBox, const double& value);

464

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 464



bool operator<(const CBox& aBox, const double& value);
bool operator>=(const double& value, const CBox& aBox);
bool operator<=(const double& value, const CBox& aBox);
bool operator>=(const CBox& aBox, const double& value);
bool operator<=(const CBox& aBox, const double& value);
bool operator==(const double& value, const CBox& aBox);
bool operator==(const CBox& aBox, const double& value);
CBox operator*(int n, const CBox aBox);
double operator%(const CBox& aBox, const CBox& bBox);

The #pragma once directive ensures that the contents of the file will not be included more than once 
in a build. It’s important to place this directive in all your own header files as it is easy to inadvertently
attempt to include a header more than once. If you do end up with a header file included more than once
into a source file, then you will have multiple definitions for the same thing in the source file and your
code will not compile. You just need to add an #include directive for BoxOperators.h to any source file
that makes use of any of these functions.

You’re now ready to start applying these functions, along with the CBox class, to a specific problem in
the world of boxes.

Using Our CBox Class
Suppose that you are packaging candies. The candies are on the big side, real jaw breakers, occupying
an envelope 1.5 inches long by 1 inch wide by 1 inch high. You have access to a standard candy box that
is 4.5 inches by 7 inches by 2 inches, and you want to know how many candies will fit in the box so that
you can set the price. You also have a standard carton that is 2 feet 6 inches long, by 18 inches wide and
18 inches deep, and you want to know how many boxes of candy it can hold and how much space you’re
wasting when it has been filled.

In case the standard candy box isn’t a good solution, you would also like to know what custom candy box
would be suitable. You know that you can get a good price on boxes with a length from 3 inches to 7 inches,
a width from 3 inches to 5 inches and a height from 1 inch to 2.5 inches, where each dimension can vary in
steps of half an inch. You also know that you need to have at least 30 candies in a box, because this is the
minimum quantity consumed by your largest customers at a sitting. Also, the candy box should not have
empty space, because the complaints from customers who think they are being cheated goes up. Further,
ideally you want to pack the standard carton completely so the candies don’t rattle around. You don’t want
to be too stringent about this otherwise packing could become difficult, so let’s say you have no wasted
space if the free space in the packed carton is less than the volume of a single candy box.

With the CBox class, the problem becomes almost trivial; the solution is represented by the following
main() function. Add a new C++ source file, Ex8_08.cpp, to the project through the context menu you
get when you right-click Source Files in the Solution Explorer pane, as you’ve done before. You
can then type in the code shown here:

// Ex8_08.cpp
// A sample packaging problem
#include <iostream>
#include “Box.h”
#include “BoxOperators.h”
using std::cout;
using std::endl;

465

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 465



int main()
{

CBox candy(1.5, 1.0, 1.0);             // Candy definition
CBox candyBox(7.0, 4.5, 2.0);          // Candy box definition
CBox carton(30.0, 18.0, 18.0);         // Carton definition

// Calculate candies per candy box
int numCandies = candyBox/candy;

// Calculate candy boxes per carton
int numCboxes = carton/candyBox;

// Calculate wasted carton space
double space = carton%candyBox;

cout << endl
<< “There are “ << numCandies
<< “ candies per candy box”
<< endl
<< “For the standard boxes there are “ << numCboxes
<< “ candy boxes per carton “ << endl << “with “
<< space << “ cubic inches wasted.”;

cout << endl << endl << “CUSTOM CANDY BOX ANALYSIS (No Waste)”;

// Try the whole range of custom candy boxes
for(double length = 3.0 ; length <= 7.5 ; length += 0.5)

for(double width = 3.0 ; width <= 5.0 ; width += 0.5)
for(double height = 1.0 ; height <= 2.5 ; height += 0.5)
{

// Create new box each cycle
CBox tryBox(length, width, height);

if(carton%tryBox < tryBox.Volume() &&
tryBox % candy == 0.0 && tryBox/candy >= 30)

cout << endl << endl
<< “Trial Box L = “ << tryBox.GetLength()
<< “ W = “ << tryBox.GetWidth()
<< “ H = “ << tryBox.GetHeight()
<< endl
<< “Trial Box contains “ << tryBox / candy << “ candies”
<< “ and a carton contains “ << carton / tryBox
<< “ candy boxes.”;

}
cout << endl;
return 0;

}

Let’s first look at how the program is structured. You have divided it into a number of files, which is
common when writing in C++. You will be able to see them if you look at the Solution Explorer tab,
which will look as shown in Figure 8-13.

466

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 466



Figure 8-13

The file Ex8_08.cpp contains the main()function and an #include directive for the file BoxOperators.h
that contains the prototypes for the functions in BoxOperators.cpp (which aren’t class members). It also
has an #include directive for the definition of the class CBox in Box.h. A C++ console program is usually
divided into a number of files that will each fall into one of three basic categories:

1. .h files containing library #include commands, global constants and variables, class definitions
and function prototypes — in other words, everything except executable code. They also contain
inline function definitions. Where a program has several class definitions, they are often placed in
separate .h files.

2. .cpp files containing the executable code for the program, plus #include commands for all the
definitions required by the executable code.

3. Another .cpp file containing the function main().

The code in our main()function really doesn’t need a lot of explanation — it’s almost a direct expression
of the definition of the problem in words, because the operators in the class interface perform problem-
oriented actions on CBox objects.

The solution to the question of the use of standard boxes is in the declaration statements, which also com-
pute the answers we require as initializing values. You then output these values with some explanatory
comments.

The second part of the problem is solved using the three nested for loops iterating over the possible
ranges of m_Length, m_Width and m_Height so that you evaluate all possible combinations. You could
output them all as well, but because this would involve 200 combinations, of which you might only be
interested in a few, you have an if statement which identifies the options that you’re actually interested
in. The if expression is only true if there’s no space wasted in the carton and the current trial candy box
has no wasted space and it contains at least 30 candies.

467

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 467



How It Works
Here’s the output from this program:

There are 42 candies per candy box
For the standard boxes there are 144 candy boxes per carton
with 648 cubic inches wasted.

CUSTOM CANDY BOX ANALYSIS (No Waste)

Trial Box L = 5 W = 4.5 H = 2
Trial Box contains 30 candies and a carton contains 216 candy boxes.

Trial Box L = 5 W = 4.5 H = 2
Trial Box contains 30 candies and a carton contains 216 candy boxes.

Trial Box L = 6 W = 4.5 H = 2
Trial Box contains 36 candies and a carton contains 180 candy boxes.

Trial Box L = 6 W = 5 H = 2
Trial Box contains 40 candies and a carton contains 162 candy boxes.

Trial Box L = 7.5 W = 3 H = 2
Trial Box contains 30 candies and a carton contains 216 candy boxes.

You have a duplicate solution due to the fact that, in the nested loop, you evaluate boxes that have a length
of 5 and a width of 4.5, as well as boxes that have a length of 4.5 and a width of 5. Because the CBox class
constructor ensures that the length is not less than the width, these two are identical. You could include
some additional logic to avoid presenting duplicates, but it hardly seems worth the effort. You could treat
it as a small exercise if you like.

Organizing Your Program Code
In example Ex8_08, you distributed the code among several files for the first time. Not only is this com-
mon practice with C++ applications generally, but with Windows programming it is essential. The sheer
volume of code involved in even the simplest program necessitates dividing it into workable chunks.

As I discussed in the previous section, there are basically two kinds of source code files in a C++ program,
.h files and .cpp files. This is illustrated in Figure 8-14.

First of all, there’s the executable code that corresponds to the definitions of the functions that make up
the program. Second, there are definitions of various kinds that are necessary for the executable code to
compile correctly. These are global constants and variables; data types that include classes, structures, 
and unions; and function prototypes. The executable source code is stored in files with the extension
.cpp, and the definitions are stored in files with the extension .h.

468

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 468



Figure 8-14

From time to time, you might want to use code from existing files in a new project. In this case you only
have to add the .cpp files to the project, which you can do by using the Project | Add Existing
Item... menu option, or by right-clicking either Source Files or Header Files in the Solution
Explorer tab and selecting Add > Existing Item... from the context menu to add the file to your
project. You don’t need to add .h files to your project, although you can if you want them to be shown 
in the Solution Explorer pane immediately. The code from .h files will be added at the beginning of the
.cpp files that require them as a result of the #include directives that you specify. You need #include
directives for header files containing standard library functions and other standard definitions, as well
as for your own header files. Visual C++ 2008 automatically keeps track of all these files, and enables

Function Definitions

Function Definitions

Function Definitions

Definition of main()

Source files
with the extension .cpp

Class Definition

Class Definition

Global Constants

Global Constants

Header files
with the extension .h

469

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 469



you to view them in the Solution Explorer tab. As you saw in the last example, you can also view the
class definitions and global constants and variables in the Class View tab.

In a Windows program, there are other kinds of definitions for the specification of such things as menus
and toolbar buttons. These are stored in files with extensions like .rc and .ico. Just like .h files, these
do not need to be explicitly added to a project as they are created and tracked automatically by Visual
C++ 2008 when you need them.

Naming Program Files
As I have already said, for classes of any complexity, it’s usual to store the class definition in a .h file with a
filename based on the class name, and to store the implementation of the function members of the class that
are defined outside the class definition in a .cpp file with the same name. On this basis, the definition of our
CBox class appeared in a file with the name Box.h. Similarly, the class implementation was stored in the file
Box.cpp. We didn’t follow this convention in the earlier examples in the chapter because the examples were
very short, and it was easier to reference the examples with names derived from the chapter number and
the sequence number of the example within the chapter. With programs of any size though it becomes
essential to structure the code in this way, so it would be a good idea to get into the habit of creating .h
and .cpp files to hold your program code from now on.

Segmenting a C++ program into .h and .cpp files is a very convenient approach, as it makes it easy for
you to find the definition or implementation of any class, particularly if you’re working in a development
environment that doesn’t have all the tools that Visual C++ provides. As long as you know the class name,
you can go directly to the file you want. This isn’t a rigid rule, however. It’s sometimes useful to group
the definitions of a set of closely related classes together in a single file and assemble their implementa-
tions similarly. However you choose to structure your files, the Class View still displays all the individ-
ual classes, as well as all the members of each class, as you can see in Figure 8-15.

Figure 8-15

470

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 470



I adjusted the size of the Class View pane so all the elements in the project are visible. Here, you can see
the details of the classes and globals for the last example. As I’ve mentioned before, double-clicking any
of the entries in the tree will take you directly to the relevant source code.

Native C++ Librar y Classes for Strings
As I mentioned in Chapter 4, the <string> standard header defines the string and wstring classes 
that represent character strings. Both are defined in the <string> header as template classes that are
instances of the basic_string<T> class template. The string class is defined as basic_string<char>
and wstring is defined as basic_string<wchar_t>, so the string class represents strings of characters
of type char and wstring represents strings of characters of type wchar_t.

These string types are much easier to use than null-terminated strings and bring with them a whole
range of powerful functions. Because string and wstring are both instances of the same template,
basic_string<T>, they provide the same functionality, so I’ll only discuss the features and use in the
context of the string type. The wstring type will work just the same except that the strings contain
Unicode character codes and you must use the L prefix for string literals in your code.

Creating String Objects
Creating string objects is very easy but you have a lot of choices as to how you do it. Firstly, you can create
and initialize a string object like this:

string sentence = “This sentence is false.”;

The sentence object will be initialized with the string literal that appears to the right of the assignment
operator. A string object has no terminating null character, so the string length is the number of characters
in the string, 23 in this instance. You can discover the length of the string encapsulated by a string object at
any time by calling its length() member function. For example:

cout << “The string is of length “ << sentence.length() << endl;

Executing the statement produces the output:

The string is of length 23

Incidentally, you can output a string object to stdout in the same way as any other variable:

cout << sentence << endl;

This displays the sentence string on a line by itself. You can also read a character string into a string
object like this:

cin >> sentence;

471

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 471



However, reading from stdin in this way ignores leading whitespace until a non-whitespace character is
found and also terminates input when you enter a space following one or more non-whitespace characters.
You will often want to read text into a string object that includes spaces and may span several lines. In this
case the getline()function template that is defined in the <string> header is much more convenient.
For example:

getline(cin, sentence, ‘*’);

This function template is specifically for reading data from a stream into a string or wstring object. The
first argument is the stream that is the source of input — it doesn’t have to be cin; the second argument
is the object that is to receive the input, and the third argument is the character that terminates reading.
Here I have specified the terminating character as ‘*’, so this statement will read text from cin, includ-
ing spaces, into sentence, until the end of input is indicated by an asterisk being read from the input
stream.

Of course, you can also use functional notation to initialize a string object:

string sentence(“This sentence is false.”);

If you don’t specify an initial string literal when you create a string object, the object will contain an
empty string:

string astring;                        // Create an empty string

Calling the length() of the string astring will result in zero.

Another possibility is to initialize a string object with a single character repeated a specified number of
times:

string bees(7, ‘b’);                   // String is “bbbbbbb”

The first argument to the constructor is the number of repetitions of the character specified by the second
argument.

Finally you can initialize a string object with all or part of another string object. Here’s an example of using
another string object as an initializer:

string letters(bees);

The letters object will be initialized with the string contained in bees.

To select part of a string object as initializer you call the string contructor with three arguments, the first
being the string object that is the source of the initializing string, the second is the index position of the
first character to be selected, and the third argument is the number of characters to be selected. Here’s an
example:

string sentence(“This sentence is false.”);
string part(sentence, 5, 11);

The part object will be initialized with 11 characters from sentence beginning with the sixth character
(the first character is at index position 0). Thus part will contain the string “sentence is”.

472

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 472



Of course, you can create arrays of string objects and initialize them using the usual notation. For
example:

string animals[] = { “dog”, “cat”, “horse”, “donkey”, “lion”};

This creates an array of string objects that has five elements initialized with the string literals between
the braces.

Concatenating Strings
Perhaps the most common operation with strings is joining two strings to form a single string. You can
use the + operator to concatenate two string objects or a string object and a string literal. Here are some
examples:

string sentence1(“This sentence is false.”);
string sentence2(“Therefore the sentence above must be true!”);
string combined;                       // Create an empty string
sentence1 = sentence1 + “\n”;          // Append string containing newline
combined = sentence1 + sentence2;      // Join two strings
cout << combined << endl;              // Output the result

Executing these statements will result in the output:

This sentence is false.
Therefore the sentence above must be true!

The first three statements create string objects. The next statement appends the string literal “\n” to
sentence1 and stores the result in sentence1. The next statement joins sentence1 and sentence2
and stores the result in combined. The last state outputs the string combined.

String concatenation using the + operator is possible because the string class implements operator+().
This implies that one of the operands must be a string object so you can’t use the + operator to join two
string literals. Keep in mind that each time you use the + operator to join two strings you are creating a
new string object, which involves a certain amount of overhead. You’ll see in the next section how you
can modify and extend an existing string object and this may be a more efficient alternative in some
cases because it does not involve creating new objects.

You can also use the + operator to join a character to a string object, so you could have written the third
statement in the previous code fragment as:

sentence1 = sentence1 + ‘\n’;          // Append newline character to string

The string class also implements operator+=() such that the right operand can be a string literal, a
string object, or a single character. You could write the previous statement as:

sentence1 += ‘\n’;

or as:

sentence1 += “\n”;

473

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 473



There is a difference between using the += operator and using the + operator. As I said, the + operator cre-
ates a new string object containing the combined string. The += operator appends the string or character
that is the right operand to the string object that is the left operand, so the string object is modified
directly and no new object is created.

Let’s exercise some of what I have described in an example.

Try It Out Creating and Joining Strings
This is a simple example that reads names and ages from the keyboard and then lists what you entered.
Here’s the code:

// Ex8_09.cpp
// Creating and joining string objects
#include <iostream>
#include <string>
using std::cin;
using std::cout;
using std::endl;
using std::string;
using std::getline;

// List names and ages
void listnames(string names[], string ages[], size_t count)
{
size_t i = 0;
cout << endl << “The names you entered are: “ << endl;
while(i<count && !names[i].empty())
cout << names[i] + “ aged “ + ages[i++] + ‘.’ << endl;

}

int main()
{
const size_t count = 100;
string names[count];
string ages[count];
string firstname;
string secondname;

for(size_t i = 0 ; i<count ; i++)
{
cout << endl << “Enter a first name or press Enter to end: “;
getline(cin, firstname, ‘\n’);
if(firstname.empty())
{
listnames(names, ages, i);
cout << “Done!!” << endl;
return 0;

}

cout << “Enter a second name: “;
getline(cin, secondname, ‘\n’);

474

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 474



names[i] = firstname + ‘ ‘ + secondname;
cout << “Enter “ + firstname + “‘s age: “;
getline(cin, ages[i], ‘\n’);

}
cout << “No space for more names.” << endl;
listnames(names, ages, count);
return 0;

}

This example produces output similar to the following:

Enter a first name or press Enter to end: Marilyn
Enter a second name: Munroe
Enter Marilyn’s age: 26

Enter a first name or press Enter to end: Tom
Enter a second name: Crews
Enter Tom’s age: 45

Enter a first name or press Enter to end: Arnold
Enter a second name: Weisseneggar
Enter Arnold’s age: 52

Enter a first name or press Enter to end:

The names you entered are:
Marilyn Munroe aged 26.
Tom Crews aged 45.
Arnold Weisseneggar aged 52.
Done!!

How It Works
The listnames function lists names and ages stored in arrays that are passed as the first two argu-
ments. The third argument is a count of the number of elements in the array. Listing of the data occurs 
in a loop:

while(i<count && !names[i].empty())
cout << names[i] + “ aged “ + ages[i++] + ‘.’ << endl;

The loop condition is a belt and braces control mechanism in that it not only checks that the index i is less
than the value of count that is passed as the third argument, but it also calls the empty() function for the
current element to verify that it is not an empty string. The single statement in the body of the loop con-
catenates the current string in names[i] with the literal “ aged “, the ages[i] string and the character
‘.’ using the + operator and writes the resultant string to cout. The expression concatenating the strings
is equivalent to:

((names[i].operator+(“ aged “)).operator+(ages[i++])).operator+(‘.’)

Each call of the operator+() function returns a string object that results from the operation, so three
temporary string objects are created in evaluating this expression. Thus the expression demonstrates
combining a string object with a string literal, a string object with another string object, and a string
object with a character literal.

475

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 475



In main(), you first create two arrays of string objects of length count with the statements:

const size_t count = 100;
string names[count];
string ages[count];

The names and ages arrays will store names and corresponding age values that are entered from the
keyboard.

Within the for loop in main() you read the first and second names separately using the getline()func-
tion template that is defined in the <string> header:

cout << endl << “Enter a first name or press Enter to end: “;
getline(cin, firstname, ‘\n’);
if(firstname.empty())
{

listnames(names, ages, i);
cout << “Done!!” << endl;
return 0;

}

cout << “Enter a second name: “;
getline(cin, secondname, ‘\n’);

The getline() function allows an empty string to be read, something you cannot do using the >> oper-
ator with cin. The first argument to getline() is the stream that is the source of the input, the second
argument is the destination for the input, and the third argument is the character that signals the end on
the input operation. If you omit the third argument, entering ‘\n’ will terminate the input process so
you could have omitted it here. You use the ability to read an empty string here as you test for an empty
string in firstname by calling its empty() function. An empty string signals the end of input so you call
listnames() to output the data and end program execution.

When firstname is not empty, you continue with reading the second name into secondname, again using
the getline() template function.  You concatenate firstname and secondname using the + operator and
store the result in names[i], the currently unused element in the names array.

Finally in the loop you read a string for the age of the person and store the result in ages[i]. The for
loop limits the number of entries to count, which corresponds to the number of elements in the arrays.
If you fall through the end of the loop, the arrays are full so after displaying a message you output the
data that was entered.

Accessing and Modifying Strings
You can access any character in a string object to read it or overwrite it by using the subscript operator,
[]. Here’s an example:

string sentence(“Too many cooks spoil the broth.”);
for(size_t i = 0; i<sentence.length(); i++)
if(sentence[i] == ‘ ‘)
sentence[i] = ‘*’;

476

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 476



This just inspects each character in the sentence string in turn to see if it is a space, and if it is, replaces
the character with an asterisk.

You can use the at() member function to achieve the same result as the [] operator:

string sentence(“Too many cooks spoil the broth.”);
for(size_t i = 0; i<sentence.length(); i++)
if(sentence.at(i) == ‘ ‘)
sentence.at(i) = ‘*’;

This does exactly the same as the previous fragment, so what’s the difference between using [] and using
at()? Well, subscripting is faster than using the at() function, but the downside is the validity of the
index is not checked. If the index is out of range, the result of using the subscript operator is undefined.
The at() function on the other hand is a bit slower, but it does check the index and if it is not valid, the
function will throw an out_of_range exception. You would use the at() function when there is the pos-
sibility of the index value being out of range, and in this situation you should put the code in a try block
and handle the exception appropriately. If you are sure index out of range conditions cannot arise, then
use the [] operator.

You can extract a part of an existing string object as a new string object. For example:

string sentence(“Too many cooks spoil the broth.”);
string substring = sentence.substr(4, 10);           // Extracts “many cooks”

The first argument to the substr() function is the first character of the substring to be extracted and the
second argument is the count of the number of characters in the substring.

By using the append() function for a string object you can add one or more characters to the end of the
string. This function comes in several versions; there are versions that append one or more of a given
character, a string literal, or a string object to the object for which the function is called. For example:

string phrase(“The higher”);
string word(“fewer”);
phrase.append(1, ‘ ‘);                 // Append one space
phrase.append(“the “);                 // Append a string literal
phrase.append(word);                   // Append a string object
phrase.append(2, ‘!’);                 // Append two exclamation marks

After executing this sequence, phrase will have been modified to “The higher the fewer!!”. With
the version of append() with two arguments, the first argument is the count of the number of times the
character specified by the second argument is to be appended. When you call append() the function returns
a reference to the object for which it was called, so you could write the four append() calls above in a single
statement:

phrase.append(1, ‘ ‘).append(“the “).append(word).append(2, ‘!’);

You can also use append() to append part of a string literal or part of a string object to an existing string:

string phrase(“The more the merrier.”);
string query(“Any”);
query.append(phrase, 3, 5).append(1, ‘?’);

477

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 477



The result of executing these statements is that query will contain the string “Any more?”. In the last
statement, the first call to the append() function has three arguments:

❑ The first argument, phrase, is the string object from which characters are to be extracted and
appended to query.

❑ The second argument, 3, is the index position of the first character to be extracted.

❑ The third argument, 5, is the count of the total number of characters to be appended.

Thus the substring “ more” is appended to query by this call. The second call for the append() function
appends a question mark to query.

When you want to append a single character to a string object, you could use the push_back() function
as an alternative to append(). Here’s how you would use that:

query.push_back(‘*’);

This appends an asterisk character to the end of the query string.

Sometimes adding characters to the end of a string just isn’t enough. There will be occasions when you
want to insert one or more characters at some position in the interior of a string. The various flavors of
the insert() function will do that for you:

string saying(“A horse”);
string word(“blind”);
string sentence(“He is as good as gold.”);
string phrase(“a wink too far”);
saying.insert(1, “ “);                  // Insert a space character
saying.insert(2, word);                 // Insert a string object
saying.insert(2, “nodding”, 3);         // Insert 3 characters of a string literal
saying.insert(5, sentence, 2, 15);      // Insert part of a string at position 5
saying.insert(20, phrase, 0, 9);        // Insert part of a string at position 20
saying.insert(29, “ “).insert(30, “a poor do”, 0, 2);

I’m sure you’ll be interested to know that after executing the statements above, saying will contain the
string “A nod is as good as a wink to a blind horse”. The parameters to the various versions
of insert()are:

Function Prototype Description

string& insert(size_t index,
const char* pstring)

Inserts the null-terminated string pstring at position
index.

string& insert(size_t index,
const string astring)

Inserts the string object astring at position index.

string& insert(size_t index,
const char* pstring,
size_t count)

Inserts the first count characters from the null-
terminated string pstring at position index.

478

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 478



In each of these versions of insert() a reference to the string object for which the function is called is
returned; this allows you to chain calls together as in the last statement in the code fragment.

This is not the complete set of insert() functions but you can do everything you need with those in the
table. The other versions use iterators as arguments and you’ll learn about iterators in Chapter 10.

You can interchange the strings encapsulated by two string objects by calling the swap() member
function. For example:

string phrase(“The more the merrier.”);
string query(“Any”);
query.swap(phrase);

This results in query containing the string “The more the merrier.” and phrase containing the
string “Any”. Of course, executing phrase.swap(query) would have the same effect.

If you need to convert a string object to a null-terminated string, the c_str() function will do this. For
example:

string phrase(“The higher the fewer”);
const char *pstring = phrase.c_str();

The c_str() function returns a pointer to a null-terminated string with the same contents as the string
object.

You can also obtain the contents of a string object as an array of elements of type char by calling the
data() member function. Note that the array contains just the characters from the string object without
a terminating null.

You can replace part of a string object by calling its replace() member function. This also comes in 
several versions, as the following table shows.

Function Prototype Description

string& insert(size_t index,
const string astring,
size_t count)

Inserts the first count characters from the string
object astring at position index.

string& insert(size_t index,
const string astring,
size_t start,
size_t count)

Inserts count characters from the string object
astring beginning with the character at position
start; the substring is inserted at position index.

string& insert(size_t index,
const char* pstring,
size_t start,
size_t count)

Inserts count characters from the null-terminated
string pstring beginning with the character at 
position start; the substring is inserted at position
index.

479

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 479



In each case a reference to the string object for which the function is called is returned.

Here’s an example:

string proverb(“A nod is as good as a wink to a blind horse”);
string sentence(“It’s bath time!”);
proverb.replace(38, 5, sentence, 5, 3);

This fragment uses the fifth version of the replace() function from the preceding table to substitute
“bat” in place of “horse” in the string proverb.

Comparing Strings
You have a full complement of operators for comparing two string objects or comparing a string object
with a string literal. Operator overloading has been implemented in the string class for the following
operators:

==   !=  <   <=   >   >=

Here’s an example of the use of these operators:

string dog1(“St Bernard”);
string dog2(“Tibetan Mastiff”);

Function Prototype Description

string& replace(size_t index,
size_t count,
const char* pstring)

Replaces count characters starting at position index
with the first count characters from pstring.

string& replace(size_t index,
size_t count,
const string astring)

Replaces count characters starting at position index
with the first count characters from astring.

string& replace(size_t index,
size_t count1,
const char* pstring,
size_t count2)

Replaces count1 characters starting at position
index with up to count2 characters from pstring.
This allows the replacement substring to be longer 
or shorter than the substring that is replaced.

string& replace(size_t index1,
size_t count1,
const string astring,
size_t index2,
size_t count2)

Replaces count1 characters starting at position
index1 with count2 characters from astring
starting at position index2. 

string& replace(size_t index,
size_t count1,
size_t count2,
char ch)

Replaces count1 characters starting at index with
count2 occurrences of the character ch.

480

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 480



if(dog1 < dog2)
cout << “dog2 comes first!” << endl;

else if(dog1 > dog2)
cout << “dog1 comes first!” << endl;

When you compare two strings, corresponding characters are compared until a pair of characters is found
that differ, or the end of one or both strings is reached. When two corresponding characters are found to 
be different, the values of the character codes determine which string is less than the other. If no characters
pairs are found to be different, the string with fewer characters is less than the other string. Two strings will
be equal if they contain the same number of characters and corresponding characters are identical.

Try It Out Comparing Strings
This example illustrates the use of the comparison operators by implementing an extremely inefficient
sorting method. Here’s the code:

// Ex8_10.cpp
// Comparing and sorting words
#include <iostream>
#include <iomanip>
#include <string>
using std::cin;
using std::cout;
using std::endl;
using std::ios;
using std::setiosflags;
using std::setw;
using std::string;

string* sort(string* strings, size_t count)
{
bool swapped = false;
while(true)
{
for(size_t i = 0 ; i<count-1 ; i++)
{
if(strings[i] > strings[i+1])
{
swapped = true;
strings[i].swap(strings[i+1]);

}
}
if(!swapped)
break;

swapped = false;
}
return strings;

}

int main()
{
const size_t maxstrings = 100;
string strings[maxstrings];

481

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 481



size_t nstrings = 0;
size_t maxwidth = 0;

// Read up to 100 words into the strings array
while(nstrings < maxstrings)
{
cout << “Enter a word or press Enter to end: “;
getline(cin, strings[nstrings]);
if(maxwidth < strings[nstrings].length())
maxwidth = strings[nstrings].length();

if(strings[nstrings].empty())
break;

++nstrings;
}

// Sort the input in ascending sequence
sort(strings,nstrings);
cout << endl

<< “In ascending sequence, the words you entered are:”
<< endl
<< setiosflags(ios::left);           // Left-justify the output

for(size_t i = 0 ; i<nstrings ; i++)
{
if(i % 5 == 0)
cout << endl;

cout << setw(maxwidth+2) << strings[i];
}
cout << endl;
return 0;

}

Here’s some typical output from this example:

Enter a word or press Enter to end: loquacious
Enter a word or press Enter to end: transmogrify
Enter a word or press Enter to end: abstemious
Enter a word or press Enter to end: facetious
Enter a word or press Enter to end: xylophone
Enter a word or press Enter to end: megaphone
Enter a word or press Enter to end: chauvinist
Enter a word or press Enter to end:

In ascending sequence, the words you entered are:

abstemious    chauvinist    facetious     loquacious    megaphone
transmogrify  xylophone

How It Works
The most interesting part is the sort() function that accepts two arguments, the address of a string array
and the count of the number of array elements.

482

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 482



The function implements the bubble sort, which works by scanning through the elements in sequences
and comparing successive elements. All the work is done in the while loop:

bool swapped = false;
while(true)
{

for(size_t i = 0 ; i<count-1 ; i++)
{

if(strings[i] > strings[i+1])
{

swapped = true;
strings[i].swap(strings[i+1]);

}
}
if(!swapped)

break;
swapped = false;

}

Successive elements in the strings array are compared using the > operator. If the first element is greater
than the second in a pair, the elements are swapped. In this case the elements are interchanged by calling
the swap() function for one string object with the second string object as argument. Comparing suc-
cessive elements and swapping when necessary continues for the entire array of elements. This process is
repeated until there is a pass through all the elements where no elements are swapped. The elements are
then in ascending sequence. The bool variable swapped acts as an indicator for whether swapping occurs
on any given pass. It is only set to true when two elements are swapped.

The main() function reads up to 100 words into the strings array in a loop:

while(nstrings < maxstrings)
{

cout << “Enter a word or press Enter to end: “;
getline(cin, strings[nstrings]);
if(maxwidth < strings[nstrings].length())

maxwidth = strings[nstrings].length();
if(strings[nstrings].empty())

break;
++nstrings;

}

The getline() function here reads characters from cin until ‘\n’ is read. The input is stored in the
string object specified by the second argument strings[nstrings]. Just pressing the Enter key 
will result in an empty() string so the loop is terminated when the empty() function for the last string
object read returns true. The maxwidth variable is used to record the length of the longest string entered.
This will be used later in the output process after the input has been sorted.

Calling the sort() function sorts the contents of the strings array in ascending sequence. The result is
output in a loop:

cout << endl
<< “In ascending sequence, the words you entered are:”

483

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 483



<< endl
<< setiosflags(ios::left);           // Left-justify the output

for(size_t i = 0 ; i<nstrings ; i++)
{

if(i % 5 == 0)
cout << endl;

cout << setw(maxwidth+2) << strings[i];
}

This outputs each element in a field width of maxwidth+2 characters. Each word is left justified in the
field because of the call to the setiosflags() manipulator with the argument ios::left. Unlike the
setw() manipulator, the setiosflags() manipulator remains in effect until you reset it.

Searching Strings
You have four versions of the find() function that search a string object for a given character or sub-
string and they are described in the following table.

In each case the find() function returns the index position where the character or first character of the
substring was found. The function returns the value string::npos if the item was not found. This lat-
ter value is a constant defined in the string class that represents an illegal position in a string object;
it is used generally to signal a search failure.

Here’s a fragment showing some of the ways you might use the find() function:

string phrase(“So near and yet so far”);
string str(“So near”);
cout << phrase.find(str) << endl;           // Outputs 0

Function Description

size_t find(char ch,
size_t offset=0)

Searches a string object for the character ch starting
at index position offset. You can omit the second
argument in which case the default value is 0. 

size_t find(const char* pstr,
size_t offset=0)

Searches a string object for the null-terminated string
pstr starting at index position offset. You can omit the
second argument in which case the default value is 0.

size_t find(const char* pstr,
size_t offset,
size_t count)

Searches a string object for the first count characters
of the null-terminated string pstr starting at index
position offset.

size_t find(const string str,
size_t offset=0)

Searches a string object for the string object str start-
ing at index position offset. You can omit the second
argument in which case the default value is 0.

484

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 484



cout << phrase.find(“so far”) << endl;      // Outputs 16
cout << phrase.find(“so near”) << endl;     // Outputs string::npos = 4294967295

The value of string::npos can vary with different C++ compiler implementations, so to test for it you
should always use string::npos and not the explicit value.

Here’s another example that scans the same string repeatedly searching for occurrences of a particular
substring:

string str( “Smith, where Jones had had \”had had\”, \”had had\” had.”
“ \”Had had\” had had the examiners’ approval.”);

string substr(“had”);

cout << “The string to be searched is:”
<< endl << str << endl;

size_t offset = 0;
size_t count = 0;
size_t increment = substr.length();

while(true)
{
offset = str.find(substr, offset);
if(offset == string::npos)
break;

offset += increment;
++count;

}
cout << endl << “ The string \”” << substr

<< “\” was found “ << count << “ times in the string above.”
<< endl;

Here you search the string str to see how many times “had” appears. The search is done in the while
loop where offset records the position found, and is also used as the start position for the search. The
search starts at index position 0, the start of the string, and each time the substring is found, the new start-
ing position for the next search is set to the found position plus the length of the substring. This ensures
that the substring that was found is bypassed. Every time the substring is found, count is incremented.
If find() returns string::npos, then the substring was not found and the search ends. Executing this
fragment produces the output:

The string to be searched is:
Smith, where Jones had had “had had”, “had had” had. “Had had” had had the
examiners’ approval.

The string “had” was found 10 times in the string above.

Of course, “Had” is not a match for the substring “had” so 10 is the correct result.

The find_first_of() and find_last_of() member functions search a string object for an occurrence
of any character from a given set. You could search a string to find spaces or punctuation characters for
example, which would allow you to break a string up into individual words. Both functions come in sev-
eral flavors, as the following table shows.

485

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 485



Function Description

find_first_of(char ch,
size_t offset = 0)

Searches a string object for the first occurrence of the
character, ch, starting at position offset, and returns
the index position where the character is found as a value
of type size_t. If you omit the second argument, the
default value of offset is 0.

find_first_of(char* pstr,
size_t offset = 0)

Searches a string object for the first occurrence of any
character in the null-terminated string, pstring, start-
ing at position offset, and returns the index position
where the character is found as a value of type size_t.
If you omit the second argument, the default value of
offset is 0.

find_first_of(char* pstr,
size_t offset,
size_t count)

Searches a string object for the first occurrence of 
any character in the first count characters of the null-
terminated string, pstring, starting at position offset,
and returns the index position where the character is
found as a value of type size_t. 

find_first_of(string str,
size_t offset = 0)

Searches a string object for the first occurrence of any
character in the string, pstring, starting at position
offset, and returns the index position where the char-
acter is found as a value of type size_t. If you omit the
second argument, the default value of offset is 0.

find_last_of(char ch,
size_t offset=npos)

Searches backward through a string object for the 
last occurrence of the character, ch, starting at position
offset, and returns the index position where the char-
acter is found as a value of type size_t. If you omit the
second argument, the default value of offset is npos,
which is the end of the string.

find_last_of(char* pstr,
size_t offset=npos)

Searches backward through a string object for the last
occurrence of any character in the null-terminated string,
pstr, starting at position offset, and returns the index
position where the character is found as a value of type
size_t. If you omit the second argument, the default
value of offset is npos, which is the end of the string.

find_last_of(char* pstr,
size_t offset,
size_t count)

Searches backward through a string object for the last
occurrence of any of the first count characters in the null-
terminated string, pstr, starting at position offset, and
returns the index position where the character is found as
a value of type size_t. 

486

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 486



With all versions of the find_first_of() and find_last_of() functions, string::npos will be
returned if no matching character is found.

With the same string as the last fragment, you could see what the find_last_of() function does with
the same search string “had”.

size_t count = 0;
size_t offset = string::npos;
while(true)
{
offset = str.find_last_of(substr, offset);
if(offset == string::npos)
break;

--offset;
++count;

}
cout << endl << “ Characters from the string \”” << substr

<< “\” were found “ << count << “ times in the string above.”
<< endl;

This time you are searching backward starting at index position, string::npos, the end of the string,
because this is the default starting position. The output from this fragment is:

The string to be searched is:
Smith, where Jones had had “had had”, “had had” had. “Had had” had had the
examiners’ approval.

Characters from the string “had” were found 38 times in the string above.

The result should not be a surprise. Remember you are searching for occurrences of any of the characters
in “had” in the string str. There are 32 in the “Had” and “had” words, and 6 in the remaining words.
Because you are searching backward through the string, you decrement offset within the loop when
you find a character.

The last set of search facilities are versions of the find_first_not_of() and find_last_not_of()
functions.

Function Description

find_last_of(string str,
size_t offset=npos)

Searches backward through a string object for the last
occurrence of any character in the string, str, starting at
position offset, and returns the index position where
the character is found as a value of type size_t. If you
omit the second argument, the default value of offset
is npos, which is the end of the string.

487

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 487



Function Description

find_first_ not_of(char ch,
size_t offset = 0)

Searches a string object for the first occurrence of a
character that is not the character, ch, starting at posi-
tion offset. The function returns the index position
where the character is found as a value of type size_t.
If you omit the second argument, the default value of
offset is 0.

find_first_ not_of(

char* pstr,
size_t offset = 0)

Searches a string object for the first occurrence of 
a character that is not in the null-terminated string,
pstring, starting at position offset, and returns the
index position where the character is found as a value
of type size_t. If you omit the second argument, the
default value of offset is 0.

find_first_ not_of(

char* pstr,
size_t offset,
size_t count)

Searches a string object for the first occurrence of a
character that is not in the first count characters of the
null-terminated string, pstring, starting at position
offset. The function returns the index position where
the character is found as a value of type size_t. 

find_first_ not_of(

string str,
size_t offset = 0)

Searches a string object for the first occurrence of any
character that is not in the string, pstring, starting at
position offset. The function returns the index posi-
tion where the character is found as a value of type
size_t. If you omit the second argument, the default
value of offset is 0.

find_last_ not_of(char ch,
size_t offset=npos)

Searches backward through a string object for the last
occurrence of a character that is not the character, ch,
starting at position offset. The index position where
the character is found is returned as a value of type
size_t. If you omit the second argument, the default
value of offset is npos, which is the end of the string.

find_last_ not_of(char* pstr,
size_t offset=npos)

Searches backward through a string object for the 
last occurrence of any character that is not in the null-
terminated string, pstr, starting at position offset.
The index position where the character is found is
returned as a value of type size_t. If you omit the 
second argument, the default value of offset is npos,
which is the end of the string.

find_last_ not_of(char* pstr,
size_t offset,

size_t count)

Searches backward through a string object for the last
occurrence of a character that is not among the first
count characters in the null-terminated string, pstr,
starting at position offset. The function returns the
index position where the character is found as a value
of type size_t. 

488

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 488



As with previous search functions, string::npos will be returned if the search does not find a character.
These functions have many uses, typically finding tokens in a string that may be separated by characters
of various kinds. For example, text consists of words separated by spaces and punctuation characters, so
you could use these functions to find the words in a block of text. Let’s see that working in an example.

Try It Out Sorting Words from Text
This example will read a block of text, and then extract the words and output them in ascending sequence.
I’ll use the somewhat inefficient bubble sort function that you saw in Ex8_10 here. In Chapter 10 you will
use a library function for sorting that would be much better, but you need to learn about some other stuff
before you can use that. The program will also figure out how many times each word occurs and output
the count for each word. Such an analysis is called a collocation. Here’s the code:

// Ex8_11.cpp
// Extracting words from text
#include <iostream>
#include <iomanip>
#include <string>
using std::cin;
using std::cout;
using std::endl;
using std::ios;
using std::setiosflags;
using std::resetiosflags;
using std::setw;
using std::string;

// Sort an array of string objects
string* sort(string* strings, size_t count)
{
bool swapped = false;
while(true)
{
for(size_t i = 0 ; i<count-1 ; i++)
{
if(strings[i] > strings[i+1])
{
swapped = true;
strings[i].swap(strings[i+1]);

}
}
if(!swapped)

Function Description

find_last_not_of(string str,
size_t offset=npos)

Searches backward through a string object for the last
occurrence of any character not in the string, str, start-
ing at position offset. The function returns the index
position where the character is found as a value of type
size_t. If you omit the second argument, the default
value of offset is npos, which is the end of the string.

489

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 489



break;
swapped = false;

}
return strings;

}

int main()
{
const size_t maxwords(100);
string words[maxwords];
string text;
string separators(“ \”.,:;!?()\n”);
size_t nwords = 0;
size_t maxwidth = 0;

cout << “Enter some text on as many lines as you wish.”
<< endl << “Terminate the input with an asterisk:” << endl;

getline(cin, text, ‘*’);

size_t start(0), end(0), offset(0);   // Record start & end of word & offset
while(true)
{
// Find first character of a word
start = text.find_first_not_of(separators, offset);  // Find non-separator
if(start == string::npos)           // If we did not find it, we are done
break;

offset = start + 1;                 // Move past character found

// Find first separator past end of current word
end = text.find_first_of(separators,offset);         // Find separator
if(end == string::npos)             // If it’s the end of the string
{                                   // current word is last in string
offset = end;                     // We use offset to end loop later
end = text.length();              // Set end as 1 past last character

}
else
offset = end + 1;                 // Move past character found

words[nwords] = text.substr(start, end-start);       // Extract the word

// Keep track of longest word
if(maxwidth < words[nwords].length())
maxwidth = words[nwords].length();

if(offset == string::npos)          // If we reached the end of the string
break;                            // We are done

if(++nwords == maxwords)            // Check for array full
{
cout << endl << “Maximum number of words reached.”

<< endl << “Processing what we have.” << endl;
break;

490

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 490



}
}

sort(words, nwords);

cout << endl
<< “In ascending sequence, the words in the text are:”
<< endl;

size_t count(0);                               // Count of duplicate words
// Output words and number of occurrences
for(size_t i = 0 ; i<nwords ; i++)
{
if(count == 0)
count = 1;

if(i < nwords-2 && words[i] == words[i+1])
{
++count;
continue;

}
cout << setiosflags(ios::left)               // Output word left-justified

<< setw(maxwidth+2) << words[i];
cout << resetiosflags(ios::right)            // and word count right-justified

<< setw(5) << count << endl;
count = 0;

}
cout << endl;
return 0;

}

Here’s an example of some output from this program:

Enter some text on as many lines as you wish.
Terminate the input with an asterisk:
I sometimes think I'd rather crow
And be a rooster that to roost
And be a crow. But I dunno.

A rooster he can roost also,
Which don't seem fair when crows can't crow
Which may help some. Still I dunno.*

In ascending sequence, the words in the text are:
A          1
And        2
But        1
I          3
I'd        1
Still      1
Which      2
a          2
also       1
be         2
can        1

491

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 491



can't      1
crow       3
crows      1
don't      1
dunno      2
fair       1
he         1
help       1
may        1
rather     1
roost      2
rooster    2
seem       1
some       1
sometimes  1
that       1
think      1
to         1
when       1

How It Works
The input is read from cin using the getline() with the termination character specified as an asterisk.
This allows an arbitrary number of lines of input to be entered. Individual words are extracted from the
input in the string object text and stored in the words array. This is done in the while loop.

The first step in extracting a word from text is to find the index position of the first character of the word:

start = text.find_first_not_of(separators, offset);  // Find non-separator
if(start == string::npos)           // If we did not find it, we are done

break;
offset = start + 1;                 // Move past character found

The find_first_not_of() function call returns the index position of the first character from the position
offset that is not one of the characters in separators. You could use the find_first_of() function
here to search for any of A to Z, a to z to achieve the same result. When the last word has been extracted,
the search will reach the end of the string without finding a character so you test for this by comparing the
value that was returned with string::npos. If it is the end of the string, all words have been extracted, so
you exit the loop. In any other instance, you set offset at one past the character that was found.

The next search is for any separator character:

end = text.find_first_of(separators,offset);         // Find separator
if(end == string::npos)             // If it’s the end of the string
{                                   // current word is last in string

offset = end;                     // We use offset to end loop later
end = text.length();              // Set end as 1 past last character

}
else

offset = end + 1;                 // Move past character found

The search for any separator is from index position offset, which is one past the first character of the
word, so usually you will find the separator that is one past the last character of the word. When the word

492

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 492



is the last in the text and there is no separator following the last character of the word, the function will
return string::npos so you deal with this situation by setting end to one past the last character in the
string and setting offset to string::npos. The offset variable will be tested later in the loop after the
current word has been extracted to determine whether the loop should end.

Extracting a word is easy:

words[nwords] = text.substr(start, end-start);       // Extract the word

The substr() function extracts end-start characters from text, starting with the character at start. The
length of the word is end-start because start is the first character and end is one past the last character
in the word.

The rest of the while loop body keeps track of the maximum word length in the way you have seen before,
checks for the end-of-string condition, and checks whether the words array is full.

The words are output in a for loop that iterates over all the elements in the words array. The if statements
in the loop deal with counting duplicate words:

if(count == 0)
count = 1;

if(i < nwords-2 && words[i] == words[i+1])
{

++count;
continue;

}

The count variable records the number of duplicate words so it is always a minimum of 1. At the end of
the loop count is set to 0 when a word and its count is written out. This acts as an indicator that a new
word count is starting, so when count is 0, the first if statement sets it to 1, otherwise it is left at its cur-
rent value.

The second if statement checks if the next word is the same as the current word, and if it is, count is
incremented and the rest of the current loop iteration is skipped. This mechanism accumulates the num-
ber of times a word is duplicated in count. The loop condition also checks that the index, i, is less than
nwords-2 because we don’t want to check the next word when the current word is the last in the array.
Thus we only output a word and its count when the next word is different, or the current word is the last
in the array.

The last step in the for loop is to output a word and its count:

cout << setiosflags(ios::left)               // Output word left-justified
<< setw(maxwidth+2) << words[i];

cout << resetiosflags(ios::right)            // and word count right-justified
<< setw(5) << count << endl;

count = 0;

The output statement left-justifies the word in a field width that is two greater than the longest word. The
count is output right-justified in a field width of five.

493

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 493



C++/CLI Programming
While you can define a destructor in a reference class in the same way as you do for native C++ classes,
most of the time it is not necessary. However, I’ll return to the topic of destructors for reference classes in
the next chapter. You can also call delete for a handle to a reference class, but again, this is not normally
necessary as the garbage collector will delete unwanted objects automatically.

C++/CLI classes support overloading of operators but there are some differences that you need to explore.
First of all, let’s consider some basic differences between operator overloading in C++/CLI classes and in
native C++ classes. A couple of differences you have already heard about. You’ll probably recall that you
must not overload the assignment operator in your value classes because the process for the assignment 
of one value class object to another of the same type is already defined to be member-by-member copying
and you cannot change this. I also mentioned that unlike native classes, a ref class does not have a default
assignment operator — if you want the assignment operator to work with your ref class objects then you
must implement the appropriate function. Another difference from native C++ classes is that functions that
implement operator overloading in C++/CLI classes can be static members of a class as well as instance
members. This means that you have the option of implementing binary operators in C++/CLI classes with
static member functions with two parameters in addition to the possibilities you have seen in the context 
of native C++ for operator functions as instance functions with one parameter or non-member functions
with two parameters. Similarly, in C++/CLI you have the additional possibility to implement a prefix
unary operator as a static member function with no parameters. Finally, although in native C++ you can
overload the new operator, you cannot overload the gcnew operator in a C++/CLI class.

Let’s look into some of the specifics, starting with value classes.

Overloading Operators in Value Classes
Let’s define a class to represent a length in feet and inches and use that as a base for demonstrating how
operator overloading can be implemented for a value class. Addition seems like a good place to start so
here’s the Length value class, complete with the addition operator function:

value class Length
{
private:
int feet;                            // Feet component
int inches;                          // Inches component

public:
static initonly int inchesPerFoot = 12;

// Constructor
Length(int ft, int ins) : feet(ft), inches(ins){ }

// A length as a string
virtual String^ ToString() override
{ return feet+L” feet “ + inches + L” inches”;  }

// Addition operator
Length operator+(Length len)
{
int inchTotal = inches+len.inches+inchesPerFoot*(feet+len.feet);
return Length(inchTotal/inchesPerFoot, inchTotal%inchesPerFoot);

494

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 494



}
};

The constant, inchesPerFoot is static so it will be directly available to static and non-static function
members of the class. Declaring inchesPerFoot as initonly means that it cannot be modified so it can
be a public member of the class. There’s a ToString() function override defined for the class so you can
write Length objects to the command line using the Console::WriteLine() function. The operator+()
function implementation is very simple. The function returns a new Length object produced by combining
the feet and inches component for the current object and the parameter, len. The calculation is done by
combining the two lengths in inches and then computing the arguments to the Length class constructor for
the new object from the value for the combined lengths in inches.

The following code fragment would exercise the new operator function for addition:

Length len1 = Length(6, 9);
Length len2 = Length(7, 8);
Console::WriteLine(L”{0} plus {1} is {2}”, len1, len2, len1+len2);

The last argument to the WriteLine() function is the sum of two Length objects so this will invoke the
operator+() function. The result will be a new Length object for which the compiler will arrange to call
the ToString() function so the last statement is really the following:

Console::WriteLine(L”{0} plus {1} is {2}”, len1, len2,
len1.operator+(len2).ToString());

The execution of the code fragment will result in the following output:

6 feet 9 inches plus 7 feet 8 inches is 14 feet 5 inches

Of course, you could define the operator+() function as a static member of the Length class, like this:

static Length operator+(Length len1, Length len2)
{
int inchTotal = len1.inches+len2.inches+inchesPerFoot*(len1.feet+len2.feet);
return Length(inchTotal/inchesPerFoot, inchTotal%inchesPerFoot);

}
}

The parameters are the two Length objects to be added together to produce a new Length object. Because
this is a static member of the class, the operator+() function is fully entitled to access the private mem-
bers, feet and inches, of both the Length objects passed as arguments. Friend functions are not allowed
in C++/CLI classes and an external function would not have access to private members of the class so you
have no other possibilities for implementing the addition operator.

Because you are not working with areas multiplication for Length objects, it really only makes sense to
provide for multiplying a Length object by a numerical value. You can implement multiply operator over-
loading as a static member of the class, but let’s define the function outside the class. The class would look
like this:

value class Length
{
private:

495

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 495



int feet;
int inches;

public:
static initonly int inchesPerFoot = 12;

// Constructor
Length(int ft, int ins) : feet(ft), inches(ins){ }

// A length as a string
virtual String^ ToString() override
{ return feet+L” feet “ + inches + L” inches”;  }

// Addition operator
Length operator+(Length len)
{

int inchTotal = inches+len.inches+inchesPerFoot*(feet+len.feet);
return Length(inchTotal/inchesPerFoot, inchTotal%inchesPerFoot);

}

static Length operator*(double x, Length len); // Pre-multiply by a double value
static Length operator*(Length len, double x); // Post-multiply by a double value

};

The new function declarations in the class provide for overloaded * operator functions to pre- and post-
multiply a Length object by a value of type double. The definition of the operator*() function outside
the class for pre-multiplication would be:

Length Length::operator *(double x, Length len)
{
int ins = safe_cast<int>(x*len.inches +x*len.feet*inchesPerFoot);
return Length(ins/12, ins %12);

}

The post-multiplication version can now be implemented in terms of this:

Length Length::operator *(Length len, double x)
{ return operator*(x, len);  }

This just calls the pre-multiply version with the arguments reversed. You could exercise these functions
with the following fragment:

double factor = 2.5;
Console::WriteLine(L”{0} times {1} is {2}”, factor, len2, factor*len2);
Console::WriteLine(L”{1} times {0} is {2}”, factor, len2, len2*factor);

Both lines of output from this code fragment should reflect the same result from multiplication — 19 feet
2 inches. The argument expression factor*len2 is equivalent to:

Length::operator*(factor, len2).ToString()

The result of calling the static operator*() function is a new Length object and the ToString() function
for that is called to produce the argument to the WriteLine() function. The expression len2*factor is
similar but calls the operator*() function that has the parameters reversed. Although the operator*()

496

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 496



functions have been written to deal with a multiplier of type double, they will also work with integers.
The compiler will automatically promote an integer values to type double when you use it in an expres-
sion such as 12*(len1+len2).

We could expand a little further on overloaded operators in the Length class with a working example.

Try It Out A Value Class with Overloaded Operators
This example implements operator overloading for addition, multiplication and division for the Length
class:

// Ex8_12.cpp : main project file.
// Overloading operators in the value class, Length
#include “stdafx.h”
using namespace System;

value class Length
{
private:
int feet;
int inches;

public:
static initonly int inchesPerFoot = 12;

// Constructor
Length(int ft, int ins) : feet(ft), inches(ins){ }

// A length as a string
virtual String^ ToString() override
{ return feet+L” feet “ + inches + L” inches”;  }

// Addition operator
Length operator+(Length len)
{
int inchTotal = inches+len.inches+inchesPerFoot*(feet+len.feet);
return Length(inchTotal/inchesPerFoot, inchTotal%inchesPerFoot);

}

// Division operator
static Length operator/(Length len, double x)
{
int ins = safe_cast<int>((len.feet*inchesPerFoot + len.inches)/x);
return Length(ins/inchesPerFoot, ins%inchesPerFoot);

}

static Length operator*(double x, Length len); // Pre-multiply by a double value
static Length operator*(Length len, double x); // Post-multiply by a double value

};

Length Length::operator *(double x, Length len)
{
int ins = safe_cast<int>(x*len.inches +x*len.feet*inchesPerFoot);
return Length(ins/inchesPerFoot, ins%inchesPerFoot);

497

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 497



}

Length Length::operator *(Length len, double x)
{ return operator*(x, len);  }

int main(array<System::String ^> ^args)
{
Length len1 = Length(6, 9);
Length len2 = Length(7, 8);
double factor = 2.5;

Console::WriteLine(L”{0} plus {1} is {2}”, len1, len2, len1+len2);
Console::WriteLine(L”{0} times {1} is {2}”, factor, len2, factor*len2);
Console::WriteLine(L”{1} times {0} is {2}”, factor, len2, len2*factor);
Console::WriteLine(L”The sum of {0} and {1} divided by {2} is {3}”,

len1, len2, factor, (len1+len2)/factor);
return 0;

}

The output from the example is:

6 feet 9 inches plus 7 feet 8 inches is 14 feet 5 inches
2.5 times 7 feet 8 inches is 19 feet 2 inches
7 feet 8 inches times 2.5 is 19 feet 2 inches
The sum of 6 feet 9 inches and 7 feet 8 inches divided by 2.5 is 5 feet 9 inches

How It Works
The new operator overloading function in the Length class is for division and it allows division of a
Length value by a value of type double. Dividing a double value by a Length object does not have an
obvious meaning so there’s no need to implement this version. The operator/() function is implemented
as another static member of the class and the definition appears within the body of the class definition to
contrast how that looks compared with the operator*() functions. You would normally define all these
functions inside the class definition.

Of course, you could define the operator/() function as a non-static class member like this:

Length operator/(double x)
{
int ins = safe_cast<int>((feet*inchesPerFoot + inches)/x);
return Length(ins/inchesPerFoot, ins%inchesPerFoot);

}

It now has one argument, which will be the right operand for the / operator. The left operand is the cur-
rent object that is referenced by the this pointer (implicitly in this case).

The operators are exercised in the four output statements. Only the last one is new to you and this combines
the use of the overloaded + operator for Length objects with the overloaded / operator. The last argument
to the Console::WriteLine() function in the fourth output statement is (len1+len2)/factor which is
equivalent to the expression:

Length::operator/(len1.operator+(len2), factor) .ToString()

498

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 498



The first argument to the static operator/() function is the Length object that is returned by the
operator+() function, and the second argument is the factor variable, which is the divisor. The
ToString() function for the Length object returned by operator/() is called to produce the argu-
ment string that is passed to the Console::WriteLine() function.

It is possible that you might want the capability to divide one Length object by another and have a value
of type int as the result. This would allow you to figure out how many 17 inch lengths you can cut from a
piece of timber 12 feet 6 inches long for instance. You can implement this quite easily like this:

static int operator/(Length len1, Length len2)
{
return
(len1.feet*inchesPerFoot + len1.inches)/( len2.feet*inchesPerFoot + len2.inches);

}

This just returns the result of dividing the first length in inches by the second in inches.

To complete the set you could add a function to overload the % operator to tell you how much is left over.
This could be implemented as:

static Length operator%(Length len1, Length len2)
{
int ins = (len1.feet*inchesPerFoot + len1.inches)%

(len2.feet*inchesPerFoot + len2.inches);
return Length(ins/inchesPerFoot, ins%inchesPerFoot);

}

You compute the residue in inches after dividing len1 by len2 and return it as a new Length object.

With all these operators you really can use your Length objects in arithmetic expressions. You can write
statements such as:

Length len1 = Length(2,6);             // 2 feet 6 inches
Length len2 = Length(3,5);             // 3 feet 5 inches
Length len3 = Length(14,6);            // 14 feet 6 inches
Length total = 12*(len1 + len2 + len3) + (len3/Length(1,7))*len2;

The value of total will be 275 feet 9 inches. The last statement makes use of the assignment operator
that comes with every value class as well as the operator*(), operator+(), and operator/() func-
tions in the Length class. This operator overloading is not only powerful stuff, it really is easy isn’t it?

Overloading the Increment and Decrement Operators
Overloading the increment and decrement operators is simpler in C++/CLI than in native C++. As long 
as you implement the operator function as a static class member, the same function will serve as both 
the prefix and postfix operator functions. Here’s how you could implement the increment operator for the
Length class:

value class Length
{
public:

499

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 499



// Code as before...

// Overloaded increment operator function - increment by 1 inch
static Length operator++(Length len)
{
++len.inches;
len.feet += len.inches/len.inchesPerFoot;
len.inches %= len.inchesPerFoot;
return len;

}
};

This implementation of the operator++() function increments a length by 1 inch. The following code
would exercise the function:

Length len = Length(1, 11);            // 1 foot 11 inches
Console::WriteLine(len++);
Console::WriteLine(++len);

Executing this fragment will produce the output:

1 feet 11 inches
2 feet 1 inches

Thus the prefix and postfix increment operations are working as they should using a single operator
function in the Length class. This occurs because the compiler is able to determine whether to use the
value of the operand in a surrounding expression before or after the operand has been incremented 
and compile the code accordingly.

Overloading Operators in Reference Classes
Overloading operators in a reference class is essentially the same as overloading operators in a value
class, the primary difference being that parameters and return values are typically handles. Let’s see
how the Length class looks implemented as a reference class, then you’ll be able to compare the two
versions.

Try It Out Overloaded Operators in a Reference Class
This example defines Length as a reference class with the same set of overloaded operators as the value
class version:

// Ex8_13.cpp : main project file.
// Defining and using overloaded operator

#include “stdafx.h”
using namespace System;

ref class Length
{
private:
int feet;
int inches;

500

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 500



public:
static initonly int inchesPerFoot = 12;

// Constructor
Length(int ft, int ins) : feet(ft), inches(ins){ }

// A length as a string
virtual String^ ToString() override
{ return feet+L” feet “ + inches + L” inches”;  }

// Overloaded addition operator
Length^ operator+(Length^ len)
{
int inchTotal = inches+len->inches+inchesPerFoot*(feet+len->feet);
return gcnew Length(inchTotal/inchesPerFoot, inchTotal%inchesPerFoot);

}

// Overloaded divide operator - right operand type double
static Length^ operator/(Length^ len, double x)
{
int ins = safe_cast<int>((len->feet*inchesPerFoot + len->inches)/x);
return gcnew Length(ins/inchesPerFoot, ins%inchesPerFoot);

}

// Overloaded divide operator - both operands type Length
static int operator/(Length^ len1, Length^ len2)
{
return (len1->feet*inchesPerFoot + len1->inches)/

(len2->feet*inchesPerFoot + len2->inches);
}

// Overloaded remainder operator
static Length^ operator%(Length^ len1, Length^ len2)
{
int ins = (len1->feet*inchesPerFoot + len1->inches)%

(len2->feet*inchesPerFoot + len2->inches);
return gcnew Length(ins/inchesPerFoot, ins%inchesPerFoot);

}

static Length^ operator*(double x, Length^ len); // Multiply - L operand double
static Length^ operator*(Length^ len, double x); // Multiply - R operand double

// Pre- and postfix increment operator
static Length^ operator++(Length^ len)
{
Length^ temp = gcnew Length(len->feet, len->inches);
++temp->inches;
temp->feet += temp->inches/temp->inchesPerFoot;
temp->inches %= temp->inchesPerFoot;
return temp;

}
};

// Multiply operator implementation - left operand double
Length^ Length::operator*(double x, Length^ len)
{

501

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 501



int ins = safe_cast<int>(x*len->inches +x*len->feet*inchesPerFoot);
return gcnew Length(ins/inchesPerFoot, ins%inchesPerFoot);

}

// Multiply operator implementation - right operand double
Length^ Length::operator*(Length^ len, double x)
{ return operator*(x, len);  }

int main(array<System::String ^> ^args)
{
Length^ len1 = gcnew Length(2,6);              // 2 feet 6 inches
Length^ len2 = gcnew Length(3,5);              // 3 feet 5 inches
Length^ len3 = gcnew Length(14,6);             // 14 feet 6 inches

// Use +, * and / operators
Length^ total = 12*(len1+len2+len3) + (len3/gcnew Length(1,7))*len2;
Console::WriteLine(total);

// Use remainder operator
Console::WriteLine(

L”{0} can be cut into {1} pieces {2} long with {3} left over.”,
len3, len3/len1, len1, len3%len1);

Length^ len4 = gcnew Length(1, 11);            // 1 foot 11 inches

// Use pre- and postfix increment operator
Console::WriteLine(len4++);                    // Use postfix increment operator
Console::WriteLine(++len4);                    // Use prefix increment operator
Console::WriteLine(len4);                      // Final value of len4
return 0;

}

This example will produce the following output:

275 feet 9 inches
14 feet 6 inches can be cut into 5 pieces 2 feet 6 inches long
with 2 feet 0 inches left over.
1 feet 0 inches
2 feet 0 inches
2 feet 1 inches

How It Works
Compared to a value class, there are differences in the parameter and return types for the overloaded
operator functions, the use of the -> operator as a consequence of that, and objects of type Length are
now created on the CLR heap using the gcnew keyword. In addition the overloaded increment operator
function returns a temporary object and does not modify the original object using the reference argument.

It is important that you do not modify the original object when you are overloading the increment or decre-
ment operator in a reference class because the code that the compiler generates relies on the object that is
passed to the overload function being left unchanged. When the function is called for a postfix increment
or decrement operation, the code that is generated uses the object in the expression in which it appears, and
then stores the object that you return to replace the original. Apart from these changes the code is basically
the same and the operator functions work just as effectively as in the previous example.

502

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 502



Implementing the Assignment Operator 
for Reference Types

There are relative few circumstances where you will need to implement the assignment operator for a
reference type because you will typically use handles to refer to objects and the need for a copy construc-
tor does not arise. However, if you use the Standard Template Library for the CLR that you will meet in
Chapter 10, in some situations you will need to implement the assignment operator and the compiler will
never supply one by default. The form of the function to overload the assignment operator in a reference
class is very simple and is easily understood if you look at an example. Here’s how the assignment oper-
ator would look for the Length class for instance:

Length% operator=(const Length% len)
{
if(this != %len)
{
feet = len.feet;
inches = len.inches;

}
return *this;

}

The function parameter is const because it will not be changed, and if you don’t declare it as const, the
argument will be passed by value and will cause the copy constructor to be called. The return type is also
a reference because you always return the object pointed to by this. The if statement checks whether 
or not the argument and the current object are identical, and if they are, the function just returns *this,
which will be the current object. If they are not, you copy each of the data members of len to the current
object before returning it.

Summary
In this chapter you have learned the basics of how you can define classes and how you create and use
class objects.  You have also learned about how you can overload operators in a class to allow the opera-
tors to be applied to class objects.

The key points to keep in mind from this chapter are:

❑ Objects are created by functions called constructors. The primary role of a constructor is to set
values for the data members (fields) for a class object.

❑ C++/CLI classes can also have a static contructor that initializes the static fields in a class.

❑ Objects are destroyed using functions called destructors. It is essential to define a destructor 
in native C++ classes to destroy objects which contain members that are allocated on the heap
because the default constructor will not do this.

❑ The compiler will supply a default copy constructor for a native C++ class if you do not define
one. The default copy constructor will not deal correctly with objects of classes that have data
members allocated on the free store.

❑ When you define your own copy constructor in a native C++ class, you must use a reference
parameter.

503

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 503



❑ You must not define a copy constructor in a value classes; copies of value class objects are always
created by copying fields.

❑ No default copy constructor is supplied for a reference class although you can define your own
when this is necessary.

❑ If you do not define an assignment operator for your native C++ class, the compiler will supply
a default version. As with the copy constructor, the default assignment operator will not work
correctly with classes that have data members allocated on the free store.

❑ You must not define the assignment operator in a value class. Assignment of value class objects
is always done by copying fields.

❑ A default assignment operator is not provided for reference classes but you can define your own
assignment operator function when necessary.

❑ It is essential that you provide a destructor, a copy constructor, and an assignment operator for
native C++ classes that have members allocated by new.

❑ A union is a mechanism that allows two or more variables to occupy the same location in memory.

❑ C++/CLI classes can contain literal fields that define constants within a class. The can also con-
tain initonly fields that cannot be modified once they have been initialized.

❑ Most basic operators can be overloaded to provide actions specific to objects of a class. You
should only implement operator functions for your classes that are consistent with the normal
interpretation of the basic operators.

❑ The string class in the standard library for native C++ provides a powerful and superior way
to process strings in your programs.

❑ A class template is a pattern that you can use to create classes with the same structure, but which
support different data types.

❑ You can define a class template that has multiple parameters, including parameters that can
assume constant values rather than types.

❑ You should put definitions for your programs in .h files, and executable code — function defini-
tions — in .cpp files. You can then incorporate .h files into your .cpp files by using #include
directives.

Exercises
1. Define a native C++ class to represent an estimated integer, such as ‘about 40’. These are integers

whose value may be regarded as exact or estimated, so the class needs to have as data members 
a value and an ‘estimation’ flag. The state of the estimation flag affects arithmetic operations, so
that ‘2 * about 40’ is ‘about 80’. The state of variables should be switchable between ‘estimated’
and ‘exact’.

Provide one or more constructors for such a class. Overload the + operator so that these integers
can be used in arithmetic expressions. Do you want the + operator to be a global or a member
function? Do you need an assignment operator? Provide a Print() member function so that
they can be printed out, using a leading ‘E’ to denote that the ‘estimation’ flag is set. Write a pro-
gram to test the operation of your class, checking especially that the operation of the estimation
flag is correct.

504

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 504



2. Implement a simple string class in native C++ that holds a char* and an integer length as private
data members. Provide a constructor which takes an argument of type const char*, and imple-
ment the copy constructor, assignment operator and destructor functions. Verify that your class
works. You will find it easiest to use the string functions from the <cstring> header file.

3. What other constructors might you want to supply for your string class? Make a list, and code
them up.

4. (Advanced) Does your class correctly deal with cases such as this?

string s1;
...
s1 = s1;

If not, how should it be modified?

5. (Advanced) Overload the + and += operators of your class for concatenating strings.

6. Modify the stack example from Exercise 7 in the previous chapter so that the size of the stack is
specified in the constructor and dynamically allocated. What else will you need to add? Test the
operation of your new class.

7. Define a Box ref class with the same functionality as the CBox class in Ex8_08.cpp and reimple-
ment the example as a program for the CLR.

8. This exercise might be of use to someone working with sensitive documents. Write a native C++
program that uses the string class that is declared in the <string> header to read a text string
of arbitrary length from the keyboard. The program should then prompt for entry of one or more
words that appears in the input text. All occurrences of the chosen words in the input text, regard-
less of case, should be replaced with as many asterisks as there are letters in the word. Only whole
words should be replaced so if the string is “Our friend Wendy is at the end of the
road.” and the chosen word is “end”, the result should be “Our friend Wendy is at the
*** of the road.”, not “Our fri*** W***y is at the *** of the road.”.

505

Chapter 8: More on Classes

25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 505



25905c08.qxd:WroxPro  2/21/08  8:53 AM  Page 506



9
Class Inheritance and

Vir tual Functions

In this chapter, you’re going to look into a topic that lies at the heart of object-oriented program-
ming: class inheritance. Simply put, inheritance is the means by which you can define a new class
in terms of one you already have. This is fundamental to programming in C++ so it’s important
that you understand how inheritance works.

In this chapter, you will learn about:

❑ How inheritance fits into the idea of object-oriented programming

❑ Defining a new class in terms of an existing one

❑ The use of the protected keyword to define a new access specification for class members

❑ How a class can be a friend to another class

❑ Virtual functions and how you can use them

❑ Pure virtual functions

❑ Abstract classes

❑ Virtual destructors and when to use them

Basic Ideas of OOP
As you have seen, a class is a data type that you define to suit your own application requirements.
Classes in object-oriented programming also define the objects to which your program relates. You
program the solution to a problem in terms of the objects that are specific to the problem, using oper-
ations that work directly with those objects. You can define a class to represent something abstract,
such as a complex number, which is a mathematical concept, or a truck, which is decidedly physical
(especially if you run into one on the highway). So, as well as being a data type, a class can also be a
definition of a set of real-world objects of a particular kind, at least to the degree necessary to solve a
given problem.

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 507



You can think of a class as defining the characteristics of a particular group of things that are specified by
a common set of parameters and share a common set of operations that may be performed on them. The
operations that you can apply to objects of a given class type are defined by the class interface, which
corresponds to the functions contained in the public section of the class definition. The CBox class that
you used in the previous chapter is a good example — it defined a box in terms of its dimensions plus a
set of public functions that you could apply to CBox objects to solve a problem.

Of course, there are many different kinds of boxes in the real world: There are cartons, coffins, candy boxes,
and cereal boxes, to name but a few, and you will certainly be able to come up with many others. You can
differentiate boxes by the kinds of things they hold, the materials with which they are made, and in a mul-
titude of other ways, but even though there are many different kinds of boxes, they share some common
characteristics — the essence of boxiness perhaps. Therefore you can still visualize all kinds of boxes as actu-
ally being related to one another, even though they have many differentiating features. You could define
a particular kind of box as having the generic characteristics of all boxes — perhaps just a length, a width,
and a height. You could then add some additional characteristics to the basic box type to differentiate a par-
ticular kind of box from the rest. You may also find that there are new things you can do with your specific
kind of box that you can’t do with other boxes.

It’s also possible that some objects may be the result of combining a particular kind of box with some other
type of object: a box of candy or a crate of beer, for example. To accommodate this you could define one
kind of box as a generic box with basic boxiness characteristics and then specify another sort of box as a
further specialization of that. Figure 9-1 illustrates an example of the kinds of relationships you might
define between different sorts of boxes.

The boxes become more specialized as you move down the diagram and the arrows run from a given
box type to the one on which it is based. Figure 9-1 defines three different kinds of boxes based on the
generic type, CBox. It also defines beer crates as a further refinement of crates designed to hold bottles.

Figure 9-1

class CBox 

m_Length 
m_Width 
m_Height 

More General 

class CCandyBox

m_Contents 

class CCrate

m_nBottles 

class CBeerCrate

m_Beer 

class CCarton

m_MaxWeight 

More Specialized

508

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 508



Thus a good way to approximate the real world relatively well using classes in C++ is through the ability
to define classes that are interrelated. A candy box can be considered to be a box with all the characteris-
tics of a basic box, plus a few characteristics of its own. This precisely illustrates the relationship between
classes in C++ when one class is defined based on another. A more specialized class has all the characteris-
tics of the class on which it is based, plus a few characteristics of its own that identify what makes it special.
Let’s look at how this works in practice.

Inheritance in Classes
When you define one class based on another, the former is referred to as a derived class. A derived class
automatically contains all the data members of the class that you used to define it and, with some restric-
tions, the function members as well. The class is said to inherit the data members and function members
of the class on which it is based.

The only members of a base class that are not inherited by a derived class are the destructor, the construc-
tors, and any member functions overloading the assignment operator. All other function members, together
with all the data members of a base class, are inherited by a derived class. Of course, the reason for certain
base members not being inherited is that a derived class always has its own constructors and destructor. If
the base class has an assignment operator, the derived class provides its own version. When I say these func-
tions are not inherited, I mean that they don’t exist as members of a derived class object. However, they still
exist for the base class part of an object, as you will see.

What Is a Base Class?
A base class is any class that you use as a basis for defining another class. For example, if you define a
class B directly in terms of a class A, A is said to be a direct base class of B. In Figure 9-1 the CCrate class is
a direct base class of CBeerCrate. When a class such as CBeerCrate is defined in terms of another class
CCrate, CBeerCrate is said to be derived from CCrate. Because CCrate is itself defined in terms of the
class CBox, CBox is said to be an indirect base class of CBeerCrate. You’ll see how this is expressed in 
the class definition in a moment. Figure 9-2 illustrates the way in which base class members are inherited
in a derived class.

Figure 9-2

Derived Class

Data Members 
Function Members 
 
 
 
 
 
Other Overloaded Operators 
 
Own Data Members 
Own Function Members 
Own Constructors 
Own Destructors 

Base Class

Data Members 
Function Members 
 
Constructors 
Destructor 
Overloaded = operator 
 
Other Overloaded Operators 

/ No 

Inherited 
Members 

/ No 
/ No 

509

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 509



Just because member functions are inherited doesn’t mean that you won’t want to replace them in the
derived class with new versions, and, of course, you can do that when necessary.

Deriving Classes from a Base Class
Let’s go back to the original CBox class with public data members that you saw at the beginning of the
previous chapter:

// Header file Box.h in project Ex9_01
#pragma once

class CBox
{
public:
double m_Length;
double m_Width;
double m_Height;

CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):
m_Length(lv), m_Width(wv), m_Height(hv){}

};

Create a new empty WIN32 console project with the name Ex9_01 and save this code in a new header file
in the project with the name Box.h. The #pragma once directive ensures the definition of CBox appears
only once in a build. There’s a constructor in the class so that you can initialize objects when you declare
them. Suppose you now need another class of objects, CCandyBox, that are the same as CBox objects but
also have another data member — a pointer to a text string — that identifies the contents of the box. 

You can define CCandyBox as a derived class with the CBox class as the base class, as follows:

// Header file CandyBox.h in project Ex9_01
#pragma once
#include “Box.h”
class CCandyBox: CBox
{
public:
char* m_Contents;

CCandyBox(char* str = “Candy”)               // Constructor
{
m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

~CCandyBox()                                 // Destructor
{ delete[] m_Contents; };

};

Add this header file to the project Ex9_01. You need the #include directive for the Box.h header file
because you refer to the CBox class in the code. If you were to leave this directive out, CBox would be
unknown to the compiler so the code would not compile. The base class name, CBox, appears after the

510

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 510



name of the derived class CCandyBox and is separated from it by a colon. In all other respects, it looks
like a normal class definition. You have added the new member, m_Contents, and, because it is a pointer
to a string, you need a constructor to initialize it and a destructor to release the memory for the string. You
have also put a default value for the string describing the contents of a CCandyBox object in the constructor.
Objects of the CCandyBox class type contain all the members of the base class, CBox, plus the additional
data member, m_Contents.

Note the use of the strcpy_s() function that you first saw in Chapter 6. Here there are three arguments —
the destination for the copy operation, the length of the destination buffer, and the source. If both arrays
were static — that is, not allocated on the heap — you could omit the second argument and just supply the
destination and source pointers. This is possible because the strcpy_s() function is also available as a tem-
plate function that can infer the length of the destination string automatically. You can therefore call the func-
tion just with the destination and source strings as arguments when you are working with static strings.

Try It Out Using a Derived Class
Now you’ll see how the derived class works in an example. Add the following code to the Ex9_01 project
as the source file Ex9_01.cpp:

// Ex9_01.cpp
// Using a derived class
#include <iostream>                    // For stream I/O
#include <cstring>                     // For strlen() and strcpy()
#include “CandyBox.h”                  // For CBox and CCandyBox
using std::cout;
using std::endl;

int main()
{
CBox myBox(4.0, 3.0, 2.0);                     // Create CBox object
CCandyBox myCandyBox;
CCandyBox myMintBox(“Wafer Thin Mints”);       // Create CCandyBox object

cout << endl
<< “myBox occupies “ << sizeof myBox      // Show how much memory
<< “ bytes” << endl                       // the objects require
<< “myCandyBox occupies “ << sizeof myCandyBox
<< “ bytes” << endl
<< “myMintBox occupies “ << sizeof myMintBox
<< “ bytes”;

cout << endl
<< “myBox length is “ << myBox.m_Length;

myBox.m_Length = 10.0;

// myCandyBox.m_Length = 10.0;       // uncomment this for an error

cout << endl;
return 0;

}

511

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 511



How It Works
You have an #include directive for the CandyBox.h header here, and because you know that that con-
tains an #include directive for Box.h, you don’t need to add a directive to include Box.h. You could
put an #include directive for Box.h in this file, in which case the #pragma once directive in Box.h
would prevent its inclusion more than once. This is important because each class can only be defined
once; two definitions for a class in the code would be an error.

After declaring a CBox object and two CCandyBox objects, you output the number of bytes that each
object occupies. Let’s look at the output:

myBox occupies 24 bytes
myCandyBox occupies 32 bytes
myMintBox occupies 32 bytes
myBox length is 4

The first line is what you would expect from the discussion in the previous chapter. A CBox object has three
data members of type double, each of which is 8 bytes, making 24 bytes in all. Both the CCandyBox objects
are the same size — 32 bytes. The length of the string doesn’t affect the size of an object, as the memory 
to hold the string is allocated in the free store. The 32 bytes are made up of 24 bytes for the three double
members inherited from the base class CBox, plus 4 bytes for the pointer member m_Contents, which
makes 28 bytes. So where did the other four bytes come from? This is due to the compiler aligning members
at addresses that are multiples of eight bytes. You should be able to demonstrate this by adding an extra
member of type int, say, to the class CCandyBox. You will find that the size of a class object is still 32 bytes.

You also output the value of the m_Length member of the CBox object myBox. Even though you have 
no difficulty accessing this member of the CBox object, if you uncomment the following statement in the
function main(),

// myCandyBox.m_Length = 10.0;      // uncomment this for an error

the program no longer compiles. The compiler generates the following message:

error C2247: ‘CBox::m_Length’ not accessible because ‘CCandyBox’ uses ‘private’ to
inherit from ‘CBox’

It says quite clearly that the m_Length member from the base class is not accessible because m_Length
has become private in the derived class. This is because there is a default access specifier of private
for a base class when you define a derived class — it’s as if the first line of the derived class definition
had been

class CCandyBox: private CBox

There always has to be an access specification for a base class that determines the status of the inherited
members in the derived class. If you omit the access specification for a base class, the compiler assumes
that it’s private. If you change the definition of the CCandyBox class in CandyBox.h to the following,

class CCandyBox: public CBox
{
public:

512

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 512



char* m_Contents;

CCandyBox(char* str = “Candy”)               // Constructor
{

m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

~CCandyBox()                                 // Destructor
{ delete[] m_Contents; };

};

the m_Length member is inherited in the derived class as public and is accessible in the function main().
With the access specifier public for the base class, all the inherited members originally specified as public
in the base class have the same access level in the derived class.

Access Control Under Inheritance
The whole question of the access of inherited members in a derived class needs to be looked at more closely.
Consider the status of the private members of a base class in a derived class.

There was a good reason to choose the version of the class CBox with public data members in the previ-
ous example, rather than the later, more secure version with private data members. The reason was
that although private data members of a base class are also members of a derived class, they remain
private to the base class in the derived class so member functions added to the derived class cannot
access them. They are only accessible in the derived class through function members of the base class
that are not in the private section of the base class. You can demonstrate this very easily by changing
all the CBox class data members to private and putting a Volume()function in the derived class
CCandyBox, so that the class definition is as follows:

// Version of the classes that will not compile
class CBox
{
public:

CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):
m_Length(lv), m_Width(wv), m_Height(hv){}

private:
double m_Length;
double m_Width;
double m_Height;

};

class CCandyBox: public CBox
{
public:
char* m_Contents;

513

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 513



// Function to calculate the volume of a CCandyBox object
double Volume() const              // Error - members not accessible
{ return m_Length*m_Width*m_Height; }

CCandyBox(char* str = “Candy”)     // Constructor
{
m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

~CCandyBox()                       // Destructor
{ delete[] m_Contents; }

};

A program using these classes does not compile. The function Volume() in the class CCandyBox attempts
to access the private members of the base class, which is not legal so the compile will flag each instance
with error number C2248.

Try It Out Accessing Private Members of the Base Class
It is, however, legal to use the Volume() function in the base class, so if you move the definition of the
function Volume() to the public section of the base class, CBox, not only will the program compile 
but you can use the function to obtain the volume of a CCandyBox object. Create a new WIN32 project,
Ex9_02, with the Box.h contents as the following:

// Box.h in Ex9_02
#pragma once

class CBox
{
public:
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(wv), m_Height(hv){}

//Function to calculate the volume of a CBox object
double Volume() const
{ return m_Length*m_Width*m_Height; }

private:
double m_Length;
double m_Width;
double m_Height;

};

The CandyBox.h header in the project contains:

// Header file CandyBox.h in project Ex9_02
#pragma once
#include “Box.h”
class CCandyBox: public CBox
{
public:

514

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 514



char* m_Contents;

CCandyBox(char* str = “Candy”)               // Constructor
{

m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

~CCandyBox()                                 // Destructor
{ delete[] m_Contents; };

};

The Ex9_02.cpp file in the project contains:

// Ex9_02.cpp
// Using a function inherited from a base class
#include <iostream>                    // For stream I/O
#include <cstring>                     // For strlen() and strcpy()
#include “CandyBox.h”                  // For CBox and CCandyBox
using std::cout;
using std::endl;

int main()
{

CBox myBox(4.0,3.0,2.0);                       // Create CBox object
CCandyBox myCandyBox;
CCandyBox myMintBox(“Wafer Thin Mints”);       // Create CCandyBox object

cout << endl
<< “myBox occupies “ << sizeof  myBox     // Show how much memory
<< “ bytes” << endl                       // the objects require
<< “myCandyBox occupies “ << sizeof myCandyBox
<< “ bytes” << endl
<< “myMintBox occupies “ << sizeof myMintBox    
<< “ bytes”;

cout << endl                                 
<< “myMintBox volume is “ << myMintBox.Volume(); // Get volume of a 

// CCandyBox object  
cout << endl;
return 0;

}

This example produces the following output:

myBox occupies 24 bytes
myCandyBox occupies 32 bytes
myMintBox occupies 32 bytes
myMintBox volume is 1

How It Works
The interesting additional output is the last line. This shows the value produced by the function Volume(),
which is now in the public section of the base class. Within the derived class, it operates on the members

515

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 515



of the derived class that are inherited from the base. It is a full member of the derived class, so it can be
used freely with objects of the derived class.

The value for the volume of the derived class object is 1 because, in creating the CCandyBox object, the
CBox()default constructor was called first to create the base class part of the object, and this sets default
CBox dimensions to 1.

Constructor Operation in a Derived Class
Although I said the base class constructors are not inherited in a derived class, they still exist in the base
class and are used for creating the base part of a derived class object. This is because creating the base class
part of a derived class object is really the business of a base class constructor, not the derived class construc-
tor. After all, you have seen that private members of a base class are inaccessible in a derived class object,
even though they are inherited, so responsibility for these has to lie with the base class constructors.

The default base class constructor was called automatically in the last example to create the base part of the
derived class object, but this doesn’t have to be the case. You can arrange to call a particular base class con-
structor from the derived class constructor. This enables you to initialize the base class data members with
a constructor other than the default, or indeed to choose to call a particular class constructor, depending on
the data supplied to the derived class constructor.

Try It Out Calling Constructors
You can see this in action through a modified version of the previous example. To make the class usable,
you really need to provide a constructor for the derived class that allows you to specify the dimensions
of the object. You can add an additional constructor in the derived class to do this, and call the base class
constructor explicitly to set the values of the data members that are inherited from the base class.

In the Ex9_03 project, Box.h contains:

// Box.h in Ex9_03
#pragma once
#include <iostream>
using std::cout;
using std::endl;

class CBox
{
public:
// Base class constructor
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(wv), m_Height(hv)
{  cout << endl << “CBox constructor called”;  }

//Function to calculate the volume of a CBox object
double Volume() const
{ return m_Length*m_Width*m_Height; }

private:
double m_Length;

516

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 516



double m_Width;
double m_Height;

};

The CandyBox.h header file should contain:

// CandyBox.h in Ex9_03
#pragma once
#include <iostream>
#include “Box.h”
using std::cout;
using std::endl;

class CCandyBox: public CBox
{

public:
char* m_Contents;

// Constructor to set dimensions and contents
// with explicit call of CBox constructor
CCandyBox(double lv, double wv, double hv, char* str = “Candy”)

:CBox(lv, wv, hv)
{
cout << endl <<”CCandyBox constructor2 called”;
m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

// Constructor to set contents
// calls default CBox constructor automatically
CCandyBox(char* str = “Candy”)
{
cout << endl << “CCandyBox constructor1 called”;
m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

~CCandyBox()                                 // Destructor
{ delete[] m_Contents; }

};

The #include directive for the <iostream> header and the two using declarations are not strictly nec-
essary here because Box.h contains the same code, but it does no harm to put them in. On the contrary,
putting these statements in here also means that if you were to remove this code from Box.h because it
was no longer required there, CandyBox.h still compiles.

The contents of Ex9_03.cpp is:

// Ex9_03.cpp
// Calling a base constructor from a derived class constructor
#include <iostream>                    // For stream I/O
#include <cstring>                     // For strlen() and strcpy()
#include “CandyBox.h”                  // For CBox and CCandyBox
using std::cout;

517

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 517



using std::endl;

int main()
{
CBox myBox(4.0, 3.0, 2.0);
CCandyBox myCandyBox;
CCandyBox myMintBox(1.0, 2.0, 3.0, “Wafer Thin Mints”);

cout << endl
<< “myBox occupies “ << sizeof  myBox     // Show how much memory
<< “ bytes” << endl                       // the objects require
<< “myCandyBox occupies “ << sizeof myCandyBox
<< “ bytes” << endl
<< “myMintBox occupies “ << sizeof myMintBox
<< “ bytes”;

cout << endl
<< “myMintBox volume is “                 // Get volume of a
<< myMintBox.Volume();                    // CCandyBox object

cout << endl;
return 0;

}

How It Works
As well as adding the additional constructor in the derived class, you have added an output statement
in each constructor so you know when either gets called. The explicit call of the constructor for the CBox
class appears after a colon in the function header of the derived class constructor. You have perhaps noticed
that the notation is exactly the same as what you have been using for initializing members in a constructor
anyway:

// Calling the base class constructor
CCandyBox(double lv, double wv, double hv, char* str= “Candy”):

CBox(lv, wv, hv)
{
...
}

This is perfectly consistent with what you are doing here because you are essentially initializing a CBox
sub-object of the derived class object. In the first case, you are explicitly calling the default constructor for
the double members m_Length, m_Width and m_Height in the initialization list. In the second instance,
you are calling the constructor for CBox. This causes the specific CBox constructor you have chosen to be
called before the CCandyBox constructor is executed.

If you build and run this example, it produces the following output:

CBox constructor called
CBox constructor called
CCandyBox constructor1 called
CBox constructor called
CCandyBox constructor2 called
myBox occupies 24 bytes
myCandyBox occupies 32 bytes
myMintBox occupies 32 bytes
myMintBox volume is 6

518

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 518



The calls to the constructors are explained in the following table:

The first line of output is due to the CBox class constructor call, originating from the declaration of the
CBox object, myBox. The second line of output arises from the automatic call of the base class constructor
caused by the declaration of the CCandyBox object myCandyBox.

Notice how the base class constructor is always called before the derived class constructor. The base
class is the foundation on which the derived class is built so the base class must be created first.

The following line is due to your version of the default derived class constructor being called for the
myCandyBox object. This constructor is invoked because the object is not initialized. The fourth line of
output arises from the explicit identification of the CBox class constructor to be called in our new con-
structor for CCandyBox objects. The argument values specified for the dimensions of the CCandyBox
object are passed to the base class constructor. Next comes the output from the new derived class con-
structor itself, so constructors are again called for the base class first, followed by the derived class.

It should be clear from what you have seen up to now that when a derived class constructor is executed,
a base class constructor is always called to construct the base part of the derived class object. If you don’t
specify the base class constructor to be used, the compiler arranges for the default base class constructor
to be called.

The last line in the table shows that the initialization of the base part of the myMintBox object is working
as it should be, with the private members having been initialized by the CBox class constructor.

Having the private members of a base class only accessible to function members of the base class isn’t
always convenient. There will be many instances where you want to have private members of a base
class that can be accessed from within the derived class. As you surely have anticipated by now, C++
provides a way to do this.

Declaring Class Members to Be Protected
In addition to the public and private access specifiers for members of a class, you can also declare
members of a class as protected. Within the class, the protected keyword has the same effect as the
private keyword: members of a class that are protected can only be accessed by member functions 
of the class, and by friend functions of the class (also by member functions of a class that is declared as 

Screen output Object being constructed

CBox constructor called MyBox

CBox constructor called MyCandyBox

CCandyBox constructor1 called MyCandyBox

CBox constructor called MyMintBox

CCandyBox constructor2 called MyMintBox

519

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 519



a friend of the class — you will learn about friend classes later in this chapter). Using the protected
keyword, you could redefine the CBox class as follows:

// Box.h in Ex9_04
#pragma once
#include <iostream>
using std::cout;
using std::endl;

class CBox
{
public:
// Base class constructor
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(wv), m_Height(hv)
{  cout << endl << “CBox constructor called”;  }

// CBox destructor - just to track calls
~CBox()
{ cout << “CBox destructor called” << endl; }

protected:
double m_Length;
double m_Width;
double m_Height;

};

Now the data members are still effectively private, in that they can’t be accessed by ordinary global
functions, but they’ll still be accessible to member functions of a derived class.

Try It Out Using Protected Members
You can demonstrate the use of protected data members by using this version of the class CBox to
derive a new version of the class CCandyBox, which accesses the members of the base class through its
own member function, Volume():

// CandyBox.h in Ex9_04
#pragma once
#include “Box.h”
#include <iostream>
using std::cout;
using std::endl;

class CCandyBox: public CBox
{
public:
char* m_Contents;

// Derived class function to calculate volume
double Volume() const
{ return m_Length*m_Width*m_Height; }

520

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 520



// Constructor to set dimensions and contents
// with explicit call of CBox constructor
CCandyBox(double lv, double wv, double hv, char* str = “Candy”)

:CBox(lv, wv, hv)  // Constructor
{

cout << endl <<”CCandyBox constructor2 called”;
m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

// Constructor to set contents
// calls default CBox constructor automatically
CCandyBox(char* str = “Candy”)               // Constructor
{

cout << endl << “CCandyBox constructor1 called”;
m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

~CCandyBox()                                 // Destructor
{
cout << “CCandyBox destructor called” << endl;
delete[] m_Contents;

}
};

The code for main() in Ex9_04.cpp is:

// Ex9_04.cpp
// Using the protected access specifier
#include <iostream>                    // For stream I/O
#include <cstring>                     // For strlen() and strcpy()
#include “CandyBox.h”                  // For CBox and CCandyBox
using std::cout;
using std::endl;

int main()
{
CCandyBox myCandyBox;
CCandyBox myToffeeBox(2, 3, 4, “Stickjaw Toffee”);

cout << endl
<< “myCandyBox volume is “ << myCandyBox.Volume()
<< endl
<< “myToffeeBox volume is “ << myToffeeBox.Volume();

// cout << endl << myToffeeBox.m_Length;  // Uncomment this for an error

cout << endl;
return 0;

}

521

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 521



How It Works
In this example you calculate the volumes of the two CCandyBox objects by invoking the Volume()
function that is a member of the derived class. This function accesses the inherited members m_Length,
m_Width, and m_Height to produce the result. The members are declared as protected in the base
class and remain protected in the derived class. The program produces the output shown as follows:

CBox constructor called
CCandyBox constructor1 called
CBox constructor called
CCandyBox constructor2 called
myCandyBox volume is 1
myToffeeBox volume is 24
CCandyBox destructor called
CBox destructor called
CCandyBox destructor called
CBox destructor called

The output shows that the volume is being calculated properly for both CCandyBox objects. The first
object has the default dimensions produced by calling the default CBox constructor, so the volume is 1,
and the second object has the dimensions defined as initial values in its declaration.

The output also shows the sequence of constructor and destructor calls, and you can see how each derived
class object is destroyed in two steps.

Destructors for a derived class object are called in the reverse order to the constructors for the object.
This is a general rule that always applies. Constructors are invoked starting with the base class con-
structor and then the derived class constructor, whereas the destructor for the derived class is called 
first when an object is destroyed, followed by the base class destructor.

You can demonstrate that the protected members of the base class remain protected in the derived
class by uncommenting the statement preceding the return statement in the function main(). If you 
do this, you get the following error message from the compiler,

error C2248: ‘m_Length’: cannot access protected member declared in class ‘CBox’

which indicates quite clearly that the member m_Length is inaccessible.

The Access Level of Inherited Class Members
You know that if you have no access specifier for the base class in the definition of a derived class, the
default specification is private. This has the effect of causing the inherited public and protected
members of the base class to become private in the derived class. The private members of the base
class remain private to the base and therefore inaccessible to member functions of the derived class. 
In fact, they remain private to the base class regardless of how the base class is specified in the derived
class definition.

You have also used public as the specifier for a base class. This leaves the members of the base class with
the same access level in the derived class as they had in the base, so public members remain public and
protected members remain protected.

522

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 522



The last possibility is that you declare a base class as protected. This has the effect of making the inher-
ited public members of the base protected in the derived class. The protected (and private) inherited
members retain their original access level in the derived class. This is summarized in Figure 9-3.

Figure 9-3

This may look a little complicated, but you can reduce it to the following three points about the inherited
members of a derived class:

❑ Members of a base class that are declared as private are never accessible in a derived class.

❑ Defining a base class as public doesn’t change the access level of its members in the derived
class.

❑ Defining a base class as protected changes its public members to protected in the derived
class.

Being able to change the access level of inherited members in a derived class gives you a degree of flexi-
bility, but don’t forget that you cannot relax the level specified in the base class; you can only make the
access level more stringent. This suggests that your base classes need to have public members if you
want to be able to vary the access level in derived classes. This may seem to run contrary to the idea of
encapsulating data in a class in order to protect it from unauthorized access, but, as you’ll see, it is often
the case that you define base classes in such a manner that their only purpose is to act as a base for other
classes, and they aren’t intended to be used for instantiating objects in their own right.

inherited as 

inherited as 

public: 

public: 

protected: 

protected: 
protected: 

protected: 

private: 

private: 

private: 

inherited as 

No access - ever. 

class CBox 

class CCBox:private CBox 

class CBBox:protected CBox 

class CABox:public CBox 

inherited as 

inherited as 

inherited as 

••• 

••• 

••• 

••• 

••• 

••• 

••• 

••• 

••• 
} 

{ 

{ 

} 

{ 

} 

{ 

} 

523

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 523



The Copy Constructor in a Derived Class
Remember that the copy constructor is called automatically when you declare an object that is initialized
with an object of the same class. Look at these statements:

CBox myBox(2.0, 3.0, 4.0);             // Calls constructor
CBox copyBox(myBox);                   // Calls copy constructor

The first statement calls the constructor that accepts three arguments of type double, and the second
calls the copy constructor. If you don’t supply your own copy constructor, the compiler supplies one
that copies the initializing object member by member to the corresponding members of the new object.
So that you can see what is going on during execution, you can add your own version of a copy con-
structor to the class CBox. You can then use this class as a base for defining the CCandyBox class.

// Box.h in Ex9_05
#pragma once
#include <iostream>
using std::cout;
using std::endl;

class CBox                   // Base class definition
{
public:
// Base class constructor
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0):

m_Length(lv), m_Width(wv), m_Height(hv)
{  cout << endl << “CBox constructor called”;  }

// Copy constructor
CBox(const CBox& initB)
{
cout << endl << “CBox copy constructor called”;
m_Length = initB.m_Length;
m_Width = initB.m_Width;
m_Height = initB.m_Height;

}

// CBox destructor - just to track calls
~CBox()
{ cout << “CBox destructor called” << endl; }

protected:
double m_Length;
double m_Width;
double m_Height;

};

Also recall that the copy constructor must have its parameter specified as a reference to avoid an infinite
number of calls to itself, which would otherwise result from the need to copy an argument that is trans-
ferred by value. When the copy constructor in our example is invoked, it outputs a message to the screen,
so you’ll be able to see from the output when this is happening.

524

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 524



We will use the version of CCandyBox class from Ex9_04.cpp, shown again here:

// CandyBox.h in Ex9_05
#pragma once
#include “Box.h”
#include <iostream>
using std::cout;
using std::endl;

class CCandyBox: public CBox
{

public:
char* m_Contents;

// Derived class function to calculate volume
double Volume() const
{ return m_Length*m_Width*m_Height; }

// Constructor to set dimensions and contents
// with explicit call of CBox constructor
CCandyBox(double lv, double wv, double hv, char* str = “Candy”)

:CBox(lv, wv, hv)  // Constructor
{

cout << endl <<”CCandyBox constructor2 called”;
m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

// Constructor to set contents
// calls default CBox constructor automatically
CCandyBox(char* str = “Candy”)               // Constructor
{

cout << endl << “CCandyBox constructor1 called”;
m_Contents = new char[ strlen(str) + 1 ];
strcpy_s(m_Contents, strlen(str) + 1, str);

}

~CCandyBox()                                 // Destructor
{

cout << “CCandyBox destructor called” << endl;
delete[] m_Contents;

}
};

This doesn’t have a copy constructor added yet, so you’ll be relying on the compiler-generated version.

Try It Out The Copy Constructor in Derived Classes
You can exercise the copy constructor that you have just defined with the following example:

// Ex9_05.cpp
// Using a derived class copy constructor
#include <iostream>                    // For stream I/O
#include <cstring>                     // For strlen() and strcpy()
#include “CandyBox.h”                  // For CBox and CCandyBox

525

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:54 AM  Page 525



using std::cout;
using std::endl;

int main()
{
CCandyBox chocBox(2.0, 3.0, 4.0, “Chockies”);  // Declare and initialize
CCandyBox chocolateBox(chocBox);               // Use copy constructor

cout << endl
<< “Volume of chocBox is “ << chocBox.Volume()
<< endl
<< “Volume of chocolateBox is “ << chocolateBox.Volume()
<< endl;

return 0;
}

How It Works (or Why It Doesn’t)
When you run the Debug version of this example, in addition to the expected output, you’ll see the dialog
shown in Figure 9-4 displayed.

Click Abort to clear the dialog box and you’ll see the output in the console window that you might expect.
The output shows that the compiler-generated copy constructor for the derived class automatically called
the copy constructor for the base class.

However, as you’ve probably realized, all is not as it should be. In this particular case, the compiler-
generated copy constructor causes problems because the memory pointed to by the m_Contents mem-
ber of the derived class in the second object declared points to the same memory as the one in the first
object. When one object is destroyed (when it goes out of scope at the end of main()), it releases the
memory occupied by the text. When the second object is destroyed, the destructor attempts to release
some memory that has already been freed by the destructor call for the previous object — and that’s
the reason for the error message in the dialog box.

The way to fix this is to supply a copy constructor for the derived class that allocates some additional
memory for the new object.

Figure 9-4

526

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 526



Try It Out Fixing the Copy Constructor Problem
You can do this by adding the following code for the copy constructor to the public section of the derived
CCandyBox class in Ex9_05:

// Derived class copy constructor
CCandyBox(const CCandyBox& initCB)
{
cout << endl << “CCandyBox copy constructor called”;

// Get new memory
m_Contents = new char[ strlen(initCB.m_Contents) + 1 ];

// Copy string
strcpy_s(m_Contents, strlen(initCB.m_Contents) + 1, initCB.m_Contents);

}

You can now run this new version of the last example with the same function main() to see how the new
copy constructor works.

How It Works
Now when you run the example, it behaves better and produces the following output:

CBox constructor called
CCandyBox constructor2 called
CBox constructor called
CCandyBox copy constructor called
Volume of chocBox is 24
Volume of chocolateBox is 1
CCandyBox destructor called
CBox destructor called
CCandyBox destructor called
CBox destructor called

However, there is still something wrong. The third line of output shows that the default constructor for the
CBox part of the object chocolateBox is called, rather than the copy constructor. As a consequence, the
object has the default dimensions rather than the dimensions of the initializing object, so the volume is
incorrect. The reason for this is that when you write a constructor for an object of a derived class, you are
responsible for ensuring that the members of the derived class object are properly initialized. This includes
the inherited members.

The fix for this is to call the copy constructor for the base part of the class in the initialization list for the
copy constructor for the CCandyBox class. The copy constructor then becomes:

// Derived class copy constructor
CCandyBox(const CCandyBox& initCB): CBox(initCB)
{

cout << endl << “CCandyBox copy constructor called”;

// Get new memory

527

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 527



m_Contents = new char[ strlen(initCB.m_Contents) + 1 ];

// Copy string
strcpy_s(m_Contents, strlen(initCB.m_Contents) + 1, initCB.m_Contents);

}

Now the CBox class copy constructor is called with the initCB object. Only the base part of the object is
passed to it, so everything works out. If you modify the last example by adding the base copy constructor
call, the output is as follows:

CBox constructor called
CCandyBox constructor2 called
CBox copy constructor called
CCandyBox copy constructor called
Volume of chocBox is 24
Volume of chocolateBox is 24
CCandyBox destructor called
CBox destructor called
CCandyBox destructor called
CBox destructor called

The output shows that all the constructors and destructors are called in the correct sequence and the
copy constructor for the CBox part of chocolateBox is called before the CCandyBox copy constructor.
The volume of the object chocolateBox of the derived class is now the same as that of its initializing
object, which is as it should be.

You have, therefore, another golden rule to remember:

If you write any kind of constructor for a derived class, you are responsible for the initialization of all
members of the derived class object, including all its inherited members.

Class Members as Friends
You saw in Chapter 7 how a function can be declared as a friend of a class. This gives the friend func-
tion the privilege of free access to any of the class members. Of course, there is no reason why a friend
function cannot be a member of another class.

Suppose you define a CBottle class to represent a bottle:

class CBottle
{
public:
CBottle(double height, double diameter)
{
m_Height = height;
m_Diameter = diameter;

}

528

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 528



private:
double m_Height;                        // Bottle height
double m_Diameter;                      // Bottle diameter

};

You now need a class to represent the packaging for a dozen bottles that automatically has custom
dimensions to accommodate a particular kind of bottle. You could define this as:

class CCarton
{
public:
CCarton(const CBottle& aBottle)
{
m_Height = aBottle.m_Height;          // Bottle height
m_Length = 4.0*aBottle.m_Diameter;    // Four rows of ...
m_Width = 3.0*aBottle.m_Diameter;     // ...three bottles

}

private:
double m_Length;                        // Carton length
double m_Width;                         // Carton width
double m_Height;                        // Carton height

};

The constructor here sets the height to be the same as that of the bottle it is to accommodate, and the
length and width are set based on the diameter of the bottle so that twelve fit in the box.

As you know by now, this won’t work. The data members of the CBottle class are private, so the
CCarton constructor cannot access them. As you also know, a friend declaration in the CBottle class
fixes it:

class CBottle
{

public:
CBottle(double height, double diameter)
{

m_Height = height;
m_Diameter = diameter;

}

private:
double m_Height;                        // Bottle height
double m_Diameter;                      // Bottle diameter

// Let the carton constructor in
friend CCarton::CCarton(const CBottle& aBottle);

};

The only difference between the friend declaration here and what you saw in Chapter 7 is that you
must put the class name and the scope resolution operator with the friend function name to identify it.
For this to compile correctly, the compiler needs to have information about the CCarton class construc-
tor, so you would need to put an #include statement for the header file containing the CCarton class
definition before the definition of the CBottle class.

529

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 529



Friend Classes
You can also allow all the function members of one class to have access to all the data members of another
by declaring it as a friend class. You could define the CCarton class as a friend of the CBottle class by
adding a friend declaration within the CBottle class definition:

friend CCarton;

With this declaration in the CBottle class, all function members of the CCarton class now have free
access to all the data members of the CBottle class.

Limitations on Class Friendship
Class friendship is not reciprocated. Making the CCarton class a friend of the CBottle class does not
mean that the CBottle class is a friend of the CCarton class. If you want this to be so, you must add a
friend declaration for the CBottle class to the CCarton class.

Class friendship is also not inherited. If you define another class with CBottle as a base, members of 
the CCarton class will not have access to its data members, not even those inherited from CBottle.

Vir tual Functions
Look more closely at the behavior of inherited member functions and their relationship with derived
class member functions. You could add a function to the CBox class to output the volume of a CBox
object. The simplified class then becomes:

// Box.h in Ex9_06
#pragma once
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Base class
{
public:

// Function to show the volume of an object
void ShowVolume() const
{
cout << endl

<< “CBox usable volume is “ << Volume(); 
}

// Function to calculate the volume of a CBox object
double Volume() const
{ return m_Length*m_Width*m_Height; }

// Constructor
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0)

:m_Length(lv), m_Width(wv), m_Height(hv) {}

530

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 530



protected:
double m_Length;
double m_Width;
double m_Height;

};

Now you can output the usable volume of a CBox object just by calling the ShowVolume() function for
any object for which you require it. The constructor sets the data member values in the initialization list,
so no statements are necessary in the body of the function. The data members are as before and are spec-
ified as protected, so they are accessible to the member functions of any derived class.

Suppose you want to derive a class for a different kind of box called CGlassBox, to hold glassware. The
contents are fragile, and because packing material is added to protect them, the capacity of the box is less
than the capacity of a basic CBox object. You therefore need a different Volume() function to account for
this, so you add it to the derived class:

// GlassBox.h in Ex9_06
#pragma once
#include “Box.h”

class CGlassBox: public CBox           // Derived class
{
public:
// Function to calculate volume of a CGlassBox
// allowing 15% for packing
double Volume() const
{ return 0.85*m_Length*m_Width*m_Height; }

// Constructor
CGlassBox(double lv, double wv, double hv): CBox(lv, wv, hv){}

};

There could conceivably be other additional members of the derived class, but we’ll keep it simple and con-
centrate on how the inherited functions work for the moment. The constructor for the derived class objects
just calls the base class constructor in its initialization list to set the data member values. No statements are
necessary in its body. You have included a new version of the Volume() function to replace the version from
the base class, the idea being that you can get the inherited function ShowVolume() to call the derived class
version of the member function Volume() when you call it for an object of the class CGlassBox.

Try It Out Using an Inherited Function
Now see how your derived class works in practice. You can try this out very simply by creating an object
of the base class and an object of the derived class with the same dimensions and then verifying that the
correct volumes are being calculated. The main() function to do this is as follows:

// Ex9_06.cpp
// Behavior of inherited functions in a derived class
#include <iostream>
#include “GlassBox.h”                  // For CBox and CGlassBox
using std::cout;
using std::endl;

531

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 531



int main()
{
CBox myBox(2.0, 3.0, 4.0);           // Declare a base box
CGlassBox myGlassBox(2.0, 3.0, 4.0); // Declare derived box - same size

myBox.ShowVolume();                  // Display volume of base box
myGlassBox.ShowVolume();             // Display volume of derived box

cout << endl;
return 0;

}

How It Works
If you run this example, it produces the following output:

CBox usable volume is 24
CBox usable volume is 24

This isn’t only dull and repetitive, but it’s also disastrous. It isn’t working the way you want at all, and the
only interesting thing about it is why. Evidently, the fact that the second call is for an object of the derived
class CGlassBox is not being taken into account. You can see this from the incorrect result for the volume
in the output. The volume of a CGlassBox object should definitely be less than that of a basic CBox with
the same dimensions.

The reason for the incorrect output is that the call of the Volume() function in the function ShowVolume()
is being set once and for all by the compiler as the version defined in the base class. ShowVolume() is a
base class function and when CBox is compiled the call to Volume() is resolved at that time to the base
class Volume() function; the compiler has no knowledge of any other Volume() function. This is called
static resolution of the function call since the function call is fixed before the program is executed. This is
also sometimes called early binding because the particular Volume() function chosen is bound to the call
from the function ShowVolume() during the compilation of the program.

What we were hoping for in this example was that the question of which Volume() function call to use in
any given instance would be resolved when the program was executed. This sort of operation is referred
to as dynamic linkage, or late binding. We want the actual version of the function Volume() called by
ShowVolume() to be determined by the kind of object being processed, and not arbitrarily fixed by the
compiler before the program is executed.

No doubt you’ll be less than astonished that C++ does, in fact, provide you with a way to do this,
because this whole discussion would have been futile otherwise! You need to use something called a
virtual function.

What Is a Virtual Function?
A virtual function is a function in a base class that is declared using the keyword virtual. If you specify
a function in a base class as virtual and there is another definition of the function in a derived class,

532

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 532



it signals to the compiler that you don’t want static linkage for this function. What you do want is the
selection of the function to be called at any given point in the program to be based on the kind of object
for which it is called.

Try It Out Fixing the CGlassBox
To make this example work as originally hoped, you just need to add the keyword virtual to the defini-
tions of the Volume() function in the two classes. You can try this in a new project, Ex9_07. Here’s how
the definition of CBox should be:

// Box.h in Ex9_07
#pragma once
#include <iostream>
using std::cout;
using std::endl;

class CBox                             // Base class
{

public:
// Function to show the volume of an object
void ShowVolume() const
{

cout << endl
<< “CBox usable volume is “ << Volume(); 

}

// Function to calculate the volume of a CBox object
virtual double Volume() const
{ return m_Length*m_Width*m_Height; }

// Constructor
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0)

:m_Length(lv), m_Width(wv), m_Height(hv) {}

protected:
double m_Length;
double m_Width;
double m_Height;

};

The GlassBox.h header file contents should be:

// GlassBox.h in Ex9_07
#pragma once
#include “Box.h”

class CGlassBox: public CBox           // Derived class
{

public:
// Function to calculate volume of a CGlassBox
// allowing 15% for packing

533

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 533



virtual double Volume() const
{ return 0.85*m_Length*m_Width*m_Height; }

// Constructor
CGlassBox(double lv, double wv, double hv): CBox(lv, wv, hv){}

};

The Ex9_07.cpp file version of main() is the same as for the previous example:

// Ex9_07.cpp (the same as Ex9_06.cpp)
// Using a virtual function 
#include <iostream>
#include “GlassBox.h”                  // For CBox and CGlassBox
using std::cout;
using std::endl;

int main()
{
CBox myBox(2.0, 3.0, 4.0);           // Declare a base box
CGlassBox myGlassBox(2.0, 3.0, 4.0); // Declare derived box - same size

myBox.ShowVolume();                  // Display volume of base box
myGlassBox.ShowVolume();             // Display volume of derived box

cout << endl;
return 0;

}

How It Works
If you run this version of the program with just the little word virtual added to the definitions of
Volume(), it produces this output:

CBox usable volume is 24
CBox usable volume is 20.4

This is now clearly doing what you wanted in the first place. The first call to the function ShowVolume()
with the CBox object myBox calls the CBox class version of Volume(). The second call with the CGlassBox
object myGlassBox calls the version defined in the derived class.

Note that although you have put the keyword virtual in the derived class definition of the function
Volume(), it’s not essential to do so. The definition of the base version of the function as virtual is suf-
ficient. However, I recommend that you do specify the keyword for virtual functions in derived classes
because it makes it clear to anyone reading the derived class definition that they are virtual functions
and that they are selected dynamically.

For a function to behave as virtual, it must have the same name, parameter list, and return type in any
derived class as the function has in the base class, and if the base class function is const, the derived class
function must be, too. If you try to use different parameters or return types, or declare one as const and

534

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 534



the other not, the virtual function mechanism won’t work. The function operates with static linkage estab-
lished and fixed at compile time.

The operation of virtual functions is an extraordinarily powerful mechanism. You may have heard the term
polymorphism in relation to object-oriented programming, and this refers to the virtual function capability.
Something that is polymorphic can appear in different guises, like a werewolf, or Dr. Jekyll, or a politician
before and after an election for example. Calling a virtual function produces different effects depending on
the kind of object for which it is being called.

Note that the Volume() function in the derived CGlassBox class actually hides the base class version
from the view of derived class functions. If you wanted to call the base version of Volume() from a
derived class function, you would need to use the scope resolution operator to refer to the function as
CBox::Volume().

Using Pointers to Class Objects
Using pointers with objects of a base class and of a derived class is an important technique. A pointer 
to a base class object can be assigned the address of a derived class object as well as that of the base. You
can thus use a pointer of the type ‘pointer to base’ to obtain different behavior with virtual functions,
depending on what kind of object the pointer is pointing to. You can see how this works more clearly
by looking at an example.

Try It Out Pointers to Base and Derived Classes
You’ll use the same classes as in the previous example, but make a small modification to the 
function main() so that it uses a pointer to a base class object. Create the Ex9_08 project with 
Box.h and GlassBox.h header files the same as in the previous example. You can copy the Box.h
and Glassbox.h files from the Ex9_07 project to this project folder. Adding an existing file to a proj-
ect is quite easy; you right-click Ex9_08 in the Solution Explorer tab, select Add > New Item
from the pop-up menu; then select a header file to add it to the project. When you have added the 
headers, modify Ex9_08.cpp to the following:

// Ex9_08.cpp
// Using a base class pointer to call a virtual function
#include <iostream>
#include “GlassBox.h”                  // For CBox and CGlassBox
using std::cout;
using std::endl;

int main()
{

CBox myBox(2.0, 3.0, 4.0);            // Declare a base box
CGlassBox myGlassBox(2.0, 3.0, 4.0);  // Declare derived box of same size
CBox* pBox = 0;            // Declare a pointer to base class objects

535

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 535



pBox = &myBox;             // Set pointer to address of base object
pBox->ShowVolume();        // Display volume of base box
pBox = &myGlassBox;        // Set pointer to derived class object
pBox->ShowVolume();        // Display volume of derived box

cout << endl;
return 0;

}

How It Works
The classes are the same as in example Ex9_07.cpp, but the function main() has been altered to use a
pointer to call the function ShowVolume(). Because you are using a pointer, you use the indirect mem-
ber selection operator, ->, to call the function. The function ShowVolume() is called twice, and both calls
use the same pointer to base class objects, pBox. On the first occasion, the pointer contains the address of
the base object, myBox, and on the occasion of the second call, it contains the address of the derived class
object, myGlassBox.

The output produced is as follows:

CBox usable volume is 24
CBox usable volume is 20.4

This is exactly the same as that from the previous example where you used explicit objects in the func-
tion call.

You can conclude from this example that the virtual function mechanism works just as well through a
pointer to a base class, with the specific function being selected based on the type of object being pointed
to. This is illustrated in Figure 9-5.

Figure 9-5

classCBox 

virtual double Volume () const 
{...} 

pBox->ShowVolume() 

void ShowVolume() const 
{ 
cout << endl 
 
 << “CBox usable volume is ” 
 
 << Volume(); 
} 

Pointer this 
is set to pBox 

classCGlassBox 

virtual double Volume () const 
{...} 

pBox pointing  to
CBox object

pBox pointing  to
CGlassBox object

536

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 536



This means that, even when you don’t know the precise type of the object pointed to by a base class
pointer in a program (when a pointer is passed to a function as an argument, for example), the virtual
function mechanism ensures that the correct function is called. This is an extraordinarily powerful
capability, so make sure you understand it. Polymorphism is a fundamental mechanism in C++ that
you will find yourself using again and again.

Using References with Virtual Functions
If you define a function with a reference to a base class as a parameter, you can pass an object of a derived
class to it as an argument. When your function executes, the appropriate virtual function for the object
passed is selected automatically. We could see this happening by modifying the function main() in the
last example to call a function that has a reference as a parameter.

Try It Out Using References with Virtual Functions
Let’s move the call to ShowVolume() to a separate function and call that separate function from main():

// Ex9_09.cpp
// Using a reference to call a virtual function
#include <iostream>
#include “GlassBox.h”                  // For CBox and CGlassBox
using std::cout;
using std::endl;

void Output(const CBox& aBox);         // Prototype of function

int main()
{

CBox myBox(2.0, 3.0, 4.0);           // Declare a base box
CGlassBox myGlassBox(2.0, 3.0, 4.0); // Declare derived box of same size

Output(myBox);                  // Output volume of base class object
Output(myGlassBox);             // Output volume of derived class object

cout << endl;
return 0;

}

void Output(const CBox& aBox)
{
aBox.ShowVolume();

}

Box.h and GlassBox.h for this example have the same contents as the previous example.

How It Works
The function main() now basically consists of two calls of the function Output(), the first with an
object of the base class as an argument and the second with an object of the derived class. Because the
parameter is a reference to the base class, Output() accepts objects of either class as an argument and

537

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 537



the appropriate version of the virtual function Volume() is called, depending on the object that is initial-
izing the reference.

The program produces exactly the same output as the previous example, demonstrating that the virtual
function mechanism does indeed work through a reference parameter.

Incomplete Class Definitions
At the beginning of the previous example, you have the prototype declaration for the Output() function.
To process this declaration the compiler needs to have access to the definition of the CBox class because the
parameter is of type CBox&. In this case the definition of the CBox class is available at this point because
you have an #include directive for GlassBox.h that has its own #include directive for Box.h. 

However, there may be situations where you have such a declaration and the class definition cannot be
included in this way, in which case you would need some other way to at least identify that the name CBox
refers to a class type. In this situation you could provide an incomplete definition of the class CBox preced-
ing the prototype of the output function. The statement that provides an incomplete definition of the CBox
class is simply:

class CBox;

The statement just identifies that the name CBox refers to a class that is not defined at this point, but this
is sufficient for the compiler know of that CBox is the name of a class, and this allows it to process the
prototype of the function Output(). Without some indication that CBox is a class, the prototype causes
an error message to be generated. 

Pure Virtual Functions
It’s possible that you’d want to include a virtual function in a base class so that it may be redefined in a
derived class to suit the objects of that class, but that there is no meaningful definition you could give 
for the function in the base class.

For example, you could conceivably have a class CContainer, which could be used as a base for defining
the CBox class, or a CBottle class, or even a CTeapot class. The CContainer class wouldn’t have data
members, but you might want to provide a virtual member function Volume() for any derived classes.
Because the CContainer class has no data members, and therefore no dimensions, there is no sensible
definition that you can write for the Volume() function. You can still define the class, however, including
the member function Volume(), as follows:

// Container.h for Ex9_10
#pragma once
#include <iostream>
using std::cout;
using std::endl;

class CContainer        // Generic base class for specific containers
{
public:

538

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 538



// Function for calculating a volume - no content
// This is defined as a ‘pure’ virtual function, signified by ‘= 0’
virtual double Volume() const = 0;

// Function to display a volume
virtual void ShowVolume() const
{
cout << endl

<< “Volume is “ << Volume();
}

};

The statement for the virtual function Volume() defines it as having no content by placing the equals sign
and zero in the function header. This is called a pure virtual function. Any class derived from this class must
either define the Volume() function or redefine it as a pure virtual function. Because you have declared
Volume() as const, its implementation in any derived class must also be const. Remember that const and
non-const varieties of a function with the same name and parameter list are different functions. In other
words you can overload a function using const.

The class also contains the function ShowVolume(), which displays the volume of objects of derived
classes. Because this is declared as virtual, it can be replaced in a derived class, but if it isn’t, the base
class version that you see here is called.

Abstract Classes
A class containing a pure virtual function is called an abstract class. It’s called abstract because you
can’t define objects of a class containing a pure virtual function. It exists only for the purpose of defin-
ing classes that are derived from it. If a class derived from an abstract class still defines a pure virtual
function of the base as pure, it too is an abstract class.

You should not conclude, from the previous example of the CContainer class, that an abstract class can’t
have data members. An abstract class can have both data members and function members. The presence
of a pure virtual function is the only condition that determines that a given class is abstract. In the same
vein, an abstract class can have more than one pure virtual function. In this case, a derived class must
have definitions for every pure virtual function in its base; otherwise, it too will be an abstract class. If you
forget to make the derived class version of the Volume() function const, the derived class will still be
abstract because it contains the pure virtual Volume() member function that is const, as well as the non-
const Volume() function that you have defined.

Try It Out An Abstract Class
You could implement a CCan class, representing beer or cola cans perhaps, together with the original
CBox class and derive both from the CContainer class that you defined in the previous section. The
definition of the CBox class as a subclass of CContainer is as follows:

// Box.h for Ex9_10
#pragma once
#include “Container.h”                 // For CContainer definition
#include <iostream>
using std::cout;

539

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 539



using std::endl;

class CBox: public CContainer          // Derived class
{
public:

// Function to show the volume of an object
virtual void ShowVolume() const
{

cout << endl
<< “CBox usable volume is “ << Volume(); 

}

// Function to calculate the volume of a CBox object
virtual double Volume() const
{ return m_Length*m_Width*m_Height; }

// Constructor
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0)

:m_Length(lv), m_Width(wv), m_Height(hv){}

protected:
double m_Length;
double m_Width;
double m_Height;

};

The unshaded lines are the same as in the previous version of the CBox class. The CBox class is essen-
tially as we had it in the previous example, except this time you have specified that it is derived from
the CContainer class. The Volume() function is fully defined within this class (as it must be if this
class is to be used to define objects). The only other option would be to specify it as a pure virtual func-
tion, since it is pure in the base class, but then we couldn’t create CBox objects.

You could define the CCan class in the Can.h header file like this:

// Can.h for Ex9_10
#pragma once
#include “Container.h”                 // For CContainer definition
extern const double PI;                // PI is defined elsewhere

class CCan: public CContainer
{
public:
// Function to calculate the volume of a can
virtual double Volume() const
{ return 0.25*PI*m_Diameter*m_Diameter*m_Height; }

// Constructor
CCan(double hv = 4.0, double dv = 2.0): m_Height(hv), m_Diameter(dv){}

protected:
double m_Height;
double m_Diameter;

};

540

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 540



The CCan class also defines a Volume() function based on the formula hπr2, where h is the height of a
can and r is the radius of the cross-section of a can. The volume is calculated as the height multiplied by
the area of the base. The expression in the function definition assumes a global constant PI is defined, so
we have the extern statement indicating that PI is a global variable of type const double that is
defined elsewhere — in this program it is defined in the Ex9_10.cpp file. Also notice that we redefined
the ShowVolume() function in the CBox class, but not in the CCan class. You can see what effect this has
when we get some program output.

You can exercise these classes with the following source file containing the main() function:

// Ex9_10.cpp
// Using an abstract class
#include “Box.h”                       // For CBox and CContainer
#include “Can.h”                       // For CCan (and CContainer)
#include <iostream>                    // For stream I/O
using std::cout;
using std::endl;

const double PI= 3.14159265;           // Global definition for PI

int main(void)
{
// Pointer to abstract base class
// initialized with address of CBox object
CContainer* pC1 = new CBox(2.0, 3.0, 4.0);

// Pointer to abstract base class
// initialized with address of CCan object
CContainer* pC2 = new CCan(6.5, 3.0);

pC1->ShowVolume();                   // Output the volumes of the two
pC2->ShowVolume();                   // objects pointed to
cout << endl;

delete pC1;                          // Now clean up the free store
delete pC2;                          // ....

return 0;
}

How It Works
In this program, you declare two pointers to the base class, CContainer. Although you can’t define
CContainer objects (because CContainer is an abstract class), you can still define a pointer to a
CContainer, which you can then use to store the address of a derived class object; in fact you can use 
it to store the address of any object whose type is a direct or indirect subclass of CContainer. The
pointer pC1 is assigned the address of a CBox object created in the free store by the operator new. 
The second pointer is assigned the address of a CCan object in a similar manner.

Of course, because the derived class objects were created dynamically, you must use the delete operator
to clean up the free store when you have finished with them. You learned about the delete operator
back in Chapter 4.

541

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 541



The output produced by this example is as follows:

CBox usable volume is 24
Volume is 45.9458

Because you have defined ShowVolume() in the CBox class, the derived class version of the function is
called for the CBox object. You did not define this function in the CCan class, so the base class version that
the CCan class inherits is invoked for the CCan object. Because Volume() is a virtual function implemented
in both derived classes (necessarily, because it is a pure virtual function in the base class), the call to it is
resolved when the program is executed by selecting the version belonging to the class of the object being
pointed to. Thus, for the pointer pC1, the version from the class CBox is called and, for the pointer pC2,
the version in the class CCan is called. In each case, therefore, you obtain the correct result.

You could equally well have used just one pointer and assigned the address of the CCan object to it (after
calling the Volume() function for the CBox object). A base class pointer can contain the address of any
derived class object, even when several different classes are derived from the same base class, and so
you can have automatic selection of the appropriate virtual function across a whole range of derived
classes. Impressive stuff, isn’t it?

Indirect Base Classes
At the beginning of this chapter, I said that a base class for a subclass could in turn be derived from
another, ‘more’ base class. A small extension of the last example provides you with an illustration of
this, as well as demonstrates the use of a virtual function across a second level of inheritance.

Try It Out More Than One Level of Inheritance
All you need to do is add the class CGlassBox to the classes you have from the previous example. The
relationship between the classes you now have is illustrated in Figure 9-6.

The class CGlassBox is derived from the CBox class exactly as before, but we omit the derived class ver-
sion of ShowVolume() to show that the base class version still propagates through the derived classes.
With the class hierarchy shown above, the class CContainer is an indirect base of the class CGlassBox,
and a direct base of the classes CBox and CCan.

The GlassBox.h header file for the example contains:

// GlassBox.h for Ex9_11
#pragma once
#include “Box.h”                       // For CBox

class CGlassBox: public CBox           // Derived class
{
public:

// Function to calculate volume of a CGlassBox
// allowing 15% for packing
virtual double Volume() const
{ return 0.85*m_Length*m_Width*m_Height; }

542

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 542



// Constructor
CGlassBox(double lv, double wv, double hv): CBox(lv, wv, hv){}

};

Figure 9-6

The Container.h, Can.h, and Box.h header files contain the same code as those in the previous example,
Ex9_10.

The source file for new example, with an updated function main() to use the additional class in the hier-
archy, is as follows:

// Ex9_11.cpp
// Using an abstract class with multiple levels of inheritance
#include “Box.h”                 // For CBox and CContainer
#include “Can.h”                 // For CCan (and CContainer)
#include “GlassBox.h”            // For CGlassBox (and CBox and CContainer)
#include <iostream>              // For stream I/O
using std::cout;
using std::endl;

const double PI = 3.14159265;                // Global definition for PI

int main()
{
// Pointer to abstract base class initialized with CBox object address

class CContainer Direct base of CBox 
Indirect base of CGlassBox 

Direct base of CCan 

Direct base of CGlassBox 

More General 

class CBox

class CGlassBox

class CCan

More Specialized

543

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 543



CContainer* pC1 = new CBox(2.0, 3.0, 4.0);

CCan myCan(6.5, 3.0);                // Define CCan object
CGlassBox myGlassBox(2.0, 3.0, 4.0); // Define CGlassBox object

pC1->ShowVolume();                   // Output the volume of CBox
delete pC1;                          // Now clean up the free store

// initialized with address of CCan object
pC1 = &myCan;                        // Put myCan address in pointer
pC1->ShowVolume();                   // Output the volume of CCan

pC1 = &myGlassBox;                   // Put myGlassBox address in pointer
pC1->ShowVolume();                   // Output the volume of CGlassBox

cout << endl;
return 0;

}

How It Works
You have the three-level class hierarchy shown in Figure 9-6 with CContainer as an abstract base
class because it contains the pure virtual function, Volume(). The main()function now calls the
ShowVolume()function three times using the same pointer to the base class, but with the pointer 
containing the address of an object of a different class each time. Because ShowVolume() is not 
defined in any of the derived classes you have here, the base class version is called in each instance. 
A separate branch from the base CContainer defines the derived class CCan.

The example produces this output:

CBox usable volume is 24
Volume is 45.9458
CBox usable volume is 20.4

The output shows that one of the three different versions of the function Volume() is selected for execu-
tion according to the type of object involved.

Note that you must delete the CBox object from the free store before you assign another address value to
the pointer. If you don’t do this, you won’t be able to clean up the free store, because you would have no
record of the address of the original object. This is an easy mistake to make when reassigning pointers
and using the free store.

Virtual Destructors
One problem that arises when dealing with objects of derived classes using a pointer to the base class is
that the correct destructor may not be called. You can see this effect by modifying the last example.

544

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 544



Try It Out Calling the Wrong Destructor
You just need to add a destructor to each of the classes in the example that outputs a message so that
you can track which destructor is called when the objects are destroyed. The Container.h file for this
example is:

// Container.h for Ex9_12
#pragma once
#include <iostream>
using std::cout;
using std::endl;

class CContainer        // Generic base class for specific containers
{

public:
// Destructor
~CContainer()
{ cout << “CContainer destructor called” << endl; }

// Function for calculating a volume - no content
// This is defined as a ‘pure’ virtual function, signified by ‘= 0’
virtual double Volume() const = 0;

// Function to display a volume
virtual void ShowVolume() const
{

cout << endl
<< “Volume is “ << Volume();

}
};

The contents of Can.h in the example is:

// Can.h for Ex9_12
#pragma once
#include “Container.h”                 // For CContainer definition
extern const double PI;

class CCan: public CContainer
{

public:
// Destructor
~CCan()
{ cout << “CCan destructor called” << endl; }

// Function to calculate the volume of a can
virtual double Volume() const
{ return 0.25*PI*m_Diameter*m_Diameter*m_Height; }

// Constructor

545

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 545



CCan(double hv = 4.0, double dv = 2.0): m_Height(hv), m_Diameter(dv){}

protected:
double m_Height;
double m_Diameter;

};

The contents of Box.h should be:

// Box.h for Ex9_12
#pragma once
#include “Container.h”                 // For CContainer definition
#include <iostream>
using std::cout;
using std::endl;

class CBox: public CContainer          // Derived class
{
public:
// Destructor
~CBox()
{ cout << “CBox destructor called” << endl; }

// Function to show the volume of an object
virtual void ShowVolume() const
{

cout << endl
<< “CBox usable volume is “ << Volume(); 

}

// Function to calculate the volume of a CBox object
virtual double Volume() const
{ return m_Length*m_Width*m_Height; }

// Constructor
CBox(double lv = 1.0, double wv = 1.0, double hv = 1.0)

:m_Length(lv), m_Width(wv), m_Height(hv){}

protected:
double m_Length;
double m_Width;
double m_Height;

};

The GlassBox.h header file should contain:

// GlassBox.h for Ex9_12
#pragma once
#include “Box.h”                       // For CBox

class CGlassBox: public CBox           // Derived class

546

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 546



{
public:
// Destructor
~CGlassBox()
{ cout << “CGlassBox destructor called” << endl; }

// Function to calculate volume of a CGlassBox
// allowing 15% for packing
virtual double Volume() const
{ return 0.85*m_Length*m_Width*m_Height; }

// Constructor
CGlassBox(double lv, double wv, double hv): CBox(lv, wv, hv){}

};

Finally, the source file Ex9_12.cpp for the program should be as follows:

// Ex9_12.cpp
// Destructor calls with derived classes
// using objects via a base class pointer
#include “Box.h”                       // For CBox and CContainer
#include “Can.h”                       // For CCan (and CContainer)
#include “GlassBox.h”                  // For CGlassBox (and CBox and CContainer)
#include <iostream>                    // For stream I/O
using std::cout;
using std::endl;

const double PI = 3.14159265;          // Global definition for PI

int main()
{

// Pointer to abstract base class initialized with CBox object address
CContainer* pC1 = new CBox(2.0, 3.0, 4.0);

CCan myCan(6.5, 3.0);                // Define CCan object
CGlassBox myGlassBox(2.0, 3.0, 4.0); // Define CGlassBox object

pC1->ShowVolume();                   // Output the volume of CBox
cout << endl << “Delete CBox” << endl;
delete pC1;                          // Now clean up the free store

pC1 = new CGlassBox(4.0, 5.0, 6.0);  // Create CGlassBox dynamically
pC1->ShowVolume();                   // ...output its volume...
cout << endl << “Delete CGlassBox” << endl;
delete pC1;                          // ...and delete it

pC1 = &myCan;                        // Get myCan address in pointer
pC1->ShowVolume();                   // Output the volume of CCan

pC1 = &myGlassBox;                   // Get myGlassBox address in pointer

547

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 547



pC1->ShowVolume();                   // Output the volume of CGlassBox

cout << endl;
return 0;

}

How It Works
Apart from adding a destructor to each class that outputs a message to the effect that it was called, the
only other change is a couple of additions to the function main(). There are additional statements to 
create a CGlassBox object dynamically, output its volume and then delete it. There is also a message 
displayed to indicate when the dynamically created CBox object is deleted. The output generated by 
this example is shown as follows:

CBox usable volume is 24
Delete CBox
CContainer destructor called

CBox usable volume is 102
Delete CGlassBox
CContainer destructor called

Volume is 45.9458
CBox usable volume is 20.4
CGlassBox destructor called
CBox destructor called
CContainer destructor called
CCan destructor called
CContainer destructor called

You can see from this that when you delete the CBox object pointed to by pC1, the destructor for the
base class CContainer is called but there is no call of the CBox destructor recorded. Similarly, when 
the CGlassBox object that you added is deleted, again the destructor for the base class CContainer
is called but not the CGlassBox or CBox destructors. For the other objects, the correct destructor calls
occur with the derived class constructor being called first, followed by the base class constructor. For
the first CGlassBox object created in a declaration, three destructors are called: first, the destructor 
for the derived class, followed by the direct base destructor and, finally, the indirect base destructor.

All the problems are with objects created in the free store. In both cases, the wrong destructor is called. The
reason for this is that the linkage to the destructors is resolved statically, at compile time. For the automatic
objects, there is no problem — the compiler knows what they are and arranges for the correct destructors
to be called. With objects created dynamically and accessed through a pointer, things are different. The
only information that the compiler has when the delete operation is executed is that the pointer type is a
pointer to the base class. The type of object the pointer is actually pointing to is unknown to the compiler
because this is determined when the program executes. The compiler therefore simply ensures that the
delete operation is set up to call the base class destructor. In a real application, this can cause a lot of prob-
lems, with bits of objects left strewn around the free store and possibly more serious problems, depending
on the nature of the objects involved.

548

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 548



The solution is simple. You need the calls to be resolved dynamically — as the program is executed. You
can organize this by using virtual destructors in your classes. As I said when I first discussed virtual func-
tions, it’s sufficient to declare a base class function as virtual to ensure that all functions in any derived
classes with the same name, parameter list, and return type are virtual as well. This applies to destructors
just as it does to ordinary member functions. You need to add the keyword virtual to the definition of
the destructor in the class CContainer in Container.h so that the class definition is as follows:

class CContainer                   // Generic base class for containers
{

public:

// Destructor
virtual ~CContainer()
{ cout << “CContainer destructor called” << endl; }

// Rest of the class as before
};

Now the destructors in all the derived classes are automatically virtual, even though you don’t explic-
itly specify them as such. Of course, you’re free to specify them as virtual if you want the code to be
absolutely clear.

If you rerun the example with this modification, it produces the following output:

CBox usable volume is 24
Delete CBox
CBox destructor called
CContainer destructor called

CBox usable volume is 102
Delete CGlassBox
CGlassBox destructor called
CBox destructor called
CContainer destructor called

Volume is 45.9458
CBox usable volume is 20.4
CGlassBox destructor called
CBox destructor called
CContainer destructor called
CCan destructor called
CContainer destructor called

As you can see, all the objects are now destroyed with a proper sequence of destructor calls. Destroying
the dynamic objects produces the same sequence of destructor calls as the automatic objects of the same
type in the program.

The question may arise in your mind at this point, can constructors be declared as virtual? The answer is
no — only destructors and other member functions.

549

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 549



It’s a good idea always to declare your base class destructor as virtual as a matter of course when using
inheritance. There is a small overhead in the execution of the class destructors, but you won’t notice it
in the majority of circumstances. Using virtual destructors ensures that your objects will be properly
destroyed and avoids potential program crashes that might otherwise occur.

Casting Between Class Types
You have seen how you can store the address of a derived class object in a variable of a base class type 
so a variable of type CContainer* can store the address of a CBox object for example. So if you have an
address stored in a pointer of type CContainer* can you cast it to type CBox*? Indeed you can and the
dynamic_cast operator is specifically intended for this kind of operation. Here’s how it works:

CContainer* pContainer = new CGlassBox(2.0, 3.0, 4.0);
CBox* pBox = dynamic_cast<CBox*>( pContainer);                     
CGlassBox* pGlassBox = dynamic_cast<CGlassBox*>( pContainer);

The first statement stores the address of the CGlassBox object created on the heap in a base class pointer
of type CContainer*. The second statement casts pContainer up the class hierarchy to type CBox*. The
third statement casts the address in pContainer to its actual type, CGlassBox*.

You can apply the dynamic_cast operator to references as well as pointers. The difference between
dynamic_cast and static_cast is that the dynamic_cast operator checks the validity of a cast at
run-time whereas the static_cast operator does not. If a dynamic_cast operation is not valid, the
result is null. The compiler relies on the programmer for the validity of a static_cast operation so
you should always use dynamic_cast for casting up and down a class hierarchy and check for a null
result if you want to avoid abrupt termination of your program as a result of using a null pointer. 

Nested Classes
You can put the definition of one class inside the definition of another, in which case you have defined a
nested class. A nested class has the appearance of being a static member of the class that encloses it and is
subject to the member access specifiers, just like any other member of the class. If you place the definition
of a nested class in the private section of the class, the class can only be referenced from within the scope of
the enclosing class. If you specify a nested class as public, the class is accessible from outside the enclosing
class but the nested class name must be qualified by the outer class name in such circumstances.

A nested class has free access to all the static members of the enclosing class. All the instance members can
be accessed through an object of the enclosing class type, or a pointer or reference to an object. The enclos-
ing class can only access the public members of the nested class, but in a nested class that is private in the
enclosing class the members are frequently declared as public to provide free access to the entire nested
class from functions in the enclosing class.

A nested class is particularly useful when you want to define a type that is only to be used within another
type, whereupon the nested class can be declared as private. Here’s an example of that:

// A push-down stack to store Box objects

550

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 550



class CStack
{
private:
// Defines items to store in the stack
struct CItem
{
CBox* pBox;                        // Pointer to the object in this node
CItem* pNext;                      // Pointer to next item in the stack or null

// Constructor
CItem(CBox* pB, CItem* pN): pBox(pB), pNext(pN){}

};

CItem* pTop;                         // Pointer to item that is at the top

public:
// Push a Box object on to the stack
void Push(CBox* pBox)
{
pTop = new CItem(pBox, pTop);      // Create new Item and make it the top

}

// Pop an  object off the stack
CBox* Pop()
{  
if(pTop == 0)                      // If the stack is empty
return 0;                        // return null

CBox* pBox = pTop->pBox;           // Get box from item
CItem* pTemp = pTop;               // Save address of the top Item
pTop = pTop->pNext;                // Make next item the top 
delete pTemp;                      // Delete old top Item from the heap
return pBox;

}
};

The CStack class defines a push-down stack for storing CBox objects. To be absolutely precise it stores
pointers to CBox objects so the objects pointed to are still the responsibility of the code making use of 
the Stack class. The nested struct, CItem, defines the items that are held in the stack. I chose to define
Item as a nested struct rather than a nested class because members of a struct are public by default.
You could define CItem as a class and then specify the members as public so they can be accessed from
the functions in the CStack class. The stack is implemented as a set of CItem objects where each CItem
object stores a pointer to a CBox object plus the address of the next CItem object down in the stack. The
Push() function in the CStack class pushes a CBox object on to the top of the stack and the Pop() func-
tion pops an object off the top of the stack. 

Pushing an object on to the stack involves creating a new CItem object that stores the address of the object
to be stored plus the address of the previous item that was on the top of the stack — this is null the first
time you push an object on to the stack. Popping an object off the stack returns the address of the object in
the item, pTop. The top item is deleted and the next item becomes the item at the top of the stack. Let’s see
if it works.

551

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 551



Try It Out Using a Nested Class
This example uses CContainer, CBox, and CGlassBox classes from Ex9_12 so create an empty
WIN32 console project, Ex9_13, and add the header files containing those class definitions to it. Then 
add Stack.h to the project containing the definition of the CStack class from the previous section, 
and add Ex9_13.cpp to the project with the following contents:

// Ex9_13.cpp
// Using a nested class to define a stack
#include “Box.h”                       // For CBox and CContainer
#include “GlassBox.h”                  // For CGlassBox (and CBox and CContainer)
#include “Stack.h”                     // For the stack class with nested struct Item 

#include <iostream>                    // For stream I/O
using std::cout;
using std::endl;

int main()
{
CBox* pBoxes[] = { new CBox(2.0, 3.0, 4.0),

new CGlassBox(2.0, 3.0, 4.0),
new CBox(4.0, 5.0, 6.0),
new CGlassBox(4.0, 5.0, 6.0)

};

cout << “The array of boxes have the following volumes:”;
for (int i = 0 ; i<4 ; i++)
pBoxes[i]->ShowVolume();           // Output the volume of a box

cout << endl << endl
<< “Now pushing the boxes on the stack...”
<< endl;

CStack* pStack = new CStack;         // Create the stack
for (int i = 0 ; i<4 ; i++)
pStack->Push(pBoxes[i]);

cout << “Popping the boxes off the stack presents them in reverse order:”;
for (int i = 0 ; i<4 ; i++)
pStack->Pop()->ShowVolume();

cout << endl;
return 0;

}

The output from this example is:

The array of boxes have the following volumes:
CBox usable volume is 24
CBox usable volume is 20.4
CBox usable volume is 120
CBox usable volume is 102

Now pushing the boxes on the stack...

552

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 552



Popping the boxes off the stack presents them in reverse order:
CBox usable volume is 102
CBox usable volume is 120
CBox usable volume is 20.4
CBox usable volume is 24

How It Works
You create an array of pointers to CBox objects so each element in the array can store the address of a CBox
object or an address of any type that is derived from CBox. The array is initialized with the adresses of four
objects created on the heap:

CBox* pBoxes[] = { new CBox(2.0, 3.0, 4.0),
new CGlassBox(2.0, 3.0, 4.0),
new CBox(4.0, 5.0, 6.0),
new CGlassBox(4.0, 5.0, 6.0)

};

The objects are two CBox object and two CGlassBox objects with the same dimensions as the CBox objects.

After listing the volumes of the four objects, you create a CStack object and push the objects on to the
stack in a for loop:

CStack* pStack = new CStack;         // Create the stack
for (int i = 0 ; i<4 ; i++)

pStack->Push(pBoxes[i]);

Each element in the pBoxes array is pushed on to the stack by passing the array element as the argument
to the Push() function for the CStack object. This results in the first element from the array being at the
bottom of the stack and the last element at the top.

You pop the objects off the stack in another for loop:

for (int i = 0 ; i<4 ; i++)
pStack->Pop()->ShowVolume();

The Pop() function returns the address of the element at the top of the stack and you use this to call the
ShowVolume() function for the object. Because the last element was at the top of the stack, the loop lists
the volumes of the objects in reverse order. From the output you can see that the CStack class does indeed
implement a stack using a nested struct to define the items to be stored in the stack.

C++/CLI Programming
All C++/CLI classes, including classes that you define, are derived classes by default. This is because both
value classes and reference classes have a standard class, System::Object, as a base class. This means
that both value classes and reference classes inherit from the System::Object class and therefore have
the capabilities of the System::Object class in common. Because the ToString() function is defined as
a virtual function in System::Object, you can override it in your own classes and have the function
called polymorphically when required. This is what you have been doing in previous chapters when you
defined the ToString() function in a class.

553

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 553



Because System::Object is a base class for all C++/CLI classes, the handle type System::Object^
fulfils a similar role to the void* type in native C++ in that it can be used to reference any type of object.

Boxing and Unboxing
The System::Object base class for all value class types is also responsible for enabling the boxing and
unboxing of values of the fundamental types. Boxing a value type instance converts it to an object on the
garbage-collected heap, so it will carry full type information along with the basic value. Unboxing is the
reverse of boxing. The boxing/unboxing capability means that values of the fundamental types can behave
as objects, but can participate in numerical operations without carrying the overhead of being objects. Values
of the fundamental types are stored on the stack just as values for the purposes of normal operations and are
only converted to an object on the heap that is referenced by a handle of type System::Object^ when they
need to behave as objects. For example, if you pass an unboxed value to a function with a parameter that is
an appropriate value class type, the compiler will arrange for the value to be converted to an object on the
heap; this is achieved by creating a new object on the heap containing the value. Thus you get implicit box-
ing and the argument value will be boxed automatically.

Of course, explicit boxing is also possible. You can force a value to be boxed by assigning it to a variable
of type Object^. For example:

double value = 3.14159265;
Object^ boxedValue = value;

The second statement forces the boxing of value and the boxed representation is referenced by the handle
boxedValue.

You can also force boxing of a value using gcnew to create a boxed value on the garbage-collected heap,
for example:

long^ number = gcnew(999999L);

This statement implicitly boxes the value 999999L and stores it on the heap in a location referenced by
the handle number.

You can unbox a value type using the dereference operator, for example:

Console::WriteLine(*number);

The value pointed to by the handle number is unboxed and then passed as a value to the WriteLine()
function.

Finally you can unbox a boxed value using safe_cast:

long n = safe_cast<long>(number);

This statement unboxes number and stores the value in n. Note that without the safe_cast, this state-
ment will not compile because there is no implicit conversion in this situation.

554

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 554



Inheritance in C++/CLI Classes
Although value classes always have the System::Object class as a base, you cannot derive a value
class from an existing class. To put it another way, when you define a value class you are not allowed to
specify a base class. This implies that polymorphism in value classes is limited to the functions that are
defined as virtual in the System::Object class. These are the virtual functions that all value classes
inherit from System::Object:

Of course, because System::Object is also a base class for reference classes you may want to override
these functions in reference classes, too.

You can derive a reference class from an existing reference class in the same way as you define a derived
class in native C++. Let’s re-implement Ex9_12 as a C++/CLI program as this also demonstrates nested
classes in a CLR program. We can start by defining the Container class:

// Container.h for Ex9_14
#pragma once
using namespace System;

// Abstract base class for specific containers
ref class Container abstract      
{
public:
// Function for calculating a volume - no content
// This is defined as an ‘abstract’ virtual function,
// indicated by the ‘abstract’ keyword

Function Description

String^ ToString() Returns a String representation of an object and the imple-
mentation in the System::Object class returns the class name
as a string. You would typically override this function in your
own classes to return a string representation of the value of an
object.

bool Equals(Object^ obj) Compares the current object to obj and returns true if they are
equal and false otherwise. Equal in this case means referential
equality — that is the objects are one and the same. Typically
you would override this function in your own classes to return
true when the current object is the same value as the argu-
ment — in other words, when the fields are equal.

int GetHashCode() Returns an integer that is a hash code for the current object.
Hash codes are used as keys to store objects in a collection that
stores (key,object) pairs. Objects are subsequently retrieved
from such a collection by supplying the key that was used
when the object was stored.

555

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 555



virtual double Volume() abstract;

// Function to display a volume
virtual void ShowVolume() 
{
Console::WriteLine(L”Volume is {0}”, Volume());

}
};

The first thing to note is the abstract keyword following the class name. If a C++/CLI class contains the
native C++ equivalent of a pure virtual function, you must specify the class as abstract. You can, however,
also specify a class as abstract that does not contain any abstract functions, which prevents you from creat-
ing objects of that class type. The abstract keyword also appears at the end of the Volume() function
member declaration to indicate that it is be defined for this class. You could also add the “ = 0” to the end
of the member declaration for Volume() as you would for a native C++ member, but it is not required.

Both the Volume() and ShowVolume() functions are virtual here so they can be called polymorphically
for objects of class types that are derived from Container.

You can define the Box class like this:

// Box.h for Ex9_14
#pragma once
#include “Container.h”                 // For Container definition

ref class Box : Container              // Derived class
{
public:
// Function to show the volume of an object
virtual void ShowVolume() override
{
Console::WriteLine(L”Box usable volume is {0}”, Volume()); 

}

// Function to calculate the volume of a Box object
virtual double Volume() override
{ return m_Length*m_Width*m_Height; }

// Constructor
Box() : m_Length(1.0), m_Width(1.0), m_Height(1.0){}

// Constructor
Box(double lv, double wv, double hv)

: m_Length(lv), m_Width(wv), m_Height(hv){}

protected:
double m_Length;
double m_Width;
double m_Height;

};

A base class for a ref class is always public and the public keyword is assumed by default. You can spec-
ify the base class explicitly as public but it is not necessary to do so. A base class to a ref class cannot be
specified as anything other than public. Because you cannot supply default values for parameters as in

556

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 556



the native C++ version of the class, you define the no-arg constructor so that it initializes all three fields
to 1.0. The Box class defines the Volume() function as an override to the inherited base class version. You
must always specify the override keyword when you want to override a function in the base class. If the
Box class did not implement the Volume() function, it would be abstract and you would need to specify
it as such to compile the class successfully.

Here’s how the GlassBox class definition looks:

// GlassBox.h for Ex9_14
#pragma once
#include “Box.h”                       // For Box

ref class GlassBox : Box               // Derived class
{
public:
// Function to calculate volume of a GlassBox
// allowing 15% for packing
virtual double Volume() override 
{ return 0.85*m_Length*m_Width*m_Height; }

// Constructor
GlassBox(double lv, double wv, double hv): Box(lv, wv, hv){}

};

The base class is Box, which is public by default. The rest of the class is essentially the same as the original.

Here’s the Stack class definition:

// Stack.h for Ex9_14
// A push-down stack to store objects of any ref class type
#pragma once

ref class Stack
{
private:
// Defines items to store in the stack
ref struct Item
{
Object^ Obj;                  // Handle for the object in this item
Item^ Next;                   // Handle for next item in the stack or nullptr

// Constructor
Item(Object^ obj, Item^ next): Obj(obj), Next(next){}

};

Item^ Top;                       // Handle for item that is at the top

public:
// Push an object on to the stack
void Push(Object^ obj)
{
Top = gcnew Item(obj, Top);     // Create new item and make it the top

}

557

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 557



// Pop an  object off the stack
Object^ Pop()
{  
if(Top == nullptr)                 // If the stack is empty
return nullptr;                  // return nullptr

Object^ obj = Top->Obj;            // Get object from item
Top = Top->Next;                   // Make next item the top 
return obj;

}
};

The first difference to notice is that the function parameters and fields are now handles because you are
dealing with ref class objects. The inner struct, Item, now stores a handle of type Object^, which allows
objects of any CLR class type to be stored in the stack; this means either value class or ref class objects
can be accommodated which is a significant improvement over the native C++ CStack class. You don’t
need to worry about deleting Item objects when the Pop() function is called, because the garbage collec-
tor takes care of that.

Here’s a summary of the differences from native C++ that these classes have demonstrated: 

❑ Only ref classes can be derived class types.

❑ A base class for a derived ref class is always public.

❑ A function that has no definition for a ref class is an abstract function and must be declared
using the abstract keyword.

❑ A class that contains one or more abstract functions must be explicitly specified as abstract by
placing the abstract keyword following the class name.

❑ A class that does not contain abstract functions can be specified as abstract, in which case
instances of the class cannot be defined. 

❑ You must explicitly use the override keyword when specifying a function that overrides a
function inherited from the base class.

All you need to try out these classes is a CLR console project with a definition of main() so let’s do it.

Try It Out Using Derived Reference Classes
Create a CLR console program with the name Ex9_14 and add the classes in the previous section to the
project; then add the following contents to Ex9_14.cpp:

// Ex9_14.cpp : main project file.
// Using a nested class to define a stack

#include “stdafx.h”
#include “Box.h”                  // For Box and Container
#include “GlassBox.h”             // For GlassBox (and Box and Container)
#include “Stack.h”                // For the stack class with nested struct Item 

558

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 558



using namespace System;

int main(array<System::String ^> ^args)
{
array<Box^>^ boxes = { gcnew Box(2.0, 3.0, 4.0),

gcnew GlassBox(2.0, 3.0, 4.0),
gcnew Box(4.0, 5.0, 6.0),
gcnew GlassBox(4.0, 5.0, 6.0)

};

Console::WriteLine(L”The array of boxes have the following volumes:”);
for each(Box^ box in boxes)
box->ShowVolume();           // Output the volume of a box

Console::WriteLine(L”\nNow pushing the boxes on the stack...”);

Stack^ stack = gcnew Stack;         // Create the stack
for each(Box^ box in boxes)
stack->Push(box);

Console::WriteLine(
L”Popping the boxes off the stack presents them in reverse order:”);

Object^ item;
while((item = stack->Pop()) != nullptr)
safe_cast<Container^>(item)->ShowVolume();

Console::WriteLine(L”\nNow pushing integers on to the stack:”);
for(int i = 2 ; i<=12 ; i += 2)
{ 
Console::Write(L”{0,5}”,i);
stack->Push(i);

}

Console::WriteLine(L”\n\nPopping integers off the stack produces:”);
while((item = stack->Pop()) != nullptr)
Console::Write(L”{0,5}”,item);

Console::WriteLine();
return 0;

}

The output from this example is:

The array of boxes have the following volumes:
Box usable volume is 24
Box usable volume is 20.4
Box usable volume is 120
Box usable volume is 102

Now pushing the boxes on the stack...
Popping the boxes off the stack presents them in reverse order:
Box usable volume is 102

559

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 559



Box usable volume is 120
Box usable volume is 20.4
Box usable volume is 24

Now pushing integers on to the stack:
2    4    6    8   10   12

Popping integers off the stack produces:
12   10    8    6    4    2

How It Works
You first create an array of handles to strings:

array<Box^>^ boxes = { gcnew Box(2.0, 3.0, 4.0),
gcnew GlassBox(2.0, 3.0, 4.0),
gcnew Box(4.0, 5.0, 6.0),
gcnew GlassBox(4.0, 5.0, 6.0)

};

Because Box and GlassBox are ref classes, you create the objects on the CLR heap using gcnew. The
addresses of the objects initialize the elements of the boxes array.

You then create a Stack object and push the strings on to the stack:

Stack^ stack = gcnew Stack;         // Create the stack
for each(Box^ box in boxes)

stack->Push(box);

The parameter to the Push() function is of type Object^ so the function accepts any class type as the
argument. The for each loop pushes each of the elements in the boxes array on to the stack.

Popping the elements off the stack occurs in a while loop:

Object^ item;
while((item = stack->Pop()) != nullptr)
safe_cast<Container^>(item)->ShowVolume();

The loop condition stores the value returned from the Pop() function for the stack object in item, and
compares it with nullptr. As long as item has not been set to nullptr, the statement that is the body
of the while loop is executed. Within the loop you cast the handle stored in item to type Container^.
The item variable is of type Object^, and because the Object class does not define the ShowVolume()
function, you cannot call the ShowVolume() function using a handle of this type; to call a function poly-
morphically, you must use a handle of a base class type that declares the function to be a virtual member.
By casting the handle to type Container^ you are able to call the ShowVolume() function polymorphi-
cally, so the function is selected for the ultimate class type of the object that the handle references. In this
case you could have achieved the same result by casting item to type Box^. You use safe_cast here
because you are casting up the class hierarchy and it’s as well to use a checked cast operation in such cir-
cumstances. The safe_cast operator checks the cast for validity and, if the conversion fails, the opera-
tor throws an exception of type System::InvalidCastException. You could use dynamic_cast but it
is better to use safe_cast in CLR programs.

560

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 560



Interface Classes
The definition of an interface class looks quite similar to the definition of a ref class but it is quite a dif-
ferent concept. An interface is a class that specifies a set of functions that are to be implemented by other
classes to provide a standardized way of providing some specific functionality. Both value classes and
ref classes can implement interfaces. An interface does not define any of its function members — these
are defined by each class that implements the interface.

You have already met the System::IComparable interface in the context of generic functions 
where you specified the IComparable interface as a constraint. The IComparable interface specifies
the CompareTo() function for comparing objects so all classes that implement this interface have 
the same mechanism for comparing objects. You specify an interface a class implements in the same
way as a base class. For example, here’s how you could make the Box class from the previous example
implement the System::IComparable interface:

ref class Box : Container, IComparable              // Derived class
{

public:
// The function specified by IComparable interface
virtual int CompareTo(Object^ obj) 
{
if(Volume() < safe_cast<Box^>(obj)->Volume())
return -1;

else if(Volume() > safe_cast<Box^>(obj)->Volume())
return 1;

else
return 0;

}

// Rest of the class as before...
}; 

The name of the interface follows the name of the base class, Container. If there were no base class, the
interface name alone would appear here. A ref class can only have one base class but it can implement 
as many interfaces as you want. The class must define every function specified by each of the interfaces
that it claims to implement. The IComparable interface only specifies one function but there can be as
many functions in an interface as you want. The Box class now defines the CompareTo() function with
the same signature as the IComparable interface specifies for the function. Because the parameter to the
CompareTo() function is of type Object^, you have to cast it to type Box^ before you can access mem-
bers of the Box object it references.

Defining Interface Classes
You define an interface class using either of the keywords interface class or interface struct.
Regardless of whether you use the interface class or the interface struct keyword to define 
an interface, all the members of an interface are always public by default and you cannot specify them
to be otherwise. The members of an interface can be functions including operator functions, properties,
static fields, and events, all of which you’ll learn about later in this chapter. An interface can also specify
a static constructor and can contain a nested class definition of any kind. In spite of all that potential

561

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 561



diversity of members, most interfaces are relatively simple. Note that you can derive one interface from
another in basically the same way as you use to derive one ref class from another. For example:

interface class IController : ITelevison, IRecorder
{
// Members of IController...

};

The IController interface contains its own members, and it also inherits the members of the
ITelevision and IRecorder interfaces. A class that implements the IController interface has 
to define the member functions from IController, ITelevision, and IRecorder.

You could use an interface instead of the Container base class in Ex9_14. Here’s how the definition of
this interface would look:

// IContainer.h for Ex9_15 
#pragma once

interface class IContainer
{
double Volume();                     // Function for calculating a volume
void ShowVolume();                   // Function to display a volume

};

By convention the names of interfaces start with I in C++/CLI so the interface name is IContainer. It
has two members: the Volume() function and the ShowVolume() function, which are public because
members of an interface are always public. Both functions are effectively abstract because an interface
never includes function definitions — indeed, you could add the abstract keyword to both here but it
is not required. Instance functions in an interface definition can be specified as virtual and abstract
but it is not necessary to do so as they are anyway.

Any class that implements the IContainer interface must implement both functions if the class is not to
be abstract. Let’s see how the Box class looks:

// Box.h for Ex9_15
#pragma once

#include “IContainer.h”                 // For interface definition

using namespace System;

ref class Box : IContainer     
{
public:
// Function to show the volume of an object
virtual void ShowVolume()
{

Console::WriteLine(L”CBox usable volume is {0}”, Volume()); 
}

// Function to calculate the volume of a Box object
virtual double Volume()

562

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 562



{ return m_Length*m_Width*m_Height; }

// Constructor
Box() : m_Length(1.0), m_Width(1.0), m_Height(1.0){}

// Constructor
Box(double lv, double wv, double hv)

: m_Length(lv), m_Width(wv), m_Height(hv){}

protected:
double m_Length;
double m_Width;
double m_Height;

};

The name of the interface goes after the colon in the first line of the class definition, just as if it were a
base class. Of course, there could also be a base class, in which case the interface name would follow
the base class name separated from it by a comma. A class can implement multiple interfaces in which
case the names of the interfaces are separated by commas.

The Box class must implement both function members of the IContainer interface class; otherwise, it
would be an abstract class and would need to be declared as such. The definitions for these functions 
in the Box class do not have the override keyword appended because you are not overriding existing
function definitions here; you are implementing them for the first time. 

The GlassBox class is derived from the Box class and therefore inherits the implementation of
IContainer. The GlassBox class definition needs no changes at all to accommodate the introduction 
of the IContainer interface class. 

The IContainer interface class has the same role as a base class in polymorphism. You can use a handle
of type IContainer to store the address of an object of any class type that implements the interface. Thus
a handle of type IContainer can be used to reference objects of type Box or type GlassBox and obtain
polymorphic behavior when calling the functions that are members of the interface class. Let’s try it.

Try It Out Implementing an Interface Class
Create the CLR console project Ex9_15 and add the IContainer.h and Box.h header files with the
contents from the previous section. You should also add copies of the Stack.h and GlassBox.h header
files from Ex9_14 to the project. Finally, modify the contents of Ex9_15.cpp to the following:

// Ex9_15.cpp : main project file.
// Implementing an interface class
#include “stdafx.h”
#include “Box.h”                     // For Box and IContainer
#include “GlassBox.h”                // For GlassBox (and Box and IContainer)
#include “Stack.h”                   // For the stack class with nested struct Item 

using namespace System;

int main(array<System::String ^> ^args)
{
array<IContainer^>^ containers = { gcnew Box(2.0, 3.0, 4.0),

563

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 563



gcnew GlassBox(2.0, 3.0, 4.0),
gcnew Box(4.0, 5.0, 6.0),
gcnew GlassBox(4.0, 5.0, 6.0)

};

Console::WriteLine(L”The array of containers have the following volumes:”);
for each(IContainer^ container in containers)
container->ShowVolume();           // Output the volume of a box

Console::WriteLine(L”\nNow pushing the containers on the stack...”);

Stack^ stack = gcnew Stack;          // Create the stack
for each(IContainer^ container in containers)
stack->Push(container);

Console::WriteLine(
L”Popping the containers off the stack presents them in reverse order:”);

Object^ item;
while((item = stack->Pop()) != nullptr)
safe_cast<IContainer^>(item)->ShowVolume();

Console::WriteLine();
return 0;

}

This example produces the following output:

The array of containers have the following volumes:
CBox usable volume is 24
CBox usable volume is 20.4
CBox usable volume is 120
CBox usable volume is 102

Now pushing the containers on the stack...
Popping the containers off the stack presents them in reverse order:
CBox usable volume is 102
CBox usable volume is 120
CBox usable volume is 20.4
CBox usable volume is 24

How It Works
You create an array of elements of type IContainer^ and initialize the elements with the addresses of
Box and GlassBox objects:

array<IContainer^>^ containers = { gcnew Box(2.0, 3.0, 4.0),
gcnew GlassBox(2.0, 3.0, 4.0),
gcnew Box(4.0, 5.0, 6.0),
gcnew GlassBox(4.0, 5.0, 6.0)

};

The Box and GlassBox classes implement the IContainer interface so you can store addresses of objects
of these types in variables of type handle to IContainer. The advantage of doing this is that you’ll be able
to call the function members of the IContainer interface class polymorphically. 

564

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 564



You list the volumes of the Box and GlassBox objects in a for each loop:

for each(IContainer^ container in containers)
container->ShowVolume();           // Output the volume of a box

The loop body shows polymorphism in action; the ShowVolume() function for the specific type of object
referenced by container is called, as you can see from the output.

You push the elements of the containers array on to the stack in essentially the same way as the previous
example. Popping the elements off the stack is also similar to the previous example:

Object^ item;
while((item = stack->Pop()) != nullptr)

safe_cast<IContainer^>(item)->ShowVolume();

The loop body shows that you can cast a handle to an interface type using safe_cast in exactly the same
way as you would cast to a ref class type. You are then able to use the handle to call the ShowVolume()
function polymorphically.

Using interface classes is not only a useful way of defining sets of functions that represent standard class
interfaces but also a powerful mechanism for applying polymorphism in your programs.

Classes and Assemblies
A C++/CLI application always resides in one or more assemblies so C++/CLI classes always reside in 
an assembly. The classes we have defined for each example up to now have all been contained in a sin-
gle simple assembly that is the executable, but you can create assemblies that contain your own library
classes. C++/CLI adds visibility specifiers for classes that determine whether a given class is accessible
from outside the assembly in which it resides which is referred to as its parent assembly. In addition to
the public, private, and protected member access specifiers that you have in native C++, C++/CLI
has additional access specifiers for class members that determine from where they may be accessed in dif-
ferent assemblies.  

Visibility Specifiers for Classes and Interfaces
You can specify the visibility of a non-nested class, interface, or enum as private or public. A public
class is visible and accessible outside the assembly in which is resides whereas a private class is only
accessible within its parent assembly. Classes, interfaces, and enum classes are private by default and
therefore only visible within their parent assembly. To specify a class as public, you just use the public
keyword, like this:

public interface class IContainer
{
// Details of the interface...

};

The IContainer interface here is visible in an external assembly because you have defined it as public.
If you omit the public keyword, the interface would be private by default and only usable within its
parent assembly. You can specify a class, enum, or interface explicitly as private if you want, but it is
not necessary.

565

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 565



Access Specifiers for Class and Interface Members
C++/CLI adds three more access specifiers for class members: internal, public protected, and
private protected. The effects of these are described in the comments in the class definition:

public ref class MyClass      // Class visible outside assembly
{
public:
// Members accessible from classes inside and outside the parent assembly

internal:
// Members accessible from classes inside the parent assembly

public protected:
// Members accessible in types derived from MyClass outside the parent assembly
// and in any classes inside the parent assembly

private protected:
// Members accessible in types derived from MyClass inside the parent assembly 

};

Obviously the class must be public for the member access specifiers to allow access from outside the
parent assembly. Where the access specifier involves two keywords such as private protected the
less restrictive keyword applies inside the assembly and the more restrictive keyword applies outside
the assembly. You can reverse the sequence of the keyword pairs so protected private has the same
meaning as private protected. 

To use some of these you need to create an application that consists of more than one assembly, so let’s
recreate Ex9_15 as a class library assembly plus an application assembly that uses the class library.

Try It Out Creating a Class Library
To create a class library you can first create a CLR project with the name Ex9_16lib using the Class
Library template. The project contains a header file, Ex9_16lib.h, with the following content:

// Ex9_16lib.h

#pragma once

using namespace System;

namespace Ex9_16lib
{
public ref class Class1
{
// TODO: Add your methods for this class here.

};
}

A class library has its own namespace and here the namespace name is Ex9_16lib by default. You could
change this name to something more suitable if you want. The names of the classes in the library are
qualified by the namespace name so you need a using directive for the namespace name in any external

566

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 566



source file that is accessing any of the classes in the library. The definitions of the classes that are to be 
in the library go between the braces for the namespace. There’s a default ref class defined within the
namespace, but you replace this with your own classes. Note that the Class1 class is public; all classes
that are to be visible in another assembly must be specified as public.

Modify the contents of Ex9_16lib.h to:

// Ex9_16lib.h

#pragma once

using namespace System;

namespace Ex9_16lib
{
// IContainer.h for Ex9_16 
public interface class IContainer
{

virtual double Volume();             // Function for calculating a volume
virtual void ShowVolume();           // Function to display a volume

};

// Box.h for Ex9_16
public ref class Box : IContainer     
{

public:
// Function to show the volume of an object
virtual void ShowVolume()
{

Console::WriteLine(L"CBox usable volume is {0}", Volume()); 
}

// Function to calculate the volume of a Box object
virtual double Volume()
{ return m_Length*m_Width*m_Height; }

// Constructor
Box() : m_Length(1.0), m_Width(1.0), m_Height(1.0){}

// Constructor
Box(double lv, double wv, double hv)

: m_Length(lv), m_Width(wv), m_Height(hv){}

public protected:
double m_Length;
double m_Width;
double m_Height;

};

// Stack.h for Ex9_16
public ref class Stack
{
private:

567

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 567



// Defines items to store in the stack
ref struct Item
{

Object^ Obj;                  // Handle for the object in this item
Item^ Next;                   // Handle for next item in the stack or nullptr

// Constructor
Item(Object^ obj, Item^ next): Obj(obj), Next(next){}

};

Item^ Top;                          // Handle for item that is at the top

public:
// Push an object on to the stack
void Push(Object^ obj)
{
Top = gcnew Item(obj, Top);        // Create new item and make it the top

}

// Pop an  object off the stack
Object^ Pop()
{  
if(Top == nullptr)                 // If the stack is empty

return nullptr;                  // return nullptr

Object^ obj = Top->Obj;            // Get box from item
Top = Top->Next;                   // Make next item the top 
return obj;

}
};
}

The IContainer interface class, the Box class, and the Stack class are now in this library. The changes to
the original definitions for these classes are shaded. Each class is now public, which makes them accessible
from an external assembly. The fields in the Box class are public protected, which means that they are
inherited in a derived class as protected fields but are public so far as classes within the parent assembly
are concerned. You don’t actually refer to these fields from other classes within the parent assembly so you
could have left the fields in the Box class as protected in this case.

When you have built this project successfully, the assembly containing the class library is in a file
Ex9_16lib.dll that is in the debug subdirectory to the project directory if you built a debug version 
of the project or in a release subdirectory if you built the release version. The .dll extension means
that this is a dynamic link library or DLL. You now need another project that uses your class library.

Try It Out Using a Class Library
Add a new CLR console project with the name Ex9_16 in its own solution as always. You can then mod-
ify Ex9_16.cpp as follows:

// Ex9_16.cpp : main project file.
// Using a class library in a separate assembly

568

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 568



#include “stdafx.h”
#include “GlassBox.h”
#using <Ex9_16lib.dll>

using namespace System;
using namespace Ex9_16lib;

int main(array<System::String ^> ^args)
{
array<IContainer^>^ containers = { gcnew Box(2.0, 3.0, 4.0),

gcnew GlassBox(2.0, 3.0, 4.0),
gcnew Box(4.0, 5.0, 6.0),
gcnew GlassBox(4.0, 5.0, 6.0)

};

Console::WriteLine(L”The array of containers have the following volumes:”);
for each(IContainer^ container in containers)
container->ShowVolume();           // Output the volume of a box

Console::WriteLine(L”\nNow pushing the containers on the stack...”);

Stack^ stack = gcnew Stack;          // Create the stack
for each(IContainer^ container in containers)
stack->Push(container);

Console::WriteLine(
L”Popping the containers off the stack presents them in reverse order:”);

Object^ item;
while((item = stack->Pop()) != nullptr)
safe_cast<IContainer^>(item)->ShowVolume();

Console::WriteLine();
return 0;

}

You also need to add the GlassBox.h header to the project with the same code as in Ex9_15 so you can
copy the file to this project directory and then add it to the project by right-clicking Header Files in the
Solution Explorer tab and selecting Add > Existing Item... from the context menu. Of course, the
GlassBox class is derived from the Box class, so the compiler needs to know where to find the Box class
definition. In this case it’s in the library you created in the previous project, so add the following directive
to the GlassBox.h header file after the #pragma once directive:

#using <Ex9_16lib.dll>

The Box class name is defined within the Ex9_16lib namespace, so you also need to add a using state-
ment for that following the #using directive:

using namespace Ex9_16lib;

To enable the compiler to find the library, copy the Ex9_16lib.dll file from the Ex9_16lib project to
the debug subdirectory to the Ex9_16 solution directory that contains the Ex9_16.exe file. You could

569

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 569



specify the full path to the assembly in the #using directive, but it is more usual to put any class libraries
that a project uses in the directory that contains the executable for an application. It’s easy to get the direc-
tories muddled here. The Ex9_16lib.dll file is in the debug subdirectory to the Ex9_16lib solution
directory, not the debug subdirectory to the Ex9_16lib project directory. You are copying the library
file to the debug subdirectory of the Ex9_16 solution directory. Make sure you copy the .dll file to 
the correct directory or the library won’t be found.

Because the classes in the external assembly are in their own namespace, you have a using directive 
for the Ex9_16lib namespace name. Without this you would have to qualify the IContainer, Box, 
and Stack names with the namespace name so you would write Ex9_16lib::Box instead of just Box
for example.

The remainder of the code is exactly the same as in the main() function for Ex9_15; no changes are nec-
essary because you are now using classes from an external assembly. If you execute the program, you’ll
see the output is the same as that from Ex9_15.

Functions Specified as new
You have seen how you use the override keyword to override a function in a base class. You can also
specify a function in a derived class as new, in which case it hides the function in the base class that has
the same signature and the new function does not participate in polymorphic behavior. To define the
Volume() function as new in a class NewBox that is derived from Box you code it like this: 

ref class NewBox : Box              // Derived class
{
public:
// New function to calculate the volume of a NewBox object
virtual double Volume() new
{ return 0.5*m_Length*m_Width*m_Height; }

// Constructor
NewBox(double lv, double wv, double hv): Box(lv, wv, hv){}

};

This version of the function hides the version of the Volume() function that is defined in Box, so if you
call the Volume() function using a handle of type NewBox^ the new version is called. For example:

NewBox^ newBox = gcnew NewBox(2.0, 3.0,4.0);
Console::WriteLine(newBox->Volume());  // Output is 12

The result is 12 because the new Volume() function hides the polymorphic version that the NextBox
class inherits from Box.

The new Volume() function is not a polymorphic function so for polymorphic calls using a handle to a
base class type, the new version is not called. For example:

Box^ newBox = gcnew NewBox(2.0, 3.0,4.0);
Console::WriteLine(newBox->Volume());  // Output is 24

570

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 570



The only polymorphic Volume() function in the NewBox class is the one that is inherited from the Box
class so that is the function that is called in this case.

Delegates and Events
An event is a member of a class that enables an object to signal when a particular event has occurred,
and the signaling process for an event involves a delegate that provides the mechanism for responding
to the event is some way. A mouse click is a typical example of an event and the object that originated
the mouse click event would signal that the event has occurred by calling one or more functions that are
responsible for dealing with the event; a delegate would provide the means to access the function that is
to respond to the event. Let’s look at delegates first and return to events a little later in this chapter.

The idea of a delegate is very simple — it’s an object that can encapsulate one or more pointers to func-
tions that have a given parameter list and return type. A function that a delegate points to will deal with
a particular kind of event. Thus a delegate provides a similar facility in C++/CLI to a function pointer in
native C++. Although the idea of a delegate is simple, however, the detail of creating and using delegates
can get a little confusing so it’s time to concentrate.

Declaring Delegates 
The declaration for a delegate looks like a function prototype preceded by the delegate keyword but 
in reality it defines two things: the reference type name for a delegate object, and the parameter list and
return type of the functions that can be associated with the delegate. A delegate reference type has the
System::Delegate class as a base class so a delegate type always inherits the member of this class. 
The declaration for a delegate looks like a function prototype preceded by the delegate keyword but 
in reality it defines a reference type for the delegate, and the signature of the functions that can be associ-
ated with the delegate. Here’s an example of a declaration for a delegate:

public delegate void Handler(int value);         // Delegate declaration

This defines a delegate reference type Handler where the Handler type is derived from
System::Delegate. An object of type Handler can contain pointers to one or more functions 
that have a single parameter of type int and a return type that is void. The functions pointed 
to by a delegate can be instance functions or static functions.

Creating Delegates
Having defined the delegate type, you can now create delegate objects of this type. You have a choice of two
constructors for a delegate: one that accepts a single argument and another that accepts two arguments.

The argument to the delegate constructor that accepts one argument must be a static function member of a
class or a global function that has the return type and parameter list specified in the delegate declaration.
Suppose you define a class with the name HandlerClass like this:

public ref class HandlerClass
{
public:
static void Fun1(int m) 
{ Console::WriteLine(L”Function1 called with value {0}”, m); }

571

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 571



static void Fun2(int m) 
{ Console::WriteLine(L”Function2 called with value {0}”, m); }

void Fun3(int m) 
{ Console::WriteLine(L”Function3 called with value {0}”, m+value); }

void Fun4(int m) 
{ Console::WriteLine(L”Function3 called with value {0}”, m+value); }

HandlerClass():value(1){}

HandlerClass(int m):value(m){}
protected:
int value;

};

The class has four functions with a parameter of type int and a return type of void. Two of these are
static functions and two are instance functions. It also has two constructors including a no-arg construc-
tor. This class doesn’t do much except produce output where you’ll be able to determine which function
was called and for instance functions what the object was.

You could create a Handler delegate like this:

Handler^ handler = gcnew Handler(HandlerClass::Fun1);    // Delegate object

The handler object contains the address of the static function, Fun1, in the HandlerClass class. If you
call the delegate, the HandlerClass::Fun1() function is called with the argument the same as you
pass in the delegate call. You can write the delegate call like this:

handler->Invoke(90);

This calls all the functions in the invocation list for the handler delegate. In this case there is just one
function in the invocation list, HandlerClass::Fun1(), so the output is:

Function1 called with value 90

You could also call the delegate with the following statement:

handler(90);

This is shorthand for the previous statement that explicitly called the Invoke() function and this is the
form of delegate call you see generally.

The + operator is overloaded for delegate types to combine the invocation lists for two delegates into 
a new delegate object. For example, you could apparently modify the invocation list for the handler
delegate with this statement:

handler += gcnew Handler(HandlerClass::Fun2);

The handler variable now references a delegate object with an invocation list containing two functions: Fun1
and Fun2. However, this is a new delegate object. The invocation list for a delegate cannot be changed so

572

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 572



the + operator works in a similar way to the way it works with String objects — you always get a new
object created. You could invoke the delegate again with this statement:

handler(80);

Now you get the output:

Function1 called with value 80
Function2 called with value 80

Both functions in the invocation list are called and they are called in the sequence in which they were
added to the delegate object.

You can effectively remove an entry from the invocation list for a delegate by using the — operator:

handler -= gcnew Handler(HandlerClass::Fun1);

This creates a new delegate object that contains just HandlerClass::Fun2() in its invocation list. The
effect of using the -= operator is to remove the functions that are in the invocation list on the right side
(HandlerClass::Fun1) from the list for the handler and create a new object pointing to the functions
that remain.

Note that the invocation list for a delegate must contain at least one function pointer. If you remove 
all the function pointers using the subtraction operator then the result will be nullptr.

When you use the delegate constructor that has two parameters, the first argument is a reference to an
object on the CLR heap and the second object is the address of an instance function for that object’s type.
Thus this constructor creates a delegate that contains a pointer to the instance function specified by the
second argument for the object specified by the first argument. Here’s how you can create such a delegate:

HandlerClass^ obj = gcnew HandlerClass;
Handler^ handler2 = gcnew Handler (obj, &HandlerClass::Fun3);

The first statement creates an object and the second statement creates a delegate pointing to the Fun3()
function for the HandlerClass object obj. The delegate expects an argument of type int so you can
invoke it with the statement:

handler2(70);

This results in Fun3() for obj being called with an argument value of 70, so the output is:

Function3 called with value 71

The value stored in the value field for obj is 1 because you create the object using the default construc-
tor. The statement in the body of Fun3() adds the value field to the function argument — hence the 71
in the output.

Because they are both of the same type, you could combine the invocation list for handler with the list
for the handler2 delegate:

Handler^ handler = gcnew Handler(HandlerClass::Fun1);    // Delegate object

573

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 573



handler += gcnew Handler(HandlerClass::Fun2);

HandlerClass^ obj = gcnew HandlerClass;
Handler^ handler2 = gcnew Handler (obj, &HandlerClass::Fun3);
handler += handler2;

Here you recreate handler to reference a delegate that contains pointers to the static Fun1() and Fun2()
functions. You then create a new delegate referenced by handler that contains the static functions plus
the Fun3() instance function for obj. You can now invoke the delegate with the statement:

handler(50);

This results in the following output:

Function1 called with value 50
Function2 called with value 50
Function3 called with value 51

As you see, invoking the delegate calls the two static functions plus the Fun3() member of obj, so you
can combine static and non-static functions with a single invocation list for a delegate.

Let’s put some of the fragments together in an example to make sure it does really work.

Try It Out Creating and Calling Delegates
Here’s a potpourri of what you have seen so far about delegates:

// Ex9_17.cpp : main project file.
// Creating and calling delegates

#include “stdafx.h”

using namespace System;

public ref class HandlerClass
{
public:
static void Fun1(int m) 
{ Console::WriteLine(L”Function1 called with value {0}”, m); }

static void Fun2(int m) 
{ Console::WriteLine(L”Function2 called with value {0}”, m); }

void Fun3(int m) 
{ Console::WriteLine(L”Function3 called with value {0}”, m+value); }

void Fun4(int m) 
{ Console::WriteLine(L”Function3 called with value {0}”, m+value); }

HandlerClass():value(1){}

HandlerClass(int m):value(m){}

574

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 574



protected:
int value;

};

public delegate void Handler(int value);         // Delegate declaration

int main(array<System::String ^> ^args)
{
Handler^ handler = gcnew Handler(HandlerClass::Fun1); // Delegate object
Console::WriteLine(L”Delegate with one pointer to a static function:”);
handler->Invoke(90);

handler += gcnew Handler(HandlerClass::Fun2);
Console::WriteLine(L”\nDelegate with two pointers to static functions:”);
handler->Invoke(80);

HandlerClass^ obj = gcnew HandlerClass;
Handler^ handler2 = gcnew Handler (obj, &HandlerClass::Fun3);
handler += handler2;
Console::WriteLine(L”\nDelegate with three pointers to functions:”);
handler(70);

Console::WriteLine(L”\nShortening the invocation list...”);
handler -= gcnew Handler(HandlerClass::Fun1);
Console::WriteLine

(L”\nDelegate with pointers to one static and one instance function:”);
handler(60);

}

This example produces the following output:

Delegate with one pointer to a static function:
Function1 called with value 90

Delegate with two pointers to static functions:
Function1 called with value 80
Function2 called with value 80

Delegate with three pointers to functions:
Function1 called with value 70
Function2 called with value 70
Function3 called with value 71

Shortening the invocation list...

Delegate with pointers to one static and one instance function:
Function2 called with value 60
Function3 called with value 61

How It Works
You saw all the operations that appear in main() in the previous section. You invoke a delegate using
the Invoke() function explicitly and by just using the delegate handle followed by its argument list.
You can see from the output that everything works as it should.

575

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 575



Although the example shows a delegate that can contain pointers to functions with a single argument, 
a delegate can point to functions with as many arguments as you want. For example, you could declare a
delegate type like this:

delegate void MyHandler(double x, String^ description);

This statement declares the MyHandler delegate type that can only point to functions with a void return
type and two parameters, the first of type double and the second of type String^. 

Unbound Delegates
The delegates you have seen up to now have been examples of bound delegates. They are called bound del-
egates because they each have a fixed set of functions in their invocation list. You can also create unbound
delegates; an unbound delegate points to an instance function with a given parameter list and return type
for a given type of object. Thus the same delegate can invoke the instance function for any object of the
specified type. Here’s an example of declaring an unbound delegate:

public delegate void UBHandler(ThisClass^, int value);         

The first argument specifies the type of the this pointer for which a delegate of type UBHandler can call
an instance function; the function must have a single parameter of type int and a return type of void.
Thus a delegate of type UBHandler can only call a function for an object of type ThisClass but for any
object of that type. This may sound a bit restrictive but turns out to be quite useful; you could use the
delegate to call a function for each element of type ThisClass^ in an array for example. 

You can create a delegate of type UBHandler like this:

UBHandler^ ubh = gcnew UBHandler(&ThisClass::Sum);

The argument to the constructor is the address of a function in the ThisClass class that has the required
parameter list and return type.

Here’s a definition for ThisClass:

public ref class ThisClass
{
public:
void Sum(int n, String^ str)
{ Console::WriteLine(L”Sum result = {0}”, value + n); } 

void Product(int n, String^ str)
{ Console::WriteLine(L”Product result = {0}”, value*n); } 

ThisClass(double v) : value(v){}

private:
double value;

};  

576

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 576



The Sum() function is a public instance member of the ThisClass class, so invoking the ubh delegate
will call the Sum() function for any object of this class type.

When you call an unbound delegate, the first argument is the object for which the functions in the invo-
cation list are to be called, and the subsequent arguments are the arguments to those functions. Here’s
how you might call the ubh delegate:

ThisClass^ obj = gcnew ThisClass(99.0);
ubh(obj, 5);

The first argument is a handle to a ThisClass object that you created on the CLR heap by passing the
value 99.0 to the class constructor. The second argument to the ubh call is 5, so it results in the Sum()
function being called with an argument of 5 for the object referenced by obj.

You can combine unbound delegates using the + operator to create a delegate that calls multiple func-
tions. Of course, all the functions must be compatible with the delegate, so for ubh they must be instance
functions in the ThisClass class that have one parameter of type int and a void return type. Here’s an
example:

ubh += gcnew UBHandler(&ThisClass::Product); 

Invoking the new delegate referenced by ubh calls both the Sum() and Product() functions for an object
of type ThisClass. Let’s see it in action.

Try It Out Using an Unbound Delegate
This example uses the code fragments from the previous section to demonstrate the operation of an
unbound delegate:

// Ex9_18.cpp : main project file.
// Using an unbound delegate

#include “stdafx.h”

using namespace System;

public ref class ThisClass
{
public:
void Sum(int n)
{ Console::WriteLine(L”Sum result = {0} “, value+n); } 

void Product(int n)
{ Console::WriteLine(L”product result = {0} “, value*n); } 

ThisClass(double v) : value(v){}

private:
double value;

577

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 577



}; 

public delegate void UBHandler(ThisClass^, int value);         

int main(array<System::String ^> ^args)
{
array<ThisClass^>^ things = { gcnew ThisClass(5.0),gcnew ThisClass(10.0),

gcnew ThisClass(15.0),gcnew ThisClass(20.0),
gcnew ThisClass(25.0)

};

UBHandler^ ubh = gcnew UBHandler(&ThisClass::Sum);  // Create a delegate object 

// Call the delegate for each things array element
for each(ThisClass^ thing in things)
ubh(thing, 3);

ubh += gcnew UBHandler(&ThisClass::Product);   // Add a function to the delegate

// Call the new delegate for each things array element
for each(ThisClass^ thing in things)
ubh(thing, 2);

return 0;
}

This example produces the following output:

Sum result = 8
Sum result = 13
Sum result = 18
Sum result = 23
Sum result = 28
Sum result = 7
product result = 10
Sum result = 12
product result = 20
Sum result = 17
product result = 30
Sum result = 22
product result = 40
Sum result = 27
product result = 50

How It Works
The UBHandler delegate type is declared by the following statement.

public delegate void UBHandler(ThisClass^, int value);         

UBHandler delegate objects are unbound delegates that can call instance functions for objects of type
ThisClass as long as they have a single parameter of type int and a return type of void.

578

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 578



The ThisClass class definition in the example is the same as you saw in the previous section. It has two
instance functions — Sum() and Product() — that have a parameter type of int and a return type of
void so either or both may be called by a delegate of type UBHandler.

You create an array of handles to ThisClass objects in main() with the statement:

array<ThisClass^>^ things = { gcnew ThisClass(5.0),gcnew ThisClass(10.0),
gcnew ThisClass(15.0),gcnew ThisClass(20.0),
gcnew ThisClass(25.0)

};

The five objects in the initialization list each encapsulate a different value of type double, so for Sum()
and Product() function calls the object involved will be easy to identify in the output.

You create a delegate object with the statement:

UBHandler^ ubh = gcnew UBHandler(&ThisClass::Sum);  // Create a delegate object 

Invoking the delegate object referenced by the handle ubh calls the Sum() function for any object of type
ThisClass, and you do this for each object in the things array:

for each(ThisClass^ thing in things)
ubh(thing, 3);

The for each loop iterates over each element in the things array so in the loop body you call the del-
egate with an element from the array as the first argument. This causes the Sum() function to be called
for the thing object with an argument of 3. Thus this loop produces the first five output lines.

Next you create a new delegate:

ubh += gcnew UBHandler(&ThisClass::Product);   // Add a function to the delegate

This statement creates a new UBHandler delegate that points to the Product() function and combines
this with the existing delegate referenced by ubh. The result is another delegate that has pointers to both
the Sum() and Product() functions in its invocation list.

The last loop calls the ubh delegate for each element in the things array with the argument value 2. The
result will be that both Sum() and Product() will be called for each ThisClass object with the argument
value 2, so the loop produces the next ten lines of output.

Although you have used unbound delegates in a very simple way, here they provide immense flexibility
in your programs. You could pass an unbound delegate as an argument to a function, for example, to
enable the same function to call different combinations of instance functions at different times so the del-
egate becomes a kind of function selector. The sequence in which functions are called by a delegate is the
sequence that they appear in the invocation list so a delegate provides you with the means of controlling
the sequence in which functions are called.

579

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 579



Creating Events 
As I said earlier, the signaling of an event involves a delegate and the delegate contains pointers to the
functions that are to be called when the event occurs. Most of the events you work with in your programs
are events associated with controls such as buttons or menu items and these events arise from user inter-
actions with your program, but you can also define and trigger events in your own program code.

An event is a member of a reference class that you define using the event keyword and a delegate
class name:

public delegate void DoorHandler(String^ str);

// Class with an event member
public ref class Door
{
public:
// An event that will call functions associated
// with an DoorHandler delegate object
event DoorHandler^ Knock;      

// Function to trigger events
void TriggerEvents()
{
Knock(“Fred”);
Knock(“Jane”);

}
};

The Door class has an event member with the name Knock that corresponds to a delegate of type
DoorHandler. Knock is an instance member of the class, but you can specify an event as a static class
member using the static keyword. You can also declare an event to be virtual. When a Knock
event is triggered, it can call functions with the parameter list and return type that are specified by 
the DoorHandler delegate.

The Door class also has a public function, TriggerEvent() that triggers two Knock events, each with
different arguments. The arguments are passed to the functions that have been registered to receive noti-
fication of the Knock event. As you see, triggering an event is essentially the same as calling a delegate.

You could define a class that might handle Knock events like this:

public ref class AnswerDoor
{
public:
void ImIn(String^ name)
{
Console::WriteLine(L”Come in {0}, it’s open.”,name);

}

void ImOut(String^ name)
{
Console::WriteLine(L”Go away {0}, I’m out.”,name);

}
};

580

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 580



The AnswerDoor class has two public function members that potentially could handle a Knock event
because they both have the parameter list and return type identified in the declaration of the DoorHandler
delegate.

Before you can register functions that are to receive notifications of Knock events, you need to create a
Door object. You can create a Door object like this:

Door^ door = gcnew Door;

Now you can register a function to receive notification of the Knock event in the Cap Door object like this:

AnswerDoor^ answer = gcnew AnswerDoor;
door->Knock += gcnew DoorHandler(answer, &AnswerDoor::ImIn);

The first statement creates an object of type AnswerDoor — you need this because the ImIn() and
ImOut() functions are not static class members. You then add an instance of the DoorHandler delegate
type to the Knock member of Cap Door. This exactly parallels the process of adding function pointers
to a delegate and you could add further handler functions to be called when a Knock event is triggered
in the same way. We can see it operating in an example.

Try It Out Handling Events
This example uses the classes from the preceding section to define, trigger, and handle events:

// Ex9_19.cpp : main project file.
// Defining, triggering and handling events.
#include “stdafx.h”

using namespace System;

public delegate void DoorHandler(String^ str);

// Class with an event member
public ref class Door
{
public:
// An event that will call functions associated
// with an DoorHandler delegate object
event DoorHandler^ Knock;      

// Function to trigger events
void TriggerEvents()
{
Knock(L”Fred”);
Knock(L”Jane”);

}
};

// Class defining handler functions for Knock events
public ref class AnswerDoor
{
public:
void ImIn(String^ name)

581

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 581



{
Console::WriteLine(L”Come in {0}, it’s open.”,name);

}

void ImOut(String^ name)
{
Console::WriteLine(L”Go away {0}, I’m out.”,name);

}
};

int main(array<System::String ^> ^args)
{
Door^ door = gcnew Door;
AnswerDoor^ answer = gcnew AnswerDoor;

// Add handler for Knock event member of door
door->Knock += gcnew DoorHandler(answer, &AnswerDoor::ImIn);

door->TriggerEvents();               // Trigger Knock events

// Change the way a knock is dealt with
door->Knock -= gcnew DoorHandler(answer, &AnswerDoor::ImIn);
door->Knock += gcnew DoorHandler(answer, &AnswerDoor::ImOut);
door->TriggerEvents();               // Trigger Knock events
return 0;

}

Executing this example results in the following output:

Come in Fred, it’s open.
Come in Jane, it’s open.
Go away Fred, I’m out.
Go away Jane, I’m out.

How It Works
You first create two objects in main():

Door^ door = gcnew Door;
AnswerDoor^ answer = gcnew AnswerDoor;

The door object has an event member, Knock, and the answer object has member functions that can be
registered to be called for Knock events.

The next statement registers the ImIn() member of the answer object to receive notification of Knock
events for the door object:

door->Knock += gcnew DoorHandler(answer, &AnswerDoor::ImIn);

If it made sense to do so, you could register other functions to be called when a Knock event is triggered.

The next statement calls the TriggerEvents() member of the door object:

door->TriggerEvents();               // Trigger Knock events

582

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 582



This results in two Knock events, one with the argument “Fred” and the other with the argument
“Jane”. The result is that the ImIn() function is called once for each event, which produces the first 
two lines of output.

Of course, you might want to respond differently to an event at different times, depending on the circum-
stances, and this is what the next three statements in main() demonstrate:

door->Knock -= gcnew DoorHandler(answer, &AnswerDoor::ImIn);
door->Knock += gcnew DoorHandler(answer, &AnswerDoor::ImOut);
door->TriggerEvents();               // Trigger Knock events

The first statement removes the pointer to the ImIn() function from the event and the second statement
registers the ImOut() function for the answer object to receive event notifications. When the Knock events
are triggered by the third statement, the ImOut() function is called so the results are a little different.

Destructors and Finalizers in Reference Classes
You can define a destructor for a reference class in the same way as you define a constructor for a native
C++ class. The destructor for a reference class is called when the handle goes out of scope or the object is
part of another object that is being destroyed. You can also apply the delete operator to a handle for a
reference class object and that results in the destructor being called. The primary reason for implement-
ing a destructor for a native C++ class is to deal with data members allocated on the heap, but obviously
that doesn’t apply to reference classes so there is less need to define a destructor in a ref class. You
might do this when objects of the class are using other resources that are not managed by the garbage
collector, such as files that need to be closed in an orderly fashion when an object is destroyed. You can
also clean up such resources in another kind of class member called a finalizer.

A finalizer is a special kind of function member of a reference class that is called automatically by the
garbage collector when destroying an object. Note that the finalizer is not called for a class object if the
destructor was called explicitly or was called as a result of applying the delete operator to the object. 
In a derived class, finalizers are called in the same sequence as destructor calls would be, so the finalizer
for the basest class is called first, followed by the finalizers for successive classes in the hierarchy with
the finalizer for the most derived class being called last.

You define a finalizer in a class like this:

public ref class MyClass
{
// Finalizer definition
!MyClass()
{
// Code to clean-up when an object is destroyed...

}

// Rest of the class definition...
};

You define a finalizer function in a class in a similar way to a destructor, but with ! instead of the ~ that
you use preceding the class name for a destructor. Similar to a destructor, you must not supply a return

583

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 583



type for a finalizer, and the access specifier for a finalizer will be ignored. You can see how destructors
and finalizers operate with a little example.

Try It Out Finalizers and Destructors
This example shows when destructors and finalizers get called in an application:

// Ex9_20.cpp : main project file.
// Finalizers and destructors

#include “stdafx.h”

using namespace System;

ref class MyClass 
{
public:
// Constructor
MyClass(int n) : value(n){}

// Destructor
~MyClass()
{ 
Console::WriteLine(“MyClass object({0}) destructor called.”, value);

}

// Finalizer
!MyClass()
{ 
Console::WriteLine(“MyClass object({0}) finalizer called.”, value);

}
private:
int value;

};

int main(array<System::String ^> ^args)
{
MyClass^ obj1 = gcnew MyClass(1);
MyClass^ obj2 = gcnew MyClass(2);
MyClass^ obj3 = gcnew MyClass(3);
delete obj1;
obj2->~MyClass();

Console::WriteLine(L”End Program”);
return 0;

}

The output from this example is:

MyClass object(1) destructor called.
MyClass object(2) destructor called.
End Program
MyClass object(3) finalizer called.

584

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 584



How It Works
The MyClass class has a constructor, a destructor, and a finalizer. The destructor and finalizer just write
output to the command line so you know when each is called. You are also able to tell for which object
the finalizer or destructor was called because they output the value of the value field.

In the main() function, you create three objects of type MyClass encapsulating values 1, 2, and 3 to 
distinguish them. You then apply the delete operator to obj1 and then explicitly call the destructor for
obj2. Making these calls results in the first two lines of the example output. This output is generated by
the destructor calls for the objects that results from making the delete and explicit destructor calls.

The next line of output is produced by the statement preceding the return statement in main(), so the
last line of output generated by the finalizer for obj3 occurs after the end of main(). The output shows
that constructors are called when you delete an object or call its destructor explicitly, the destructor for the
object will be executed, and these operations also suppress the execution of the finalizers for the objects.
The object referenced by obj3 is destroyed by the garbage collector when the program ends so the final-
izer gets called to clean up any non-managed resources. 

Thus, if a class has a finalizer and a destructor, only one of these is called when the object is destroyed,
the destructor is called if you programmatically destroy the object, and the finalizer is called if it dies
naturally by going out of scope. You can also deduce from this that if you rely on a finalizer to clean up
after your objects have been destroyed, you should not explicitly delete the objects.

If you comment out the statements in main() that destroy obj1 and obj2, you will see that the finalizers
for these objects are called by the garbage collector when the program ends. On the other hand, if you
comment out the finalizer from MyClass, you will see that the destructor for obj3 does not get called by
the garbage collector so no clean up occurs. You can conclude that if you want to be sure that unmanaged
resources used by an object are taken care of regardless of how an object is terminated, you should imple-
ment both a destructor and a finalizer in the class.

Generic Classes
C++/CLI provides you with the capability for defining generic classes where a specific class is instantiated
from the generic class type at run-time. You can define generic value classes, generic reference classes,
generic interface classes, and generic delegates. You define a generic class using one or more type parame-
ters in a similar way to generic functions that you saw in Chapter 6.

For example, here’s how you could define a generic version of the Stack class you saw in Ex9_14:

// Stack.h for Ex9_21
// A generic pushdown stack

generic<typename T> ref class Stack
{
private:
// Defines items to store in the stack
ref struct Item
{

585

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 585



T Obj;                        // Handle for the object in this item
Item^ Next;                   // Handle for next item in the stack or nullptr

// Constructor
Item(T obj, Item^ next): Obj(obj), Next(next){}

};

Item^ Top;                      // Handle for item that is at the top

public:
// Push an object on to the stack
void Push(T obj)
{
Top = gcnew Item(obj, Top);   // Create new item and make it the top

}

// Pop an  object off the stack
T Pop()
{  
if(Top == nullptr)            // If the stack is empty
return T();                 // return null equivalent

T obj = Top->Obj;             // Get object from item
Top = Top->Next;              // Make next item the top 
return obj;

}
};

The generic version of the class now has a type parameter, T. Note that you could use the class key-
word instead of the typename keyword when specifying the parameter — there is no difference between
them in this context. A type argument replaces T when the generic class type is used; T is replaced by the
type argument through the definition of the class so a major advantage over the original version is that
the generic class type is much safer without losing any of its flexibility. The Push() member of the origi-
nal class accepts any handle, so you could happily push a mix of objects of type MyClass^, String^, or
indeed any handle type onto the same stack, whereas an instance of the generic type accepts only objects
of the type specified as the type argument of objects of a type that have the type argument as a base.

Look at the implementation of the Pop() function. The original version returned nullptr if the top item
in the stack was null, but you can’t return nullptr for a type parameter because the type argument could
be a value type. The solution is to return T(), which is a no-arg constructor call for type T. This results in
the equivalent of 0 for a value type and nullptr for a handle. 

Note that you can specify constraints on a generic class type parameter using the where keyword in the
same way as you did for generic functions in Chapter 6.

You could create a stack from the Stack<> generic type that stores handles to Box objects like this:

Stack<Box^>^ stack = gcnew Stack<Box^>;

The type argument Box^ goes between the angled brackets and the statement creates a Stack<Box^>
object on the CLR heap. This object allows handles of type Box^ to be pushed onto the stack as well as
handles of any type that have Box as a direct or indirect base class. You can try this out with a revised
version of Ex9_14.

586

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 586



Try It Out Using a Generic Class Type
Create a new CLR console program with the name Ex9_21 and then copy the header files Container.h,
Box.h, and GlassBox.h from Ex9_14 to the directory for this project. Add these headers to the project by
right-clicking Header Files in the Solution Explorer tab and selecting Add > Existing Item from
the context menu. You can then add a new header file, Stack.h, to the project and enter the generic Stack
class definition that you saw in the previous section. Don’t forget the #pragma once directive at the begin-
ning of the file. 

// Ex9_21.cpp : main project file.

// Using a nested class to define a stack

#include “stdafx.h”
#include “Box.h”                       // For Box and Container
#include “GlassBox.h”                  // For GlassBox (and Box and Container)
#include “Stack.h”                     // For the generic stack class 

using namespace System;

int main(array<System::String ^> ^args)
{
array<Box^>^ boxes = { gcnew Box(2.0, 3.0, 4.0),

gcnew GlassBox(2.0, 3.0, 4.0),
gcnew Box(4.0, 5.0, 6.0),
gcnew GlassBox(4.0, 5.0, 6.0)

};

Console::WriteLine(L”The array of boxes have the following volumes:”);
for each(Box^ box in boxes)
box->ShowVolume();                           // Output the volume of a box

Console::WriteLine(L”\nNow pushing the boxes on the stack...”);

Stack<Box^>^ stack = gcnew Stack<Box^>;        // Create the stack
for each(Box^ box in boxes)
stack->Push(box);

Console::WriteLine(
L”Popping the boxes off the stack presents them in reverse order:”);

Box^ item;
while((item = stack->Pop()) != nullptr)
safe_cast<Container^>(item)->ShowVolume();

// Try the generic Stack type storing integers
Stack<int>^ numbers = gcnew Stack<int>;        // Create the stack
Console::WriteLine(L”\nNow pushing integers on to the stack:”);
for(int i = 2 ; i<=12 ; i += 2)
{ 
Console::Write(L”{0,5}”,i);
numbers->Push(i);

}
int number;

587

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 587



Console::WriteLine(L”\n\nPopping integers off the stack produces:”);
while((number = numbers->Pop()) != 0)
Console::Write(L”{0,5}”,number);

Console::WriteLine();
return 0;

}

This example produces the following output:

The array of boxes have the following volumes:
CBox usable volume is 24
CBox usable volume is 20.4
CBox usable volume is 120
CBox usable volume is 102

Now pushing the boxes on the stack...
Popping the boxes off the stack presents them in reverse order:
CBox usable volume is 102
CBox usable volume is 120
CBox usable volume is 20.4
CBox usable volume is 24

Now pushing integers on to the stack:
2    4    6    8   10   12

Popping integers off the stack produces:
12   10    8    6    4    2

How It Works
The stack to store Box object handles is defined in the statement:

Stack<Box^>^ stack = gcnew Stack<Box^>;        // Create the stack

The type parameter is Box^ so the stack stores handles to Box objects or handles to GlassBox objects. The
code to push objects on to the stack and to pop them off again is exactly the same as in Ex9_14 and the
output is the same, too. The difference here is that you could not push an object on to the stack if the type
did not have Box as a direct or indirect base class so the generic type guarantees that all the objects are
Box objects.

Storing integers now requires a new Stack<> object:

Stack<int>^ numbers = gcnew Stack<int>;        // Create the stack

The original version used the same non-generic Stack object to store Box object references and integers
thus demonstrating how type safety was completely lacking in the operation of the stack. Here you spec-
ify the type argument for the generic class as the value type int, so only objects of this type are accepted
by the Push() function.

The loops that pop objects off the stack demonstrate that returning T() in the Pop() function does indeed
return 0 for type int and nullptr for the handle type Box^.

588

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 588



Generic Interface Classes
You can define generic interfaces in the same way as you define generic reference classes and a generic
reference class can be defined in terms of a generic interface. To show how this works, you can define a
generic interface that can be implemented by the generic class, Stack<>. Here’s a definition for a generic
interface:

// Interface for stack operations
generic<typename T> public interface class IStack
{
void Push(T obj);      // Push an item on to the stack
T Pop();

};

This interface has two functions identifying the push and pop operations for a stack.

The definition of the generic Stack<> class that implements the IStack<> generic interface is:

generic<typename T> ref class Stack : IStack<T>
{
private:

// Defines items to store in the stack
ref struct Item
{

T Obj;                        // Handle for the object in this item
Item^ Next;                   // Handle for next item in the stack or nullptr

// Constructor
Item(T obj, Item^ next): Obj(obj), Next(next){}

};

Item^ Top;                      // Handle for item that is at the top

public:
// Push an object on to the stack
virtual void Push(T obj)
{

Top = gcnew Item(obj, Top);   // Create new item and make it the top
}

// Pop an  object off the stack
virtual T Pop()
{  

if(Top == nullptr)            // If the stack is empty
return T();                 // return null equivalent

T obj = Top->Obj;             // Get object from item
Top = Top->Next;              // Make next item the top 
return obj;

}
};

The changes from the previous generic Stack<> class definition are shaded. In the first line of the generic
class definition the type parameter T is used as the type argument to the interface IStack so the type argu-
ment used for the Stack<> class instance also applies to the interface. The Push() and Pop() functions

589

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 589



in the class now have to be specified as virtual because the functions are virtual in the interface. You could
add a header file containing the IStack interface to the previous example and amend the generic Stack<>
class definition to the example and recompile the program to see it operating with a generic interface.

Generic Collection Classes
A collection class is a class that organizes and stores objects in a particular way; a linked list and a stack
are typical examples of collection classes. The System::Collections::Generic namespace contains a
wide range of generic collection classes that implement strongly typed collections. The generic collection
classes available include the following:

I won’t go into details of all these, but I’ll mention briefly just three that you are most likely to want to
use in your programs. I’ll use examples that store value types for simplicity, but of course the collection
classes work just as well with reference types.

List<T> — A Generic List
List<T> defines a generic list that automatically increases in size when necessary. You can add items to
a list using the Add() function and you can access items stored in a List<T> using an index, just like an
array. Here’s how you define a list to store values of type int:

List<int> numbers = gcnew List<int>;

This has a default capacity, but you could specify the capacity you require. Here’s a definition of a list
with a capacity of 500:

List<int> numbers = gcnew List<int>;

You can add objects to the list using the Add() functions:

for(int i = 0 ; i<1000 ; i++)
numbers->Add( 2*i+1);

This adds 1000 integers to the numbers list. The list grows automatically if its capacity is less than 1000.
When you want to insert an item in an existing list, you can use the Insert() function to insert the item

Type Description

List<T> Stores items of type T in a simple list that can grow in size automatically
when necessary

LinkedList<T> Stores items of type T in a doubly linked list

Stack<T> Stores item of type T in a stack, which is a first-in last-out storage mechanism

Queue<T> Stores items of type T in a queue, which is a first-in first-out storage 
mechanism

Dictionary<K,V> Stores key/value pairs where the keys are of type K and the values are of
type V

590

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 590



specified by the second argument at the index position specified by the first argument. Items in a list are
indexed from zero like an array.

You could sum the contents of the list like this:

int sum = 0;
for(int i = 0 ; i<numbers->Count ; i++)
sum += numbers[i];

Count is a property that returns the current number of items in the list. The items in the list may be
accessed through the default indexed property and you can get and set values in this way. Note that
you cannot increase the capacity of a list using the default indexed property. If you use an index out-
side the current range of items in the list, an exception is thrown.

You could also sum the items in the list like this:

for each(int n in numbers)
sum +=n;

You have a wide range of other functions you can apply to a list including functions for removing elements,
and sorting and searching the contents of the list.

LinkedList<T> — A Generic Doubly Linked List
LinkedList<T> defines a linked list with forward and backward pointers so you can iterate through the
list in either direction. You could define a linked list that stores floating-point values like this:

LinkedList<double>^ values = gcnew LinkedList<double>;

You could add values to the list like this:

for(int i = 0 ; i<1000 ; i++)
values->AddLast(2.5*i);

The AddLast() function adds an item to the end of the list. You can add items to the beginning of the
list by using the AddFirst() function. Alternatively, you can use the AddHead() and AddTail() func-
tions to do the same things.

The Find() function returns a handle of type LinkedListNode<T>^ to a node in the list containing 
the value you pass as the argument to Find(). You could use this handle to insert a new value before 
or after the node that you found. For example:

LinkedListNode<double>^ node = values->Find(20.0);   // Find node containing 20.0
if(node != nullptr)
values->AddBefore(node, 19.9);              // Insert 19.1 before node

The first statement finds the node containing the value 20.0. If it does not exist, the Find() function
returns nullptr. The last statement executed if node is not null adds a new value of 19.9 before node.
You could use the AddAfter() function to add a new value after a given node. Searching a linked list 
is relatively slow because it is necessary to iterate through the elements sequentially.

591

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 591



You could sum the items in the list like this:

double sumd = 0;
for each(double v in values)
sumd += v;

The for each loop iterates through all the items in the list and accumulates the total in sum. 

The Count property returns the number of items in the linked list and the Head and Tail properties return
the values of the first and last items. The First and Last properties are alternatives to Head and Tail.

Dictionary<TKey, TValue> — A Generic Dictionary Storing Key/Value Pairs
The generic Dictionary<> collection class requires two type arguments; the first is the type for the key
and the second is the type for the value associated with the key. A dictionary is especially useful when
you have pairs of objects that you want to store where one object is a key to accessing the other object. A
name and a phone number are an example of a key value pair that you might want to store in a diction-
ary because you would typically want to retrieve a phone number using a name as the key. Suppose you
have defined Name and PhoneNumber classes to encapsulate names and phone numbers respectively.
You can define a dictionary to store name/number pairs like this: 

Dictionary<Name^, PhoneNumber^>^ phonebook = gcnew Dictionary<Name^, PhoneNumber^>;

The two type arguments are Name^ and PhoneNumber^ so the key is a handle for a name and the value
is a handle for a phone number.

You can add an entry in the phonebook dictionary like this:

Name^ name = gcnew Name(“Jim”, “Jones”);
PhoneNumber^ number = gcnew PhoneNumber(914, 316, 2233);
phonebook->Add(name, number);          // Add name/number pair to dictionary

To retrieve an entry in a dictionary you can use the default indexed property — for example:

try
{
PhoneNumber^ theNumber = phonebook[name];

}
catch(KeyNotFoundFoundException^ knfe)
{
Console::WriteLine(knfe);

}

You supply the key as the index value for the default indexed property, which in this case is a handle to a
Name object. The value is returned if the key is present, or an exception of type KeyNotFoundException
is thrown if the key is not found in the collection; therefore, whenever you are accessing a value for a key
that may not be present, the code should be in a try block.

A Dictionary<> object has a Keys property that returns a collection containing the keys in the dictionary
as well as a Values property that returns a collection containing the values. The Count property returns
the number of key/value pairs in the dictionary.

Let’s try some of these in a working example.

592

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 592



Try It Out Using Generic Collection Classes
This example exercises the three collection classes you have seen:

// Ex9_22.cpp : main project file.
// Using generic collection classes

#include “stdafx.h”

using namespace System;
using namespace System::Collections::Generic;    // For generic collections

// Class encapsulating a name
ref class Name
{
public:
Name(String^ name1, String^ name2) : First(name1),Second(name2){}
virtual String^ ToString() override{ return First + L” “ + Second;}

private:
String^ First;
String^ Second;

};

// Class encapsulating a phone number
ref class PhoneNumber
{
public:
PhoneNumber(int area, int local, int number):

Area(area),Local(local), Number(number){}
virtual String^ ToString() override
{ return Area + L” “ + Local + L” “ + Number; }

private:
int Area;
int Local;
int Number;

};

int main(array<System::String ^> ^args)
{
// Using List<T>
Console::WriteLine(L”Creating a List<T> of integers:”);
List<int>^ numbers = gcnew List<int>;
for(int i = 0 ; i<1000 ; i++)
numbers->Add(2*i+1);

// Sum the contents of the list
int sum = 0;
for(int i = 0 ; i<numbers->Count ; i++)
sum += numbers[i];

Console::WriteLine(L”Total = {0}”, sum);

// Using LinkedList<T>
Console::WriteLine(L”\nCreating a LinkedList<T> of double values:”);

593

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 593



LinkedList<double>^ values = gcnew LinkedList<double>;
for(int i = 0 ; i<1000 ; i++)
values->AddTail(2.5*i);

double sumd = 0.0;
for each(double v in values)
sumd += v;

Console::WriteLine(L”Total = {0}”, sumd);

LinkedListNode<double>^ node = values->Find(20.0);   // Find node containing 20.0
values->AddBefore(node, 19.9);
values->AddAfter(values->Find(30.0), 30.1);

// Sum the contents of the linked list again
sumd = 0.0;
for each(double v in values)
sumd += v;

Console::WriteLine(L”Total after adding values = {0}”, sumd);

// Using Dictionary<K,V>
Console::WriteLine(L”\nCreating a Dictionary<K,V> of name/number pairs:”);
Dictionary<Name^, PhoneNumber^>^ phonebook = 

gcnew Dictionary<Name^, PhoneNumber^>;

// Add name/number pairs to dictionary
Name^ name = gcnew Name(“Jim”, “Jones”);
PhoneNumber^ number = gcnew PhoneNumber(914, 316, 2233);
phonebook->Add(name, number);          
phonebook->Add(gcnew Name(“Fred”,”Fong”), gcnew PhoneNumber(123,234,3456)); 
phonebook->Add(gcnew Name(“Janet”,”Smith”), gcnew PhoneNumber(515,224,6864)); 

// List all numbers
Console::WriteLine(L”List all the numbers:”);
for each(PhoneNumber^ number in phonebook->Values)
Console::WriteLine(number);

// List names and numbers
Console::WriteLine(L”Access the keys to list all name/number pairs:”);
for each(Name^ name in phonebook->Keys)
Console::WriteLine(L”{0} : {1}”, name, phonebook[name]);

return 0;
}

The output from this example should be as follows:

Creating a List<T> of integers:
Total = 1000000

594

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 594



Creating a LinkedList<T> of double values:
Total = 1248750
Total after adding values = 1248800

Creating a Dictionary<K,V> of name/number pairs:
List all the numbers:
914 316 2233
123 234 3456
515 224 6864
Access the keys to list all name/number pairs:
Jim Jones : 914 316 2233
Fred Fong : 123 234 3456
Janet Smith : 515 224 6864

How It Works
Note the using namespace directive for the System::Collections::Generic namespace; this is essen-
tial when you want to use the generic collections classes without specifying fully qualified class names.

The first block of code in main() uses the List<> collection using the code from the previous section. It
creates a class that stores integers in a list and then stores 1000 values in it. The loop that sums the con-
tents of the list uses the default indexed property to retrieve the values. This could also be written as a
for each loop. Don’t forget — the default indexed property only accesses items already in the list. You
can change the value of an existing item using the default indexed property, but you cannot add new
items this way. To add an item to the end of the list, you use the Add() function; you can also use the
Insert() function to insert an item at a given index position.

The next block of code in main() demonstrates the use of the LinkedList<> collection to sort values 
of type double. Values of type double are added to the end of the linked list using the AddTail() func-
tion in a for loop. You could equally well use the AddLast() function to do the same thing. Values are
retrieved and summed in a for each loop. Note that there is no default indexed property for accessing
items in a linked list. The code also shows the use of the Find() and AddBefore() and AddAfter()
functions to add new elements at a specific position in the linked list.

The last block of code in main() shows a Dictionary<> collection being used to store phone num-
bers with names as keys. The Name and Phone number classes implement an override to the inherited
ToString() function to enable the Console::WriteLine() function to output suitable representa-
tions of objects of these types. Three name/number pairs are added to the phonebook dictionary. The
code then lists the numbers in the dictionary by using a for each loop to iterate over the values con-
tained in the collection object that are returned by the Values property for phonebook. The last loop
iterates over the names in the collection returned by the Keys property and uses the default indexed
property for phonebook to access the values. No try block is necessary here because you are certain
that all the keys in the Keys collection are present in the dictionary — if they are not, there’s a serious
problem with the implementation of the Dictionary<> generic class!

595

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 595



Summary
This chapter covered the principal ideas involved in using inheritance for native C++ classes and
C++/CLI classes. The fundamentals that you should keep in mind are:

❑ A derived class inherits all the members of a base class except for constructors, the destructor,
and the overloaded assignment operator.

❑ Members of a base class declared as private in the base class are not accessible in any derived
class. To obtain the effect of the keyword private but allow access in a derived class, you should
use the keyword protected in place of private.

❑ A base class can be specified for a derived class with the keyword public, private, or 
protected. If none is specified, the default is private. Depending on the keyword specified 
for a base, the access level of the inherited members may be modified.

❑ If you write a derived class constructor, you must arrange for data members of the base class 
to be initialized properly, as well as those of the derived class.

❑ A function in a base class may be declared as virtual. This allows other definitions of the 
function appearing in derived classes to be selected at execution time, depending on the type 
of object for which the function call is made.

❑ You should declare the destructor in a native C++ base class that contains a virtual function as
virtual. This ensures correct selection of a destructor for dynamically-created derived class
objects.

❑ A native C++ class may be designated as a friend of another class. In this case, all the function
members of the friend class may access all the members of the other class. If class A is a friend
of B, class B is not a friend of A unless it has been declared as such.

❑ A virtual function in a native C++ base class can be specified as pure by placing = 0 at the end 
of the function declaration. The class then is an abstract class for which no objects can be created.
In any derived class, all the pure virtual functions must be defined; if not, it, too, becomes an
abstract class.

❑ A C++/CLI reference class can be derived from another reference classes. Value classes cannot
be derived classes.

❑ An interface class declares a set of public functions that represent a specific capability that can
be implemented by a reference class. An interface class can contain public functions, events, and
properties. An interface can also define static data members, functions, events, and properties, and
these are inherited in a class that implements the interface.

❑ An interface class can be derived from another interface class and the derived interface contains
the members of both interfaces. 

❑ A delegate is an object that encapsulates one or more pointers to functions that have the same
return type and parameter list. Invoking a delegate calls all the functions pointed to by the delegate.

❑ An event member of a class can signal when the event occurs by calling one or more handler
functions that have been registered with the event. 

❑ A generic class is a parameterized type that is instantiated at run-time. The arguments you sup-
ply for type parameters when you instantiate a generic type can be value class types or reference
class types.

596

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 596



❑ The System::Collections::Generic namespace contains generic collection classes that
define typesafe collections of objects of any C++/CLI type.

❑ You can create a C++/CLI class library in a separate assembly and the class library resides in 
a .dll file.

You have now gone through all of the important language features of ISO/ANSI C++ and C++/CLI. 
It’s important that you feel comfortable with the mechanisms for defining and deriving classes and the
process of inheritance in both language versions. Windows programming with Visual C++ 2008 involves
extensive use of all these concepts.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. What’s wrong with the following code?

class CBadClass
{
private:

int len;
char* p;

public:
CBadClass(const char* str): p(str), len(strlen(p)) {}
CBadClass(){}

};

2. Suppose you have a class CBird, as follows, that you want to use as a base class for deriving a
hierarchy of bird classes:

class CBird
{
protected:

int wingSpan;
int eggSize;
int airSpeed;
int altitude;

public:
virtual void fly() { altitude = 100; }

};

Is it reasonable to create a CHawk by deriving from CBird? How about a COstrich? Justify your
answers. Derive an avian hierarchy that can cope with both of these birds.

3. Given the following class:

class CBase
{
protected:

int m_anInt;

597

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 597



public:
CBase(int n): m_anInt(n) { cout << “Base constructor\n”; }
virtual void Print() const = 0;

};

What sort of class is CBase and why? Derive a class from CBase which sets its inherited integer
value, m_anInt, when constructed, and prints it on request. Write a test program to verify that
your class is correct.

4. A binary tree is a structure made up of nodes where each node contains a pointer to a “left” node
and a pointer to a “right” node plus a data item, as shown in Figure 9-7.

Figure 9-7

The tree starts with a root node, and this is the starting point for accessing the nodes in the tree.
Either or both pointers in a node can be null. Figure 9-7 shows an ordered binary tree, which is a
tree organized so that the value of each node is always greater than or equal to the value of the
left node and less than or equal to the value of the right node.

Value = 120 

right node  
pointer 

left node  
pointer 

Root Node 

Value = 437 

right node  
pointer 

left node  
pointer 

Node 

Value = 43 

right node  
pointer 

left node  
pointer 

Node 

Value = 88 

null null 

Node 

Value = 24 

null null 

Node 

Value = 766 

null null 

Node 

Value = 57 

right node  
pointer null 

Node 

Value = 17 

right node  
pointer 

null 

Node 

598

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 598



Define a native C++ class to define an ordered binary tree that stores integer values. You also
need to define a Node class, but that can be an inner class to the BinaryTree class. Write a pro-
gram to test the operation of your BinaryTree class by storing an arbitrary sequence of integers
in it and retrieving and outputting them in ascending sequence.

Hint: Don’t be afraid to use recursion.

5. Implement Exercise 4 as a CLR program. If you did not manage to complete Exercise 4, look at
the solution in the download and use that as a guide to doing this exercise.

6. Define a generic BinaryTree class for any type that implements the IComparable interface
class and demonstrate its operation by using instances of the generic class to store and retrieve
first a number of random integers, and then the elements of the following array:

array<String^>^ words = {L”Success”, L”is”, L”the”, L”ability”, L”to” , 
L”go” , L”from”, L”one”, L”failure”, L”to”,
L”another”, L”with”, L”no”, L”loss”, L”of”,
L”enthusiasm”};

Write the values retrieved from the binary tree to the command line.

599

Chapter 9: Class Inheritance and Virtual Functions

25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 599



25905c09.qxd:WroxPro  2/21/08  8:55 AM  Page 600



10
The Standard 

Template Library

At its name implies, the Standard Template Library (STL) is a library of standard class and function
templates. You can use these templates to create a wide range of powerful general-purpose classes
for organizing your data as well as functions for processing that data in various ways. The STL is
defined by the standard for native C++ and is therefore always available with a conforming com-
piler. Because of its broad applicability, the STL can greatly simplify programming in many of your
C++ applications.

Of course, the STL for native C++ does not work with C++/CLI class types but in Visual C++ 2008
you have an additional version of the STL available that contains templates and generic functions
that you can instantiate with C++/CLI class types. 

In this chapter you will learn:

❑ What capabilities are offered by the STL

❑ What containers are and how you create and use them

❑ What iterators are and how you use them with containers

❑ The types of algorithms that are available with the STL and how you can apply the 
more common ones

❑ What function objects are and how they are used with the STL

❑ How to use the STL version that supports C++/CLI class types

What Is the Standard Template Librar y?
The STL is a large collection of class and function templates that is provided with your native C++
compiler. I’ll first explain in general terms the kinds of resources the STL provides and how they
interact with one another before diving into the detail of working examples. The STL contains six
kinds of components: containers, container adapters, iterators, algorithms, function objects, and
function adapters. Because they are part of the standard library, the names of the STL components
are all defined within the std namespace.

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 601



The STL is a very large library, some of which is highly specialized, and to cover the contents fully would
require a book in its own right. In this chapter, I’ll introduce the fundamentals of how you use the STL
and describe the more commonly used capabilities. Before getting into containers in depth, I’ll introduce
you to the primary components, concepts and terminology you will find in the STL.

Containers
Containers are objects that you use to store and organize other objects. A class that implements a linked
list is an example of a container. You create a container class from an STL template by supplying the
type of the object that you intend to store. For example, vector<T> is a template for a container that is
a linear array that automatically increases in size when necessary. T is the type parameter that specifies
the type of objects to be stored. Here are a couple of statements that are examples of creating
vector<T> containers:

vector<string> strings;     // Stores object of type string
vector<double> data;        // Stores values of type double

I chose the vector container as the example because it is probably used the most often. The first statement
creates the container class, strings, that stores objects of type string while the second statement creates
the data that stores values of type double. 

You can store items of a fundamental type or of any class type in a container. If your type argument for 
an STL container template is a class type, the container can store objects of that type, or objects of any
derived class type. Typically, containers store copies of the objects that you store in them and they allocate
and manage the memory that the objects occupy automatically. When a container object is destroyed, the
container takes care of deleting the objects it contains and freeing the memory they occupied. One advan-
tage of using STL containers to store your objects is that it relieves you of the chore of managing the mem-
ory for them.

The templates for the STL container classes are defined in the standard headers shown in the following
table.

Header File Contents

<vector> A vector<T> container represents an array that can increase in capacity auto-
matically when required. You can only add new elements to the end of a vector
container.

<deque> A deque<T> container implements a double-ended queue. This is equivalent to a
vector but with the additional capability for you to add elements to the beginning.

<list> A list<T> container is a doubly-linked list.

<map> A map<K, T> is an associative container that stores each object (of type T) 
with an associated key (of type K) that determines where the key/object pair 
is located. The value of each key in a map must be unique.
This header also defines the multimap<K,T> container where the keys in the
key/object pairs do not need to be unique.

602

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 602



The containers in this table represent the complete set that is available with the STL and all the template
names are defined within the std namespace. T is the template type parameter for the type of elements
stored in a container and where keys are used, K is the type of key. 

Microsoft Visual C++ also includes the headers <hash_map> and <hash_set> that define templates
for the hash_map<K, T> and hash_set<K, T> containers. These are non-standard variations on 
the map<K, T> and set<K, T> containers and because they are not standard they are defined in the
stdext namespace rather than std. The standard map and set containers use an ordering mechanism
to locate entries whereas the non-standard hash_map and hash_set containers use a hashing mechanism. 

Container Adapters
The STL also defines container adapters. A container adapter is a template class that wraps an existing
STL container class to provide a different, and typically more restricted, capability. The container adapters
are defined in the headers in the following table.

Header File Contents

<queue> A queue<T> container is defined by an adapter from a deque<T> container by
default, but you could define it using a list<T> container. You can only access
the first and last elements in a queue and you can only add elements at the back
and remove them from the front. Thus a queue<T> container works more or less
like the queue in your local coffee shop.
This header also defines a priority_queue<T> container, which is a queue that
orders the elements it contains so the largest element is always at the front. Only
the element at the front can be accessed or removed. A priority queue is defined
by an adapter from a vector<T> by default, but you could use a deque<T> as
the base container.

<stack> A stack container is defined by an adapter from a deque<T> container by default,
but you could define it using a vector<T> or a list<T> container. A stack is a
first-in first-out container so adding or removing elements always occurs at the
top and you can only access the top element.

Header File Contents

<set> A set<T> container is a map where each object serves as its own key. All objects
in a set must be unique. A consequence of using an object as its own key is that
you cannot change an object in a set; to change an object you must delete it and
then insert the modified version.
This header also defines the multiset<T> container, which is like a set con-
tainer except that the entries do not need to be unique.

<bitset> Defines the bitset<T> class template that represents a fixed number of bits.
This is used typically to store flags that represent a set of states or conditions.

603

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 603



Iterators
Iterators are objects that behave like pointers and are very important for accessing the contents of all
STL containers except for those defined by a container adapter; container adapters do not support itera-
tors. You can obtain an iterator from a container that you can use to access the objects that you have
previously stored. You can also create iterators that will allow input and output of objects or data items 
of a given type from or to a native C++ stream. Although basically all iterators behave like pointers,
not all iterators provide the same functionality. However, they do share a base level of capability.
Given two iterators, iter1 and iter2, accessing the same set of objects, the comparison operations
iter1 == iter2, iter1 != iter2, and the assignment iter1 = iter2 are always possible, regard-
less of the types of iter1 and iter2.

There are four different categories of iterators and each category supports a different range of operations,
as shown in the following table. The operations described for each category are in addition to the three
operations that I mentioned in the previous paragraph.

Iterator Category Description

Input and output iterators These iterators read or write a sequence of objects and may only 
be used once. To read or write a second time you must obtain a new
iterator. You can perform the following operations on these iterators:
++iter or iter++
*iter
For the dereferencing operation, only read access is allowed in the
case of an input iterator and only write access for an output iterator.

Forward iterators Forward iterators incorporate the capabilities of both input and out-
put iterators so you can apply the operations shown above to them
and you can use them for access and store operations. Forward iter-
ators can also be reused to traverse a set of objects in a forward
direction as many times as you want.

Bidirectional iterators Bidirectional iterators provide the same capabilities as forward iter-
ators and additionally allow the operations --iter and iter--.
This means you can traverse backward through a sequence of
objects as well as forward.

Random access iterators Random access iterators have the same capabilities as bidirectional
iterators but also allow the following operations:
iter+n or iter-n
iter += n or iter -= n
iter1 - iter2
iter1 < iter2 or iter1 > iter2
iter1 <= iter2 or iter1 >= iter2
iter[n]
Being able to increment or decrement an iterator by an arbitrary
value n allows random access to the set of objects. The last opera-
tion using the [] operator is equivalent to *(iter + n). 

604

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 604



Thus iterators in the four successive categories provide a progressively greater range of functionality.
Where an algorithm requires an iterator with a given level of functionality, you can use any iterator that
provides the required level of capability. For example, if a forward iterator is required, you must use at
least a forward iterator; an input or an output operator will not do. On the other hand you could also
use a bidirectional iterator or a random access iterator because they both have the capability provided
by a forward iterator.

Note that when you obtain an iterator to access the contents of a container, the kind of iterator you get
will depend on the sort of container you are using.

Algorithms
Algorithms are STL function templates that operate on a set of objects that are provided to them by an
iterator. Because the objects are supplied by an iterator, the algorithm needs no knowledge of the source
of the objects to be processed. The objects could be retrieved by the iterator from a container or even from 
a stream. Because iterators work like pointers, all STL template functions that accept an iterator as an argu-
ment will work equally well with a regular pointer.

As you’ll see, you will frequently use containers, iterators, and algorithms in concert in the manner illus-
trated in Figure 10-1.

Figure 10-1

When you apply an algorithm to the contents of a container, you supply iterators that point to objects
within the container. The algorithm uses these iterators to access objects within the container and to write
them back when this is appropriate. For example, when you apply the sort() algorithm to the contents
of a vector, you pass two iterators to the sort() function. One points to the first object, and the other
points to the position that is one past the last element in the vector. The sort() function uses these itera-
tors to access objects for comparison and to write the objects back to the container to establish the order-
ing. You see this working in an example later in this chapter.

Algorithms are defined in two standard header files, the <algorithm> header and the <numeric>
header.

Function Objects
Function objects are objects of a class type that overloads the () operator, which means that the class
implements the operator()() function. Function object types are defined in the STL as templates so
you can create a function object where the overloaded () operator function works with your object type.

T obj T obj T obj T obj T obj T obj T obj

Container

vector<T>

T obj

Algorithm

sort()Iterators

Process objects

605

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 605



For example, the STL defines the template less<T>. If you instantiate the template as less<myClass>
you have a type for function objects that implement operator()() to provide the less-than comparison
for objects of type myClass. 

Many algorithms make use of function objects to specify binary operations to be carried out, or to spec-
ify predicates that determine how or whether a particular operation is to be carried out. A predicate 
is a function that returns a value of type bool and because a function object is an object of a type that
implements the operator()() member function to return a value of type bool, a function object 
is also a predicate.  For example, suppose you have defined a class type Comp that implements the
operator()() function to compare its two arguments and return a bool value. If you create an object 
f of type Comp, the expression f(a,b) returns a bool value that results from comparing a and b, and 
thus acts as a predicate.

Predicates come in two flavors, binary predicates that involve two operands, and unary predicates that
require one operand. For example, comparisons such as less-than and equal-to and logical operations
such as AND and OR are implemented as binary predicates that are members of function objects; logi-
cal negation, NOT, is implemented as a unary predicate member of a function object. 

Function object templates are defined in the <functional> header and you can also define your own
function objects when necessary. You’ll see function objects in action with algorithms and some con-
tainer class functions in this chapter.

Function Adapters
Function adapters are function templates the allow function objects to be combined to produce a more
complex function object. A simple example is the not1 function adapter. This takes an existing function
object that provides a unary predicate and inverts it, so if the function object function returns true, the
function that results from applying not1 to it will be false. I won’t be discussing function adapters in
depth, not because they are terribly difficult to understand — they aren’t; it’s just that there’s a limit to
how much I can cram into a single chapter.

The Range of STL Containers
The STL provides templates for a variety of container classes that you can use in a wide range applica-
tion contexts. Sequence containers are containers in which you store objects of a given type in a linear
fashion, either as a dynamic array or as a list. Associative containers store objects based on a key that
you supply with each object to be stored and the key is used to locate the object within the container. In 
a typical application you might be storing phone numbers in an associative container using names as 
the keys. This would enable you to retrieve a particular number from the container just by supplying the
appropriate name.

I’ll first introduce you to sequence containers, and then I’ll delve into associative containers and what
you can do with them.

606

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 606



Sequence Containers
The class templates for the three basic sequence containers are shown in the following table.

Which template you choose to use in any particular instance will depend on the application. These three
kinds of sequence containers are clearly differentiated by the operations they can perform efficiently, as
Figure 10-2 shows.

Figure 10-2

deque<T>

vector<T>

list<T>

Insert at 
the start Delete at the

start or the end

Insert at
the end

Delete
at the
end

obj obj obj obj obj obj obj

obj

Access contents randomly

Insert at
the end

obj obj obj obj obj obj

objobj

Access contents randomly

Insert at any position

No random access - 
only sequential

access

Delete any object

obj

Template Header File Description

vector<T> <vector> Creates a class representing a dynamic array storing objects
of type T

list<T> <list> Creates a class representing a linked list storing objects of
type T

deque<T> <deque> Creates a class representing a double-ended queue storing
objects of type T

607

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 607



If you need random access to the contents of the container and you are happy to always add or delete
objects at the end of a sequence, then vector<T> is the container template to choose. It is possible to add 
or delete objects randomly within a vector but the process will be very slow because all the objects past the
insertion or deletion point will have to be moved. A deque<T> container is very similar to a vector<T>
and supports the same operations, but it has the additional capability to add and delete at the beginning 
of the sequence. A list<T> container is a doubly-linked list, so adding and deleting at any position is effi-
cient. The downside of a list is that there is no random access to the contents; the only way to access an
object that is internal to the list is to traverse the contents from the beginning, or to run backward through
the contents from the end.

Let’s look at sequence containers in more detail and try some examples. I’ll be introducing the use of some
iterators, algorithms, and function objects along the way. 

Creating Vector Containers
The simplest way to create a vector container is like this:

vector<int> mydata;

This creates a container that will store values of type int. The initial capacity to store elements is zero, so
you will be allocating more memory right from the outset when you insert the first value. The push_back()
function adds a new element to the end of a vector so to store a value in this vector you would write:

mydata.push_back(99);

The argument to the push_back() function is the item to be stored. This statement stores the value 99 in
the vector so after executing this statement the vector contains one element.

Here’s another way to create a vector to store integers:

vector<int> mydata(100);

This creates a vector that contains 100 elements that are all initialized to 0. If you add new elements to
this vector, the memory allocated for storage in the vector will be increased automatically, so obviously
it’s a good idea to choose a reasonably accurate value for the number of integers you are likely to want
to store. This vector already contains 100 elements and you can use it just like an array. For example, to
store a value in the third element you can write:

mydata[2] = 999;

Of course, you can only use an index value to access elements within a vector that is within the range of
elements that exist. You can’t add new elements in this way though. To add a new element, you should
use the push_back() function.

You can initialize the elements in a vector to a different value when you create it by using this statement:

vector<int> mydata(100, -1);

The second argument to the constructor is the initial value to be used, so all 100 elements in the vector
will be set to -1.

608

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 608



If you don’t want to create elements when you create the container, you can increase the capacity after you
create it by calling its reserve() function:

vector<int> mydata;
mydata.reserve(100);

The argument to the reserve() function is the minimum number of elements to be accommodated. If
the argument is less than the current capacity of the vector, then calling reserve() will have no effect.
In this code fragment, calling reserve() causes the vector container to allocate sufficient memory for a
total of 100 elements. 

You can also create a vector with initial values for elements from an external array. For example:

double data[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5};
vector<double> mydata(data, data+8);

Here the data array is created with 10 elements of type double with the initial values shown. The sec-
ond statement creates a vector storing elements of type double with eight elements initially having the
values corresponding to data[0] through data[7]. The arguments to the vector<double> constructor
are pointers (and can also be iterators), where the first pointer points to the first initializing element in
the array and the second points to one past the last initializing element. Thus the mydata vector will
contain eight elements with initial values 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, and 8.5.

Because the constructor in the previous fragment can accept either pointer or iterator arguments, you
can initialize a vector when you create it with values from another vector that contains elements of the
same type. You just supply the constructor with an iterator pointing to the first element you want to use
as an initializer, plus a second iterator pointing to one past the last element you want to use. Here’s an
example:

vector<double> values(mydata.begin(), mydata.end());

After executing this statement, the values vector will have elements that are duplicates of the mydata
vector. As Figure 10-3 illustrates, the begin() function returns a random access iterator that points to
the first element in the vector for which it is called and the end() function returns a random access itera-
tor pointing to one past the last element. A sequence of elements is typically specified in the STL by two
iterators, one pointing to the first element in the sequence and the other pointing to one past the last ele-
ment in the sequence, so you’ll see this time and time again.

Figure 10-3

obj obj obj obj obj obj obj obj

v.begin() v.end()

v.begin()+2 v.end()-1

Iterators for a vector v

609

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 609



Because the begin() and end() functions for a vector container return random access iterators, you can
modify what they point to when you use them. The type of the iterators that the begin() and end()
function return is vector<T>::iterator, where T is the type of object stored in the vector.

Here’s a statement that creates a vector that is initialized with the third through the seventh elements
from the mydata vector:

vector<double> values(mydata.begin()+2, mydata.end()-1);

Adding 2 to the first iterator makes it point to the third element in mydata. Subtracting 1 from the second
iterator makes it point to the last element in mydata; remember the second argument to the constructor is
an iterator that points to a position that is one past the element to be used as the last initializer, so the object
that the second iterator points to is not included in the set. 

As I said earlier, it is pretty much standard practice in the STL to indicate a sequence of elements in a con-
tainer by a begin iterator that points to the first element and an end iterator that points to one past the last
element. This method allows you to iterate over all the elements in the sequence by incrementing the begin
iterator until it equals the end iterator. This means that the iterators only need to support the equality
operator to allow you to walk through the sequence. 

Occasionally you may want to access the contents of a vector in reverse order. Calling the rbegin()
function for a vector returns an iterator that points to the last element, and rend() points to one past 
the first element(that is, the position preceding the first element), as Figure 10-4 illustrates.

Figure 10-4

The iterators returned by rbegin() and rend() are called reverse iterators because they present the ele-
ments in reverse sequence. Reverse iterators are of type vector<T>::reverse_iterator. Figure 10-4
shows how adding a positive integer to the rbegin() iterator moves back through the sequence and sub-
tracting an integer from rend() moves forward through the sequence.  

Here’s how you could create a vector containing the contents of another vector in reverse order:

double data[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5};
vector<double> mydata(data, data+8);
vector<double> values(mydata.rbegin(), mydata.rend());

Because you are using reverse iterators as arguments to the constructor in the last statement, the values
vector will contain the elements from mydata in reverse order.

obj obj obj obj obj obj obj obj

v.rend() v.rbegin()

v.rend()-2 v.rbegin()+1

Reverse Iterators for a vector v

610

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  10:23 AM  Page 610



The Capacity and Size of a Vector Container
It’s about time I explained the difference between the capacity and the size of a vector container. The
capacity is the maximum number of objects a container can accommodate currently without allocating
more memory. The size is the number of objects actually stored in the container so the size cannot be
greater than the capacity.

You can obtain both the size and capacity of a container, data, at any time by calling the size() and
capacity() member functions. For example:

cout << endl << “The current capacity of the container is: “ << data.capacity()
<< endl << “The current size of the container is: “ << data.size() << endl;

Calling the capacity() function for a vector returns the current capacity and calling its size() func-
tion returns the current size, both values being returned as type vector<T>::size_type, which is an
implementation-defined integer type that is defined within the vector<T> class template by a typedef.
To create a variable to store the value returned from the size() or capacity() function you specify it
to be of type vector<T>::size_type, where you replace T by the type of object stored in the container.
The following fragment illustrates this:

vector<double> values;
vector<double>::size_type cap = values.capacity();

The Microsoft Visual C++ library implementation of STL defines the vector<T>::size_type type
as size_t. size_t is an unsigned integer type that is also a type of the result of the sizeof operator
and the value returned by the new operator.

If the value returned by the size() function is zero, then clearly the vector contains no elements; thus
you can use this as a test for an empty vector. You can also call the empty() function for a vector to test
for this:

if(values.empty())
cout << “No more elements in the vector.”

The empty() function returns a value of type bool that is true when the vector is empty and false
otherwise.

You are unlikely to need it very often but you can discover the maximum possible number of elements
in a vector by calling its max_size() function. For example:

vector<string> strings;
cout << “Maximum length of strings vector: “ << strings.max_size();

Executing this fragment produces the output:

Maximum length of strings vector: 153391689

The maximum length is returned by the max_size() function as a value in this case of type
vector<string>::size_type. Note that the maximum length of a vector will depend on the type 
of element stored in the vector. If you try this out with a vector storing values of type int, you will 
get 1073741823 as the maximum length, and for a vector storing value of type double it is 536870911.

611

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 611



You can change the size of a vector by calling its resize() function, which can either increase or decrease
the size of the vector. If you specify a new size that is less than the current size, sufficient elements will be
deleted from the end of the vector to reduce it to its new size. If the new size is greater than the old, new
elements will be added to the end of the vector to increase its length to the new size. Here’s code illustrat-
ing this:

vector<int> values(5, 66);   // Contains 66 66 66 66 66
values.resize(7, 88);        // Contains 66 66 66 66 66 88 88
values.resize(10);           // Contains 66 66 66 66 66 88 88 0 0  
values.resize(4);            // Contains 66 66 66 66

The first argument to resize() is the new size for the vector. The second argument, when it is present, is
the value to be used for new elements that need to be added to make up the new size. If you are increas-
ing the size and you don’t specify a value to be used for new elements, the default value will be used. In
the case of a vector storing objects of a class type, the default value will be the object produced by the no-
arg constructor for the class.

You could explore the size and capacity of a vector through a working example.

Try It Out Exploring the Size and Capacity of a Vector
In this example you will try out some of the ways you have seen for creating a vector, and you’ll also see
how the capacity changes as you add elements.

// Ex10-01.cpp
// Exploring the size and capacity of a vector

#include <iostream>
#include <vector>
using std::cout;
using std::endl;
using std::vector;

// Template function to display the size and capacity of any vector
template<class T>
void listInfo(vector<T> &v)
{
cout << “Container capacity: “ << v.capacity()

<< “ size: “ << v.size() << endl;
}

int main()
{
// Basic vector creation
vector<double> data;
listInfo(data);

cout << endl << “After calling reserve(100):” << endl;
data.reserve(100);
listInfo(data);

// Create a vector with 10 elements and initialize it
vector<int> numbers(10,-1);
cout << endl << “The initial values are:”;

612

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 612



for(vector<int>::size_type i = 0; i<numbers.size(); i++)
cout << “ “ << numbers[i];

// See how adding elements affects capacity increments
vector<int>::size_type oldC = numbers.capacity();   // Old capacity
vector<int>::size_type newC = oldC;          // New capacity after adding element
cout << endl << endl;
listInfo(numbers);
for(int i = 0; i<1000 ; i++)
{
numbers.push_back(2*i);
newC = numbers.capacity();
if(oldC < newC)
{
oldC = newC;
listInfo(numbers);

}
}
return 0;

}

This example produces the following output:

Container capacity: 0 size: 0

After calling reserve(100):
Container capacity: 100 size: 0

The initial values are: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Container capacity: 10 size: 10
Container capacity: 15 size: 11
Container capacity: 22 size: 16
Container capacity: 33 size: 23
Container capacity: 49 size: 34
Container capacity: 73 size: 50
Container capacity: 109 size: 74
Container capacity: 163 size: 110
Container capacity: 244 size: 164
Container capacity: 366 size: 245
Container capacity: 549 size: 367
Container capacity: 823 size: 550
Container capacity: 1234 size: 824

How It Works
The #include directive for the <vector> header adds the definition for the vector<T> template to the
source file.

Following the using statement for the std namespace, you have a definition of the listInfo() function
template:

template<class T>
void listInfo(vector<T> &v)
{

613

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 613



cout << “Container capacity: “ << v.capacity()
<< “ size: “ << v.size() << endl;

}

This function outputs the current capacity and size of any vector container. You will often find it is con-
venient to write function templates when working with STL. The example shows how easy it is. The T
parameter determines the type of argument the function expects. You can call this function with a vector
container as the argument. Specifying the parameter as the reference type, vector<T>&, enables the code
in the function body to access directly the container you pass as the argument to the function. If you speci-
fied the parameter as type vector<T>, then the argument would be copied each time the function is called
and this could be a time-consuming process with a large vector container. 

The first action in main() is to create a vector and output its size and capacity:

vector<double> data;
listInfo(data);

You can see from the output that the size and the capacity are zero for this container. Adding an element
requires more space to be allocated.

Next you call the reserve() function for the container:

data.reserve(100);

You can see from the output that the capacity is now 100 and the size is zero. To put it another way, the
container contains no elements but has memory allocated to accommodate up to 100 elements. Only
when you add the 101st element will the capacity be increased automatically.

Next you create another container with this statement:

vector<int> numbers(10,-1);

This creates a container that contains 10 elements at the outset, each initialized with -1. To demonstrate
this is indeed the case, you output the elements in the container with the following loop:

for(vector<int>::size_type i = 0; i<numbers.size(); i++)
cout << “ “ << numbers[i];

The upper limit for the loop variable, i, is the value returned by the size() function for the container,
the number of elements currently stored. As you see, within the loop you access the container elements
in the same way as an ordinary array. 

You could also use an iterator to access the elements. A loop to output the elements using an iterator
looks like this:

for(vector<int>::iterator iter = numbers.begin(); iter < numbers.end(); iter++)
cout << “ “ << *iter;

The loop variable is an iterator, iter, that you initialize to the iterator returned by the begin() function.
This is incremented on each loop iteration and the loop ends when it reaches numbers.end(), which
points to one past the last element. Note how you dereference the iterator just like a pointer to get at the
value of the element.

614

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 614



The remaining statements in main() demonstrate how the capacity of a vector is increased as you add
elements. The first two statements set up variables that store the current capacity and the new capacity
after adding an element:

vector<int>::size_type oldC = numbers.capacity();   // Old capacity
vector<int>::size_type newC = oldC;          // New capacity after adding element

After displaying the initial size and capacity, you execute the following loop:

for(int i = 0; i<1000 ; i++)
{

numbers.push_back(2*i);
newC = numbers.capacity();
if(oldC < newC)
{

oldC = newC;
listInfo(numbers);

}
}

This loop calls the push_back() function for the numbers vector to add 1000 elements. We are only inter-
ested in seeing output when the capacity increases, so the if condition ensures that we only display the
capacity and size when the capacity increases. 

The output shows an interesting pattern in the way additional space is allocated in the container. As
you would expect with the initial size and capacity at 10, the first capacity increase occurs when you
add the 11th element. The increase in this case is half the capacity so the capacity increases to 15. The
next capacity increase is when the size reaches 15 and the increase is to 22 so the increment is again
half the capacity. This process continues with each capacity increase being half the current capacity.
Thus you automatically get larger chunks of memory space allocated when required, the more ele-
ments the vector contains. On the one hand this mechanism ensures that once the initial memory allo-
cation in a container is occupied, you don’t cause more memory to be allocated every time you add a
new element. On the other hand, this also implies that you should take care when reserving space for
a large number of elements in a vector. If you set up a container that provides initially for 100,000 ele-
ments for example, exceeding this by one element will cause space for another 50,000 to be allocated.
In this sort of situation you could check for reaching the capacity, and use reserve() to increase the
available memory by a more appropriate and less extravagant amount. 

Accessing the Elements in a Vector
You have already seen that you can access the elements in a vector by using the subscript operator, just
as you would for an array. You can also use the at() function where the argument is the index position
of the element you want to access. Here’s how you could list the contents of the numbers vector of inte-
ger elements in the previous example:

for(vector<int>::size_type i = 0; i<numbers.size(); i++)
cout << “ “ << numbers.at(i);

615

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 615



So how does the at() function differ from using the subscript operator, []? Well, if you use a subscript
with the subscript operator that is outside the valid range, the result is undefined. If you do the same with
the at() function then an exception of type out_of_range will be thrown. If there’s the potential for
subscript values outside the legal range to arise in a program, it’s generally better to use the at() func-
tion and catch the exception than allow the possibility for undefined results.

To access the first or last element in a vector container you can call the front() or back() function
respectively:

cout << “The value of the first element is: “ << numbers.front() << endl; 
cout << “The value of the last element is: “ << numbers.back() << endl; 

Both functions come in two versions; one returns a reference to the object stored and the other returns a
const reference to the object stored. The latter option enables you to explicitly prevent modification of
the object:

const int& firstvalue = numbers.front();    // firstvalue cannot be changed
int& lastvalue = numbers.back();            // lastvalue can be changed

Storing the reference that is returned in a const variable automatically selects the version of the function
that returns a const reference.

Inserting and Deleting Elements in a Vector
In addition to the push_back() function you have seen, a vector container supports the pop_back()
operation that deletes the last element. Both operations execute in constant time, that is, the time to exe-
cute will be the same, regardless of the number of elements in the vector. The pop_back() function is
very simple to use:

vec.pop_back();

This statement removes the last element from the vector, vec, and reduces the size by 1. If the vector
contains no elements, then calling pop_back() has no effect.

You could remove all the elements in a vector by calling the pop_back() function repeatedly, but the
clear() function does this much more simply:

vec.clear(); 

This statement removes all the elements from vec so the size will be zero. Of course, the capacity will be
left unchanged.

You can call the insert() function to insert one or more new elements anywhere in a vector but this
operation will execute in linear time, which means that the time will increase in proportion to the num-
ber of elements in the container. This is because inserting new elements involves moving the existing ele-
ments. The simplest version of the insert() function inserts a single new element at a specific position
in the vector, where the first argument is an iterator specifying the position where the element is to be
inserted and the second argument is the element to be inserted. For example:

vector<int> vec(5, 99);
vec.insert(vec.begin()+1, 88);

616

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 616



The first statement creates a vector with five integer elements all initialized to 99. The second statement
inserts 88 after the first element so after executing this, the vector will contain:

99 88 99 99 99 99

You can also insert several identical elements, starting from a given position:

vec.insert(vec.begin()+2, 3, 77);

The first argument is an iterator specifying the position where the first element is to be inserted, the second
argument is the number of elements to be inserted, and the third argument is the element to be inserted.
After executing this statement, vec will contain:

99 88 77 77 77 99 99 99 99

You have yet another version of the insert() function that inserts a sequence of elements at a given posi-
tion. The first argument is an iterator pointing to the position where the first element is to be inserted. The
second and third arguments are input iterators specifying the range of elements to be inserted from some
source. Here’s an example:

vector<int> newvec(5, 22);
newvec.insert(newvec.begin()+1, vec.begin()+1, vec.begin()+5);

The first statement creates a vector with five integer elements initialized to 22. The second statement inserts
four elements from vec starting with the second. After executing these statements, newvec will contain:

22 88 77 77 77 22 22 22 22

Don’t forget that the second iterator in the interval specifies the position that is one past the last element,
so the element it points to is not included.

The erase() function can delete one or more elements from any position within a vector, but this also
is a linear time function and will typically be slow. Here’s how you erase a single element at a given
position:

newvec.erase(newvec.end()-2);

The argument is an iterator that points to the element to be erased, so this statement removes the second
to last element from newvec.

To delete several elements, you supply two iterator arguments specifying the interval. For example:

newvec.erase(newvec.begin()+1, newvec.begin()+4);

This will delete the second, third, and fourth elements from newvec. The element that the second iterator
argument points to is not included in the operation.

As I said, both the erase() and insert() operations are slow so you should use them sparingly when
working with a vector. If you find you need to use them often in your application, a list<T> is likely to
be a better choice of container.

617

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 617



The swap() function enables you to swap the contents of two vectors, provided of course the elements
in the two vectors are of the same type. Here’s a code fragment showing an example of how this works:

vector<int> first(5, 77);              // Contains 77 77 77 77 77
vector<int> second(8, -1);             // Contains -1 -1 -1 -1 -1 -1 -1 -1
first.swap(second);

After executing the last statement, the contents of the vectors first and second will have interchanged.
Note that the capacities of the vectors are swapped as well as the contents and of course the size. 

The assign() function enables you to replace the entire contents of a vector with another sequence, or
to replace the contents with a given number of instances of an object. Here’s how you could replace the
contents of one vector with a sequence from another:

vector<double> values;
for(int i = 1 ; i <= 50 ; i++)
values.push_back(2.5*i);

vector<double> newdata(5, 3.5);
newdata.assign(values.begin()+1, values.end()-1);

This code fragment creates the values vector and stores 50 elements that have the values 2.5, 5.0, 7.5,...
125.0. The newdata vector is created with five elements each having the value 3.5. The last statement
calls the assign() function for newdata, which deletes all elements from newdata and then inserts
copies of all the elements from values, except for the first and the last. You specify the new sequence to
be inserted by two iterators, the first pointing to the first element to be inserted and the second pointing 
to one past the last element to be inserted. Because you specify the new elements to be inserted by two
iterators, the source of the data can be from any sequence, not just a vector. The assign() function will
also work with regular pointers so you could also insert elements from an array of double elements.

Here’s how you use the assign() function to replace the contents of a vector with a sequence of
instances of the same element:

newdata.assign(30, 99.5);

The first argument is the count of elements in the replacement sequence and the second argument is 
the element to be used. This statement will cause the contents of newdata to be deleted and replaced 
by 30 elements each having the value 99.5.

Storing Class Objects in a Vector
So far you have only seen vectors storing numerical values. You can store objects of any class type in a
vector but the class must meet certain minimum criteria. Here’s a minimum specification for a given
class T to be compatible with a vector, or in fact any sequence container:

class T
{
public:
T();                                 // default constructor
T(const T& t);                       // Copy constructor
~T();                                // Destructor
T& operator=(const T& t);            // Assignment operator

};

618

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 618



Of course, the compiler will supply default versions of these class members if you don’t supply them so it’s
not difficult for a class to meet these requirements. The important thing to note is that they are required and
are likely to be used, so when the default implementation that the compiler supplies will not suffice, you
must provide your own implementation.

Let’s try an example.

Try It Out Storing Objects in a Vector
In this example you create Person objects that represent individuals by their name. Just to make it more
interesting, I’m going to assume you have never heard of the string class, so you are stuck with using
null-terminated strings to store names. This means you have to take care how you implement the class if
you want to store objects in a vector<Person> container. In general such a class might have lots of dif-
ferent data members relating to a person, but I’ll keep it simple with just their first and second names.

Here’s the definition of the Person class:

// Person.h
// A class defining people by their names
#pragma once
#include <cstring>
#include <iostream>
using std::cout;
using std::endl;

class Person
{
public:
// Constructor, includes no-arg constructor
Person(char* first = “John”, char* second = “Doe”)
{
size_t length = strlen(first)+1;
firstname = new char[length];
strcpy_s(firstname, length, first);
length = strlen(second)+1;
secondname = new char[length];
strcpy_s(secondname, length, second);

}

// Copy constructor
Person(const Person& p)
{
size_t length = strlen(p.firstname)+1;
firstname = new char[length];
strcpy_s(firstname, length, p.firstname);
length = strlen(p.secondname)+1;
secondname = new char[length];
strcpy_s(secondname, length, p.secondname);

}

// Destructor
~Person()
{
delete[] firstname;

619

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 619



delete[] secondname;
}

// Assignment operator
Person& operator=(const Person& p)
{
// Deal with p = p assignment situation
if(&p == this)
return *this;

delete[] firstname;
delete[] secondname;
size_t length = strlen(p.firstname)+1;
firstname = new char[length];
strcpy_s(firstname, length, p.firstname);
length = strlen(p.secondname)+1;
secondname = new char[length];
strcpy_s(secondname, length, p.secondname);
return *this;

}

// Less-than operator
bool operator<(const Person& p) const
{
int result = strcmp(secondname, p.secondname);
if(result < 0 || result ==  0 && strcmp(firstname, p.firstname) < 0)
return true;

return false;
}

// Output a person
void showPerson() const
{
cout << firstname << “ “ << secondname << endl;

}

private:
char* firstname;
char* secondname;

};

The #pragma once directive is there to ensure that the header does not get included more than once into a
program. Because the Person class allocates memory dynamically to store the first and second names of a
person, you must implement the destructor to release the memory when an object is destroyed. You must
also implement the assignment operator because this involves more memory allocation. Note the code at
the beginning for dealing with the a = a assignment situation. Assigning an object to itself can arise in
ways that are less than obvious, and can cause problems if you don’t implement the operator=() func-
tion to take account of this.

The showPerson() function is a convenience function for outputting an entire name. It is declared as
const to allow it to work with const and non-const Person objects. The operator<() function is
there for use later.

620

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 620



The program to store Person objects in a vector looks like this:

// Ex10-02.cpp
// Storing objects in a vector

#include <iostream>
#include <vector>
#include “Person.h”

using std::cin;
using std::cout;
using std::endl;
using std::vector;

int main()
{
vector<Person> people;               // Vector of Person objects
const size_t maxlength = 50;
char firstname[maxlength];
char secondname[maxlength];

// Input all the people
while(true)
{
cout << “Enter a first name or press Enter to end: “;
cin.getline(firstname, maxlength, ‘\n’); 
if(strlen(firstname) == 0)
break;

cout << “Enter the second name: “;
cin.getline(secondname, maxlength, ‘\n’); 
people.push_back(Person(firstname, secondname));

}

// Output the contents of the vector
cout << endl;
vector<Person>::iterator iter = people.begin();  
while(iter != people.end())
iter++->showPerson();

return 0;
}

Here’s an example of some output from this program:

Enter a first name or press Enter to end: Jane
Enter the second name: Fonda
Enter a first name or press Enter to end: Bill
Enter the second name: Cosby
Enter a first name or press Enter to end: Sally
Enter the second name: Field
Enter a first name or press Enter to end: Mae
Enter the second name: West
Enter a first name or press Enter to end: Oliver

621

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 621



Enter the second name: Hardy
Enter a first name or press Enter to end:

Jane Fonda
Bill Cosby
Sally Field
Mae West
Oliver Hardy

How It Works
You create a vector to store Person objects like this:

vector<Person> people;               // Vector of Person objects

You then create two arrays of type char[] that you’ll use as working storage when reading names from
the standard input stream:

const size_t maxlength = 50;
char firstname[maxlength];
char secondname[maxlength];

Each array accommodates a name up to maxlength characters long, including the terminating null.

You read names from the standard input stream in an indefinite loop:

while(true)
{

cout << “Enter a first name or press Enter to end: “;
cin.getline(firstname, maxlength, ‘\n’); 
if(strlen(firstname) == 0)

break;
cout << “Enter the second name: “;
cin.getline(secondname, maxlength, ‘\n’); 
people.push_back(Person(firstname, secondname));

}

You read each name using the getline() member function for cin. This reads characters until a new-
line character is read, or until maxlength-1 characters have been read. This ensures that you don’t over-
run the capacity of the input array because both arrays have maxlength elements, allowing for strings
up to maxlength-1 characters plus the terminating NULL. When an empty string is entered for the first
name, the loop ends. 

You create the Person object in the expression that is the argument to the push_back() function. This
adds the objects to the end of the vector.

The last step is to output the contents of the vector:

cout << endl;
vector<Person>::iterator iter = people.begin();  
while(iter != people.end())

iter++->showPerson();

622

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 622



Here you use an iterator to output the elements of the vector. Within the body of the while loop, you out-
put the element that the iterator points to and then you increment the iterator using the postfix increment
operator. The loop continues as long as iter is not equal to the iterator returned by end().

Sorting Vector Elements
The sort() function template that is defined in the <algorithm> header will sort a sequence of objects
identified by two random access iterators that point the first and one past the last objects in the sequence.
Note that random access iterators are essential; iterators with lesser capability will not suffice. The sort()
function template uses the < operator to order the elements. Thus you can use the sort() template to sort
the contents of any container that provides random access iterators as long as the objects it contains can be
compared using the less-than operator. 

In the previous example you implemented operator<() in the Person class, so you can sort a sequence
of Person objects. Here’s how you could sort the contents of the vector<Person> container:

sort(people.begin(), people.end());

This sorts the contents of the vector in ascending sequence. You can add an #include directive for
<algorithm> and put the statement in main() before the output loop to see the sort in action. You’ll
also need a using declaration for std::sort.

Note that you can use the sort() template function to sort() arrays. The only requirement is that the
< operator should work with the type of elements stored in the array. Here’s a code fragment showing
how you could use it to sort an array of integers:

const size_t max = 100;
int data[max];
cout << “Enter up to “ << max << “ non-zero integers. Enter 0 to end.” << endl;
int value = 0;
size_t count = 0;
for(size_t i = 0 ; i<max ; i++)        // Read up to max integers
{
cin >> value;                        // Read a value
if(value == 0)                       // If it is zero, 
break;                             // We are done

data[count++] = value;
}
sort(data, data+count);                // Sort the integers

Note how the pointer marking the end of the sequence of elements that are to be sorted must still be one
past the last element.

When you need to sort a sequence in descending order, you can use a version of the sort() algorithm that
accepts a function object that is a binary predicate as the third argument to the function. The <functional>
header defines a complete set of types for comparison predicates:

less<T>   less_equal<T>   equal<T>   greater_equal<T>   greater<T>

623

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 623



Each of these templates creates a class type for function objects that you can use with sort() and other
algorithms. The sort() function used in the previous fragment uses a less<int> function object by
default. To specify a different function object to be used as the sort criteria, you add it as a third argu-
ment, like this:

sort(data, data+count, greater<int>());     // Sort the integers

The expression that is the third argument to the function calls the constructor for the greater<int>
type, so you are passing an object of this type to the sort() function. This statement will sort the con-
tents of the data array in descending sequence. If you are trying these fragments out, don’t forget that
you need the <functional> header to be included for the function object and the greater name is defined
in the std namespace.

Storing Pointers in a Vector
A vector container, like other containers, makes a copy of the objects you add to it. This has tremendous
advantages in most circumstances but it could be very inconvenient in some situations. For example, if
your objects are large, there could be considerable overhead in copying each object as you add it to the
container. This is an occasion where you might be better off storing pointers to the objects in the container
rather than the objects themselves, and managing the objects externally. You could create a new version of
the Ex10_02.cpp example to store pointers to Person objects in a container.

Try It Out Storing Pointers in a Vector
The Person class definition is exactly the same as before. Here’s a revised version of the other source
file:

// Ex10_03.cpp
// Storing pointers to objects in a vector

#include <iostream>
#include <vector>
#include “Person.h” 

using std::cin;
using std::cout;
using std::endl;
using std::vector;

int main()
{
vector<Person*> people;               // Vector of Person objects
const size_t maxlength = 50;
char firstname[maxlength];
char secondname[maxlength];
while(true)
{

cout << “Enter a first name or press Enter to end: “;
cin.getline(firstname, maxlength, ‘\n’); 
if(strlen(firstname) == 0)

624

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 624



break;
cout << “Enter the second name: “;
cin.getline(secondname, maxlength, ‘\n’); 
people.push_back(new Person(firstname, secondname));

}

// Output the contents of the vector
cout << endl;
vector<Person*>::iterator iter = people.begin();  
while(iter != people.end())
(*(iter++))->showPerson();

// Release memory for the people
iter = people.begin();
while(iter != people.end())
delete *(iter++);

// Pointers in the vector are now invalid
// so remove the contents
people.clear();

return 0;
}

The output is essentially the same as before.

How It Works
Only the shaded lines of code have been changed. The first change is in the definition of the container:

vector<Person*> people;               // Vector of Person objects

The vector<T> template type parameter is now Person*, which is a pointer to a Person object.

Within the input loop, each Person object is now created on the heap and the address is passed to the
push_back() function for the vector:

people.push_back(new Person(firstname, secondname));

It is important to take care when storing addresses of objects in a container. If you create objects on the
stack, these objects will be destroyed when the function exits and the pointers you have stored will be
rendered invalid. With objects created on the heap using the new operator, the objects are only destroyed
when you remove them using delete.

The iterator used to output the Person objects now has a different type:

vector<Person*>::iterator iter = people.begin();  

The way in which you output the Person object is also different:

(*(iter++))->showPerson();

625

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 625



The iterator now points to a pointer, so you must dereference the iterator to get to the pointer and then
use the pointer to call the showPerson() function for the Person object to produce the output. Note
that the outer parentheses are essential because of operator precedence.

Because you created Person objects on the heap, you are responsible for deleting them:

iter = people.begin();
while(iter != people.end())

delete *(iter++);

You obtain another random access iterator pointing to the first element in the vector and then use this in
the loop to delete each of the Person objects. Of course, you have to dereference the iterator to get the
address of the object to be deleted.

Finally, because all the objects have been deleted, the pointers in the vector are now not valid, so you
empty the vector by calling its clear() function. This simply deletes everything stored in the container.

Double-Ended Queue Containers
The double-ended queue container template, deque<T>, is defined in the <deque> header. A double-ended
queue container is very similar to a vector in that it can do everything a vector container can and includes
the same function members, but you can also add and delete elements efficiently at the beginning of the
sequence as well as at the end. You could replace the vector used in Ex10_02.cpp with a double-ended
queue and it would work just as well:

deque<Person> people;               // Double-ended queue of Person objects

Of course, you would need to change the #include directive to include the <deque> header instead of
<vector>. 

The function to add an element to the front of the container is push_front() and you can delete the
first element by calling the pop_front() function. Thus if you were using a deque<Person> container
in Ex10_02.cpp, you could add elements at the front instead of the back:

people.push_front(Person(firstname, secondname));

The only difference in using this statement to add elements to the container would be that the order of
the elements in the double-ended queue would be the reverse of what they would be in the vector.

The range of constructors available for a deque<T> container is the same as for vector<T>. Here are
examples of each of them:

deque<string> strings;            // Create an empty container
deque<int> items(50);             // A container of 50 elements initialized to 
default value
deque<double> values(5, 0.5);     // A container with 5 elements 0.5
deque<int> data(items.begin(), items.end());  // Initialized with a sequence

626

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 626



Although a double-ended queue is very similar to a vector and does everything a vector can do, as well
as allowing you to add to the front of the sequence efficiently, it does have one disadvantage compared
to a vector. Because of the additional capability it offers, the memory management for a double-ended
queue is more complicated than for a vector, so it will be slightly slower. Unless you need the ability to
add elements to the front of the container, a vector is a better choice. Let’s see a double-ended queue in
action.

Try It Out Using a Double-Ended Queue
This example stores an arbitrary number of integers in a double-ended queue and then operates on
them. Here’s the code:

// Ex10_04.cpp
// Using a double-ended queue

#include <iostream>
#include <deque>
#include <algorithm> 
#include <numeric>

using std::cin;
using std::cout;
using std::endl;
using std::deque;
using std::sort;
using std::accumulate;

int main()
{
deque<int> data;
deque<int>::iterator iter;             // Stores an iterator
deque<int>::reverse_iterator riter;    // Stores a reverse iteraotr

// Read the data 
cout << “Enter a series of non-zero integers separated by spaces.”

<< “ Enter 0 to end.” << endl;
int value = 0;
while(cin >> value, value != 0)
data.push_front(value);

// Output the data using an iterator
cout << endl << “The values you entered are:” << endl;
for(iter = data.begin() ; iter != data.end() ; iter++)
cout << *iter << “  “;

cout << endl;

// Output the data using a reverse iterator
cout << endl << “In reverse order the values you entered are:” << endl;
for(riter = data.rbegin() ; riter != data.rend() ; riter++)
cout << *riter << “  “;

// Sort the data in descending sequence

627

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 627



cout << endl;
cout << endl << “In descending sequence the values you entered are:” << endl;
sort(data.rbegin(), data.rend());
for(iter = data.begin() ; iter != data.end() ; iter++)
cout << *iter << “  “;

cout << endl;

// Calculate the sum of the elements
cout << endl << “The sum of the elements in the queue is:” 

<< accumulate(data.begin(), data.end(), 0)  << endl;

return 0;
}

Here is some sample output from this program:

Enter a series of non-zero integers separated by spaces. Enter 0 to end.
405 302 1 23 67 34 56 111 56 99 77 82 3 23 34 111 89 0

The values you entered are:
89  111  34  23  3  82  77  99  56  111  56  34  67  23  1  302  405

In reverse order the values you entered are:
405  302  1  23  67  34  56  111  56  99  77  82  3  23  34  111  89

In descending sequence the values you entered are:
405  302  111  111  99  89  82  77  67  56  56  34  34  23  23  3  1

The sum of the elements in the queue is:1573

How It Works
You create the double-ended queue container and two iterator variables at the beginning of main():

deque<int> data;
deque<int>::iterator iter;             // Stores an iterator
deque<int>::reverse_iterator riter;    // Stores a reverse iterator

The data container is empty to start with. You will be using the iter variable for storing an iterator that
accesses the queue elements in a forward direction and the riter variable for storing a reverse iterator.
iter and riter are of different types but they are both random access iterators in the case of a deque<T>
container. This means you can increment or decrement them or add or subtract integer values. The iterator
types are defined within the container class so you always get the type of iterator that is suited to the organi-
zation of the container. For vector and double-ended queue containers you get random access iterators.

The input is read in a while loop:

int value = 0;
while(cin >> value, value != 0)

data.push_front(value);

The while loop condition makes use of the comma operator to separate two expressions, one that reads
an integer from cin into value and another that tests for the value read being non-zero. You saw in
Chapter 2 that the value of a series of expressions separated by commas is the value of the rightmost

628

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 628



expression, so the while loop continues as long as the expression value != 0 is true, and the value
read is non-zero. Within the loop you store the value in the queue using the push_front() function.

The next loop lists the value contained in the queue:

cout << endl << “The values you entered are:” << endl;
for(iter = data.begin() ; iter != data.end() ; iter++)

cout << *iter << “  “;

This uses iter as the loop control variable to output the values and the loop ends when iter is 
incremented to be equal to the iterator returned by the end() function. You could also write this as 
a while loop:

iter = data.begin();
while(iter != data.end())
cout << *iter++ << “  “;

Here iter is incremented within the loop after the value it points to has been written to cout.

The next loop outputs the values in reverse order:

for(riter = data.rbegin() ; riter != data.rend() ; riter++)
cout << *riter << “  “;

This uses a reverse iterator so the loop starts with the last element and ends when riter is incremented
to be equal to the iterator returned by rend(). The rbegin() function returns an iterator pointing to the
last elements and the rend() function returns an iterator pointing to one before the first element.

Next you sort the elements in descending sequence and output them:

sort(data.rbegin(), data.rend());
for(iter = data.begin() ; iter != data.end() ; iter++)

cout << *iter << “  “;

The default operation of the sort() algorithm is to sort the sequence passed to it by the two random
access iterator arguments in ascending sequence. Here you pass reverse iterators to the functions so it
sees the elements in reverse order and so it sorts the reversed sequence in ascending order. The result is
that the elements end up in descending sequence when seen in the normal forward order.

The last operation in main() is to output the sum of the elements:

cout << endl << “The sum of the elements in the queue is:” 
<< accumulate(data.begin(), data.end(), 0)  << endl;

You could use a conventional loop to do this but here you make use of the accumulate() algorithm that
is defined in the <numeric> header. This accumulates the sum of the sequence of elements identified by
the first two iterator arguments. The third argument specifies an initial value for the sum and must be the
same type as the elements in the sequence. Supplying an initial value ensures that you always get a sensi-
ble result, even if the sequence to be summed is empty. The accumulate() function returns the result of
the operation. You can apply the accumulate() function to a sequence of values of any numeric type.

629

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 629



Using List Containers
The List<T> container template that is defined in the <list> header implements a doubly-linked list. The
big advantage a list container has over a vector or a double-ended queue is that you can insert or delete ele-
ments anywhere in the sequence in constant time. The range of constructors for a list container is similar to
that for a vector or double-ended queue. This statement creates an empty list:

list<string> names;

You can also create a list with a given number of default elements:

list<string> sayings(20);              // A list of 20 empty strings

Here’s how you create a list containing a given number of elements that are identical:

list<double> values(50, 2.71828);

This creates a list of 50 values of type double.

Of course, you can also construct a list initialized with values from a sequence specified by two iterators:

list<double> samples(++values.begin(), --values.end());

This creates a list from the contents of the values list, omitting the first and last elements in values. Note
that the iterators returned by the begin() and end() functions for a list are bidirectional iterators, so
you do not have the same flexibility as with a vector or a deque container that supports random access
iterators. You can only change the value of a bidirectional iterator using the increment or decrement
operator.

Just like the other sequence containers, you can discover the number of elements in a list by calling its
size() member function. You can also change the number of elements in a list by calling its resize()
function. If the argument to resize() is less than the number of elements in the list, elements will be
deleted from the end and if the argument is greater, elements will be added using the default constructor
for the type of elements stored.

Adding Elements to a List
You add an element to the beginning or end of a list by calling push_front() or push_back(), just as you
would for a double-ended queue. To add elements to the interior of a list, you use the insert() function,
which comes in three versions. Using the first version you can insert a new element at a position specified
by an iterator: 

list<int> data(20, 1);                 // List of 20 elements value 1
data.insert(++data.begin(), 77);       // Insert 77 as the second element

The first argument to insert() is an iterator specified in the insertion position, and the second argument
is the element to be inserted. The increment operator applied to the bidirectional iterator returned by
begin() makes it point to the second element in the list. After executing this, the list contents will be:

1 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

630

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 630



You can see that the list now contains 21 elements and the elements from the insertion point on are simply
displaced to the right.

You can also insert a number of copies of the same element at a given position:

list<int>::iterator iter = data.begin();
for(int i = 0 ; i<9 ; i++)
++iter;

data.insert(iter, 3, 88);   // Insert 3 copies of 88 starting at the 10th

The first argument to the insert() function here is an iterator specifying the position, the second argument
is the number of elements to be inserted, and the third argument is the element to be inserted repeatedly. To
get to the 10 element you increment the iterator nine times in the for loop. Thus this fragment inserts three
copies of 88 in the list, starting at the tenth element. Now the contents of the list will be:

1 77 1 1 1 1 1 1 1 88 88 88 1 1 1 1 1 1 1 1 1 1 1 1

Now the list contains 24 elements.

Here’s how you can insert a sequence of elements into a list:

vector<int> numbers(10, 5);            // Vector of 10 elements with value 5
data.insert(--(--data.end()), numbers.begin(), numbers.end());

The first argument to insert() is an iterator pointing to the second to last element position. The sequence
to be inserted is specified by the second and third arguments to the insert() function, so this will insert
all the elements from the vector into the list starting at the second to last element position. After executing
this, the contents of the list will be:

1 77 1 1 1 1 1 1 1 88 88 88 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 1 1

Inserting the 10 elements from numbers in the second to last element position displaces the last two
elements in the list to the right. The list now contains 34 elements.

Accessing Elements in a List
You can obtain a reference to the first or last element in a list by calling the front() or back() function
for the list. To access elements interior to the list you must use an iterator and increment or decrement the
iterator to get to the element you want. As you have seen, the begin() and end() functions return a bidi-
rectional iterator pointing at the first element or one past the last element respectively. The rbegin() and
rend() functions return bidirectional iterators and enable you to iterate through the elements in reverse
sequence.

Let’s try out some of what we have seen in an example.

Try It Out Working with a List
In this example you read sentences from the keyboard and store them in a list. Here’s the code:

// Ex10_05.cpp
// Working with a list

631

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 631



#include <iostream>
#include <list>
#include <string>

using std::cin;
using std::cout;
using std::endl;
using std::list;
using std::string;

int main()
{
list<string> text;
list<string>::iterator iter;           // Stores an iterator

// Read the data 
cout << “Enter a few lines of text. Just press Enter to end:”

<< endl;
string sentence;
while(getline(cin, sentence, ‘\n’), !sentence.empty())
text.push_front(sentence);

// Output the dat using an iterator
cout << endl << “Here is the text you entered:” << endl;
for(iter = text.begin() ; iter != text.end() ; iter++)
cout << *iter << endl;

// Sort the data in ascending sequence
cout << endl << “In ascending sequence the sentences you entered are:” << endl;
text.sort();
for(iter = text.begin() ; iter != text.end() ; iter++)
cout << *iter << endl;

return 0;
}

Here is an example of some output from this program:

Enter a few lines of text. Just press Enter to end:
This sentance contains three erors.
This sentence is false.
People who live in glass houses might as well answer the door.
If all else fails, read the instructions.
Home is where the mortgage is.

Here is the text you entered:
Home is where the mortgage is.
If all else fails, read the instructions.
People who live in glass houses might as well answer the door.
This sentence is false.
This sentance contains three erors.

In ascending sequence the sentences you entered are:
Home is where the mortgage is.

632

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 632



If all else fails, read the instructions.
People who live in glass houses might as well answer the door.
This sentance contains three erors.
This sentence is false.

How It Works
You first create a list container to hold strings followed by an iterator variable for use in outputting the
contents of the list:

list<string> text;
list<string>::iterator iter;           // Stores an iterator

You then read an arbitrary number of text inputs from the standard input stream, cin:

string sentence;
while(getline(cin, sentence, ‘\n’), !sentence.empty())

text.push_front(sentence);

This uses the same idiom for input as the previous example. The second expression in the while loop
condition determines when the loop ends, which will be when calling empty() for sentence returns
true. You add each input to the list using the push_front() function but you could equally well use
push_back(). The only difference would be that the order of elements in the list would be reversed.

You output the contents of the list in a loop:

for(iter = text.begin() ; iter != text.end() ; iter++)
cout << *iter << endl;

This is exactly the same mechanism that you have used for a vector but remember: A list does not support
random access to the elements so the iterators are bidirectional iterators, not random access iterators.

Lastly you sort the contents of the list and output it:

text.sort();
for(iter = text.begin() ; iter != text.end() ; iter++)

cout << *iter << endl;

This uses the sort() member of the list<string> object to sort the contents. Because a list<T> con-
tainer does not provide random access iterators, you cannot use the sort() function that is defined in
the <algorithm> header. This is why the list<T> template defines its own sort() function member.

Other Operations on Lists
The clear() function deletes all the elements from a list. The erase() function allows you to delete
either a single element specified by a single iterator, or a sequence of elements specified by a pair of iter-
ators in the usual fashion — the first in the sequence and one past the last.

int data[] = {10, 22, 4, 56, 89, 77, 13, 9};
list<int> numbers(data, data+8);

633

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 633



numbers.erase(++numbers.begin());      // Remove the second element

// Remove all except the first and the last two
numbers.erase(++numbers.begin(), --(--numbers.end()));

Initially the list will contain all the values from the data array. The first erase() operation deletes the
second element so the list will contain:

10 4 56 89 77 13 9

For the second erase() operation the first argument is the iterator returned by begin() incremented by
1 so it points to the second element. The second argument is the iterator returned by end() decremented
twice, so it points to the second to last element. Of course, this is one past the end of the sequence so the
element that this iterator points to is not included in the set to be deleted, so the list contents after this
operation will be:

10 13 9

The remove() function removes the elements from a list that match a particular value. With the numbers
list defined as in the previous fragment, you could remove all elements equal to 22 with the following
statement:

numbers.remove(22);

The assign() function removes all the elements from a list and copies either a single object into the list
a given number of times, or copies a sequence of objects specified by two iterators. Here’s an example:

int data[] = {10, 22, 4, 56, 89, 77, 13, 9};
list<int> numbers(data, data+8);

numbers.assign(10, 99);      // Replace contents by 10 copies of 99

// Remove all except the first and the last two
numbers.assign(data+1, data+4); // Replace contents by 22 4 56

The assign() function comes in the two overloaded versions illustrated here. The arguments to the
first are the count of the number of replacement elements, and the replacement element value. The
arguments to the second version are two iterators or two pointers specifying a sequence in the way
you have already seen.

The unique() function will eliminate adjacent duplicate elements from a list so if you sort the contents
first, applying the function ensures that all elements are unique. Here’s an example:

int data[] = {10, 22, 4, 10, 89, 22, 89, 10};
list<int> numbers(data, data+8);       // 10 22 4 10 89 22 89 10
numbers.sort();                        // 4 10 10 10 22 22 89 89
numbers.unique();                      // 4 10 22 89

The result of each operation is shown in the comments.

634

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 634



The splice() function allows you to remove all or part of one list and insert it in another. Obviously,
both lists must store elements of the same type. Here’s the simplest way you could use the splice()
function:

int data[] = {1, 2, 3, 4, 5, 6, 7, 8};
list<int> numbers(data, data+3);                 // 1 2 3
list<int> values(data+4, data+8);                // 5 6 7 8
numbers.splice(++numbers.begin(), values);       // 1 5 6 7 8 2 3

The first argument to the splice() function is an iterator specifying where the elements should be
inserted and the second argument is the list that is the source of the elements to be inserted. This opera-
tion removes all the elements from the values list and inserts them immediately preceding the second
element in the numbers list.

Here’s another version of the splice() function that removes elements from a given position in a source
list and inserts them at a given position in the destination list:

int data[] = {1, 2, 3, 4, 5, 6, 7, 8};
list<int> numbers(data, data+3);                           // 1 2 3
list<int> values(data+4, data+8);                          // 5 6 7 8
numbers.splice(numbers.begin(), values, --values.end());   // 8 1 2 3

In this version, the first two arguments to the splice() function are the same as the previous version of
the function. The third argument is an iterator specifying the position of the first element to be selected
from the source list; all elements from this position to the end are removed from the source and inserted
in the destination list. After executing this code fragment, values will contain 5 6 7.

The third version of splice() requires four arguments and selects a range of elements from the source list:

int data[] = {1, 2, 3, 4, 5, 6, 7, 8};
list<int> numbers(data, data+3);                 // 1 2 3
list<int> values(data+4, data+8);                // 5 6 7 8
numbers.splice(++numbers.begin(), values, ++values.begin(), --values.end());

// 1 6 7 2 3

The first three arguments to the version of splice() are the same as the previous version and the last
argument is one past the last element to be removed from the source, values. After executing this,
values will contain 5 8.

The merge() function removes elements from the list that you supply as an argument and inserts them 
in the list for which the function is called. The function then sorts the contents of the extended list into
ascending order by default, or some other order determined by a function object that you supply as a sec-
ond argument to the merge() function. Both lists must be ordered appropriately before you call merge();
in other words the lists must be ordered in the way that you want the final combined list to be ordered.
Here’s a fragment showing how you might use it:

int data[] = {1, 2, 3, 4, 5, 6, 7, 8};
list<int> numbers(data, data+3);                 // 1 2 3
list<int> values(data+1, data+8);                // 2 3 4 5 6 7 8
numbers.merge(values);                           // 1 2 2 3 3 4 5 6 7 8

635

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 635



This merges the contents of values into numbers so values will be empty after this operation. The
merge() function that accepts a single argument orders the result in ascending sequence by default, and
because the values in both lists are already ordered, you don’t need to sort them. To merge the same lists
in descending sequence, the code would be like this:

numbers.sort(greater<int>());                      // 3 2 1
numbers.sort(greater<int>());                      // 8 7 6 5 4 3 2
numbers.merge(values, greater<int>());             // 8 7 6 5 4 3 3 2 2 1

Here you use the greater<int>() function object that is defined in the <functional> header to specify
that the lists should be sorted in descending sequence and they should be merged in the same sequence.

The remove_if() function removes elements from a list based on the result of applying a unary predi-
cate; I’m sure you’ll recall that a unary predicate is a function object that applies to a single argument
and returns a bool value, true or false. If the result of applying the predicate to an element is true,
then the element will be deleted from the list. Typically you would define your own predicate to do this.
This involves defining your own class template for the function object that you want and the STL defines
the unary_function<T, R> base template for use in this context. This template just defines types that
will be inherited by your derived class that specifies your function object type. The base class template is
defined as follows:

template<class _Arg, class _Result>
struct unary_function
{ // base class for unary functions
typedef _Arg argument_type;
typedef _Result result_type;

};

This defines argument_type and result_type as standardized types for use in your definition of the
operator()() function. You must use this base template if you want to use your predicates with func-
tion adapters.

The way in which you can use the remove_if() function is best explained with a specific application,
so let’s try this in a working example.

Try It Out Defining a Predicate for Filtering a List
Here’s how you could define a template for a function object based on the helper template from the STL
that you could use to remove negative values from a list:

// function_object.h
// Unary predicate to identify negative values
#pragma once
#include <functional>

template <class T> class is_negative: public std::unary_function<T, bool>
{
public:
result_type operator()(argument_type& value)
{
return value < 0;

}
};

636

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 636



This predicate works with any numeric type. The base template is very useful in that it standardizes the
representation of the argument and return types for the predicate, and this is required if you want your
function object to be usable with function adapters. Function adapters allow function objects to be used
in combination to provide more complex functions. You should be able to see how you could define unary
predicates for filtering a list in other ways, selecting even or odd numbers for example, or multiples of a
given number, or numbers falling within a given range.

If you are not concerned about the use of your predicate with function adapters, you could define the
template very easily without the base class template:

// function_object.h
// Unary predicate to identify negative values
#pragma once

template <class T> class is_negative
{
public:
bool operator()(T& value)
{
return value<0;

}
};

You don’t need the #include directive for <functional> here because you are not using the base tem-
plate. This is simple and perhaps easier to understand, but I included the original version just to show
how you use the base template. You will want to do this if you intend to use your predicate in a more
general context, in particular if you want to use it with function adapters. I’ll create the example with
the first version but you can use either version, or perhaps try both. 

To make the example more interesting, I’ll include function templates for inputting data to a list and for
writing out the contents of a list. Here’s the program to make use of your predicate:

// Ex10_06.cpp
// Using the remove_if() function for a list

#include <iostream>
#include <list>
#include “function_object.h”

using std::cin;
using std::cout;
using std::endl;
using std::list;

// Template function to list the contents of a list
template <class T>
void listlist(list<T>& data)
{
for(list<T>::iterator iter = data.begin() ; iter != data.end() ; iter++)
cout << *iter << “  “;

cout << endl;
}

// Template function to read data from cin and store it in a list

637

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 637



template<class T>
void loadlist(list<T>& data)
{
T value = 0;
while(cin >> value , value != 0)  //Read non-zero values
data.push_back(value);

}

int main()
{
// Process integers
list<int> numbers;
cout << “Enter non-zero integers separated by spaces. Enter 0 to end.” 

<< endl;
loadlist(numbers);
cout << “The list contains:” << endl;
listlist(numbers);
numbers.remove_if(is_negative<int>()); 
cout << “After applying the remove_if() function the list contains:” 

<< endl;
listlist(numbers);

// Process floating-point values
list<double> values;
cout << endl 

<< “Enter non-zero values separated by spaces. Enter 0 to end.” 
<< endl;

loadlist(values);
cout << “The list contains:” << endl;
listlist(values);
values.remove_if(is_negative<double>());        
cout << “After applying the remove_if() function the list contains:” << endl;
listlist(values);

return 0;
}

Here’s a sample of output from this program:

Enter non-zero integers separated by spaces. Enter 0 to end.
23 -4 -5 66 67 89 -1 22 34 -34 78 62 -9 99 -19 0
The list contains:
23  -4  -5  66  67  89  -1  22  34  -34  78  62  -9  99  -19
After applying the remove_if() function the list contains:
23  66  67  89  22  34  78  62  99

Enter non-zero values separated by spaces. Enter 0 to end.
2.5 -3.1 5.5 100 -99 -.075 1.075 13 -12.1 13.2 0
The list contains:
2.5  -3.1  5.5  100  -99  -0.075  1.075  13  -12.1  13.2
After applying the remove_if() function the list contains:
2.5  5.5  100  1.075  13  13.2

638

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 638



How It Works
The output shows the predicate works for values of type int and type double. The remove_if() func-
tion applies the predicate to each element in a list in turn, and deletes the elements for which the predi-
cate returns true.

The body of the loadlist<T>() template function that reads the input is:

T value = 0;
while(cin >> value , value != 0)  //Read non-zero values

data.push_back(value);

The local variable value is defined as type T, the type parameter for the template, so this will be of what-
ever type you use to instantiate the function. The input is read in the while loop and values continue to
be read until you enter zero, in which case the last expression in the while loop condition will be false,
thus ending the loop.

The body of the listlist<T>() function template is also very straightforward:

for(list<T>::iterator iter = data.begin() ; iter != data.end() ; iter++)
cout << *iter << “  “;

cout << endl;

This uses the type list<T>::iterator for the for loop control variable, which maps to the type required
for the iterator for the list container that is passed as the argument. The output is produced by dereferenc-
ing the iterator in the way you have seen before.

If you wanted to try out the merge() function within this example, you could add the following code
before the return statement in main():

// Another list to use in merge
list<double> morevalues;
cout << endl 

<< “Enter non-zero values separated by spaces. Enter 0 to end.” 
<< endl;

loadlist(morevalues);
cout << “The list contains:” << endl;
listlist(morevalues);
values.remove_if(is_negative<double>());        
cout << “After applying the remove_if() function the list contains:” << endl;
listlist(morevalues);

// Merge the last two lists
values.sort(greater<double>());
morevalues.sort(greater<double>());
values.merge(morevalues, greater<double>());
listlist(values);

Don’t forget you need an #include directive for <functional> and a using directive for std::greater
for this to compile.

639

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 639



Using Other Sequence Containers
The remaining sequence containers are implemented through container adapters that I introduced at the
beginning of this chapter. I’ll discuss each of them briefly and illustrate their operation with an example.

Queue Containers
A queue<T> container implements a first-in first-out storage mechanism through an adapter. You can
only add to the end of the queue and remove from the front. Here’s one way you can create a queue:

queue<string> names;

This creates a queue that can store elements of type string. By default the queue<T> adapter class uses
a deque<T> container as the base, but you can specify a different sequence container as a base as long as
it supports the operations front(), back(), push_back(), and pop_front(). These four functions are
used to operate the queue. Thus a queue can be based on a list or a vector container. You specify the alter-
nate container as a second template parameter. Here’s how you would create a queue based on a list:

queue< string, list<string> > names;

The second type parameter to the adapter template specifies the underlying sequence container that is 
to be used. The queue adapter class acts as a wrapper for the underlying container class and essentially
restricts the range of operations you can carry out to those described in the following table.

Note that there are no functions in the table that make iterators available for a queue container. The only
way to access the contents of a queue is via the back() or front() functions.

Try It Out Using a Queue Container
In this example you read a succession of one or more sayings, store them in a queue, and then retrieve
the sayings and output them. Here’s the code:

// Ex10_07.cpp
// Exercising a queue container

Function Description

back() Returns a reference to the element at the back of the queue. There are two versions
of the function, one returning a const reference and the other returning a non-
const reference. If the queue is empty, then the value returned is undefined. 

front() Returns a reference to the element at the front of the queue. There are two versions
of the function, one returning a const reference and the other returning a non-
const reference. If the queue is empty, then the value returned is undefined.

push() Adds the element specified by the argument to the back of the queue.

pop() Removes the element at the front of the queue.

size() Returns the number of elements in the queue.

empty() Returns true if the queue is empty and false otherwise.

640

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 640



#include <iostream>
#include <queue>
#include <string>

using std::cin;
using std::cout;
using std::endl;
using std::queue;
using std::string;

int main()
{
queue<string> sayings;
string saying;
cout << “Enter one or more sayings. Press Enter to end.” << endl;
while(true)
{
getline(cin, saying);
if(saying.empty())
break;

sayings.push(saying);
}

cout << “There are “ << sayings.size()
<< “ sayings in the queue.” 
<< endl << endl;

cout << “The sayings that you entered are:” << endl;
while(!sayings.empty())
{
cout << sayings.front() << endl;
sayings.pop();

}

return 0;
}

Here’s an example of some output from this program:

Enter one or more sayings. Press Enter to end.
If at first you don’t succeed, give up.
A preposition is something you should never end a sentence with.
The bigger they are, the harder they hit.
A rich man is just a poor man with money.
Wherever you go, there you are.
Common sense is not so common.

There are 6 sayings in the queue.

The sayings that you entered are:
If at first you don’t succeed, give up.
A preposition is something you should never end a sentence with.
The bigger they are, the harder they hit.
A rich man is just a poor man with money.

641

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 641



Wherever you go, there you are.
Common sense is not so common.

How It Works
You first create a queue container that stores string objects:

queue<string> sayings;

You read sayings from the standard input stream and store them in the queue container in a while loop:

while(true)
{

getline(cin, saying);
if(saying.empty())

break;
sayings.push(saying);

}

This version of the getline()function reads text from cin into the string object, saying, until a new-
line character is recognized. Newline is the default input termination character and when you want to
override this, you specify the termination character as the third argument to getline(). The loop contin-
ues until the empty() function for saying in the if statement returns true, which indicates an empty line
was entered. When the input in saying is not empty, you store it in the sayings queue container by call-
ing its push() function.

When input is complete, you output the count of the number of sayings that were stored in the queue:

cout << “There are “ << sayings.size()
<< “ sayings in the queue.” 
<< endl << endl;

The size() function returns the number of elements in the queue.

You list the contents of the queue in another while loop:

while(!sayings.empty())
{

cout << sayings.front() << endl;
sayings.pop();

}

The front() function returns a reference to the object at the front of the queue but it remains there. Because
you want to access each of the elements in the queue in turn, you have to call the pop() function after listing
each element to remove it from the queue.

The process of listing the elements in the queue also deletes them, so after the loop ends the queue will
be empty. What if you wanted to retain the elements in the queue? Well, one possibility is that you could
put each saying back in the queue after you have listed it. Here’s how you could do that:

for(int i = 0 ; i < sayings.size() ; i++)
{

642

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 642



saying = sayings.front();
cout << saying << endl;
sayings.pop();
sayings.push(saying);

}

Here you make use of the value returned by size() to iterate over the number of sayings in the queue.
After writing each saying to cout, you remove it from the queue by calling pop(), and then you return
it to the back of the queue by calling push(). When the loop ends the queue will be left in its original
state. Of course, if you don’t want to remove the elements when you access them you could always use 
a different kind of container.

Priority Queue Containers
A priority_queue<T> container is a queue that always has the largest or highest priority element at the
top. Here’s one way to define a priority queue container:

priority_queue<int> numbers;

The default criterion for determining the relative priority of elements as you add them to the queue is
the standard less<T> function object template. You add an element to the priority queue using the
push() function:

numbers.push(99);                      // Add 99 to the queue

When you add an element to the queue, if the queue is not empty the function will use the less<T>()
predicate to decide where to insert the new object. This will result in elements being ordered in ascend-
ing sequence from the back of the queue to the front. You cannot modify elements while they are in a
priority queue as this could invalidate the ordering that has been established.

The complete set of operations for a priority queue is shown in the following table.

Function Description

top() Returns a const reference to the element at the front of the priority queue, which
will be the largest or highest priority element in the container. If the priority queue
is empty, then the value returned is undefined.

push() Adds the element specified by the argument to the priority queue at a position
determined by the predicate for the container, which by default is less<T>.

pop() Removes the element at the front of the priority queue, which will be the largest or
highest priority element in the container.

size() Returns the number of elements in the priority queue.

empty() Returns true if the priority queue is empty and false otherwise.

643

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 643



Note that there is a significant difference between the functions available for the priority queue and for
the queue container. With a priority queue you have no access to the element at the back of the queue;
only the element at the front is accessible. 

By default, the base container used by the priority queue adapter class is vector<T>. You have the
option of specifying a different sequence container as the base and an alternative function object for
determining the priority of the elements. Here’s how you could do that:

priority_queue<int, deque<int>, greater<int>> numbers;

This statement defines a priority queue based on a deque<int> container with elements being inserted
using a function object of type greater<int>. The elements in this priority queue will be in descend-
ing sequence with the smallest element at the top. The three template parameters are the element type,
the container to be used as a base, and the type for the predicate to be used for ordering the elements. 

You could omit the third template parameter if you want the default predicate to apply, which will be
less<int> in this case. If you want a different predicate but want to retain the default base container,
you must explicitly specify it, like this:

priority_queue<int, vector<int>, greater<int>> numbers;

This specifies the default base container vector<int> and a new predicate type, greater<int> to be
used to determine the ordering of elements.

Try It Out Using a Priority Queue Container
In this example you store Person objects in the container, with the Person class defined this time to
hold the names as type string:

// Person.h
// A class defining a person
#pragma once
#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{
public:
Person(string first, string second)
{
firstname = first;
secondname = second;

}

// No-arg constructor
Person(){}

// Copy constructor

644

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 644



Person(const Person& p)
{
firstname = p.firstname;
secondname = p.secondname;

}

// Less-than operator
bool operator<(const Person& p)const
{
if(secondname < p.secondname ||
((secondname == p.secondname) && (firstname < p.firstname)))
return true;

return false;
}

// Greater-than operator
bool operator>(const Person& p)const
{
return p < *this;

}

// Output a person
void showPerson() const
{
cout << firstname << “ “ << secondname << endl;

}

private:
string firstname;
string secondname;

};

Note that the > operator is overloaded here. This will make it possible to put objects in a priority queue
that is ordered in ascending or descending sequence.

Here’s the program that stores Person objects in a priority queue:

// Ex10_08.cpp
// Exercising a priority queue container

#include <iostream>
#include <vector>
#include <queue>
#include <functional>
#include “Person.h”

using std::cin;
using std::cout;
using std::endl;
using std::vector;
using std::priority_queue;
using std::greater;

645

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 645



int main()
{
priority_queue<Person, vector<Person>, greater<Person>> people;
string first, second;;
while(true)
{
cout << “Enter a first name or press Enter to end: “ ;
getline(cin, first);
if(first.empty())
break;

cout << “Enter a second name: “ ;
getline(cin, second);
people.push(Person(first, second));

}

cout << endl << “There are “ << people.size()
<< “ people in the queue.” 
<< endl << endl;

cout << “The names that you entered are:” << endl;
while(!people.empty())
{
people.top().showPerson();
people.pop();

}

return 0;
}

Typical output from this example looks like this:

Enter a first name or press Enter to end: Oliver
Enter a second name: Hardy
Enter a first name or press Enter to end: Stan
Enter a second name: Laurel
Enter a first name or press Enter to end: Harold
Enter a second name: Lloyd
Enter a first name or press Enter to end: Mel
Enter a second name: Gibson
Enter a first name or press Enter to end: Brad
Enter a second name: Pitt
Enter a first name or press Enter to end:

There are 5 people in the queue.

The names that you entered are:
Mel Gibson
Oliver Hardy
Stan Laurel
Harold Lloyd
Brad Pitt

646

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 646



How It Works
The Person class is simpler than the earlier version because the names are stored as string objects and
no dynamic memory allocation is necessary. You no longer need to define the assignment operator, as the
default will be fine. Defining the < operator function is sufficient to allow Person objects to be stored in 
a default priority queue and the overloaded > operator will permit Person objects to be ordered using
the greater<Person> predicate type.

You define the priority queue in main() like this:

priority_queue< Person, vector<Person>, greater<Person>> people;

Because you want to specify the third template type parameter, you must supply all three, even though
the base container type is the default. Incidentally, don’t confuse the type argument you are using in the
template instantiation here, greater<Person>, with the object, greater<Person>(), that you might
supply as an argument to the sort() algorithm.

Of course, the third parameter to the priority queue template that defines the predicate for ordering the
objects does not have to be a template type. You could use your own function object type as long as it has
a suitable implementation of operator()() in the class:

// function_object.h
#pragma once
#include <functional>
#include “Person.h”
using std::binary_function;

class PersonComp: binary_function<Person, Person, bool>
{
public:
result_type operator()(const first_argument_type& p1,

const second_argument_type& p2) const
{
return p1 > p2;

}
};

For function objects that work with the STL, a binary predicate must implement operator()() with
two parameters, and if you want the predicate to work with function adapters, your function object type
must have an instance of the binary_function<Arg1Type, Arg2Type, ResultType> template as a
base. Although you will typically make both arguments to a binary predicate of the same type, the base
class does not require this to be so, so when it is meaningful your predicates can apply to arguments of
different types.

If you don’t want to use your function objects with function adapters, you could define the type as:

// function_object.h
#pragma once
#include “Person.h”

class PersonComp

647

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 647



{
public:
bool operator()(const Person& p1, const Person& p2) const
{
return p1 > p2;

}
};

With this function object type, you could define the priority queue object as:

priority_queue< Person, vector<Person>, PersonComp> people;

You read names from the standard input stream in an indefinite while loop:

while(true)
{

cout << “Enter a first name or press Enter to end: “ ;
getline(cin, first);
if(first.empty())

break;

cout << “Enter a second name: “ ;
getline(cin, second);
people.push(Person(first, second));

}

An empty first name will terminate the loop. After reading a second name, you create the Person object
in the argument expression to the push() function that adds the object to the priority queue. It will be
inserted at a position determined by a greater<Person>() predicate. This will result in the objects
being ordered in the priority queue with the largest at the top. You can see from the output that the
names are in ascending sequence.

After outputting the number of objects in the queue using the size() function, you output the contents
of the queue in a while loop:

while(!people.empty())
{

people.top().showPerson();
people.pop();

}

The top() function returns a reference to the object at the front of the queue, and you use this reference
to call the showPerson() function to output the name. You then call pop() to remove the element at the
front of the queue; unless you do this, you can’t access the next element.

When the loop ends the priority queue will be empty. There’s no way to access all the elements and retain
them in the queue. If you want to keep them you would have to put them somewhere else, perhaps in
another priority queue.

648

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 648



Stack Containers
The stack<T> container adapter template is defined in the <stack> header and implements a push-
down stack based on a deque<T> container by default. A pushdown stack is a last-in first-out storage
mechanism where only the object that was added most recently to the stack is accessible.

Here’s how you can define a stack:

stack<Person> people;

This defines a stack to store Person objects.

The base container can be any sequence container that supports the operations back(), push_back(),
and pop_back(). You could define a stack base on a list like this:

stack<string, list<string>> names;

The template type argument is the element type, as before, and the second is the container type to be
used as a base for the stack.

There are only five operations available with a stack<T> container and they are shown in the following
table.

As with the other containers provided through container adapters, you cannot use iterators to access the
contents of a stack.

Let’s see a stack working in another example.

Try It Out Using a Stack Container
This example stores Person objects in a stack. The Person class is the same as in the previous example,
so I won’t repeat the code here. Here’s the program:

// Ex10_09.cpp
// Exercising a stack container

Function Description

top() Returns a reference to the element at the top of the stack. If the stack is empty, then
the value returned is undefined. You can assign the reference returned to a const
or non-const reference and if it is assigned to the latter, you can modify the object
in the stack.

push() Adds the element specified by the argument to the top of the stack. 

pop() Removes the element at the top of the stack.

size() Returns the number of elements in the stack.

empty() Returns true if the stack is empty and false otherwise.

649

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 649



#include <iostream>
#include <stack>
#include <list>
#include “Person.h”

using std::cin;
using std::cout;
using std::endl;
using std::stack;
using std::list;

int main()
{  
stack<Person, list<Person>> people;

string first, second;
while(true)
{
cout << “Enter a first name or press Enter to end: “ ;
getline(cin, first);
if(first.empty())
break;

cout << “Enter a second name: “ ;
getline(cin, second);
people.push(Person(first, second));

}

cout << endl << “There are “ << people.size()
<< “ people in the stack.” 
<< endl << endl;

cout << “The names that you entered are:” << endl;
while(!people.empty())
{
people.top().showPerson();
people.pop();

}

return 0;
}

Here is an example of the output:

Enter a first name or press Enter to end: Gordon
Enter a second name: Brown
Enter a first name or press Enter to end: Harold
Enter a second name: Wilson
Enter a first name or press Enter to end: Margaret
Enter a second name: Thatcher
Enter a first name or press Enter to end: Winston

650

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 650



Enter a second name: Churchill
Enter a first name or press Enter to end: David
Enter a second name: Lloyd-George
Enter a first name or press Enter to end:

There are 5 people in the stack.

The names that you entered are:
David Lloyd-George
Winston Churchill
Margaret Thatcher
Harold Wilson
Gordon Brown

How It Works
The code in main() is more or less the same as in the previous example. Only the container definition is
significantly different:

stack<Person, list<Person>> people;

The stack container stores Person objects and is based on a list<T> container in this instance. You
could also use a vector<T> container and if you omit the second type parameter, the stack will use a
deque<T> container as a base.

The output demonstrates that a stack is indeed a last-in first-out container as the order of names in the
output is the reverse of the input.

Associative Containers
The most significant feature of the associative containers such as map<K, T> is that you can retrieve a
particular object without searching. The location of an object of type T within an associative container 
is determined from a key of type K that you supply along with the object, so you can retrieve any object
rapidly by just supplying the appropriate key. The key is actually a sort key that determines the order of
the entries in the map.

For set<T> and multiset<T> containers, objects act as their own keys. You might be wondering what the
use of a container is where before you can retrieve an object you have to have the object available. After all,
if you already have the object, why would you need to retrieve it? The point of set and multiset containers
is not so much to store objects for later retrieval, but to create an aggregation of objects that you can test to
see whether or not a given object is already a member.

In this section I’ll concentrate on map containers. The set and multiset containers are used somewhat less
frequently and their operations are very similar to the map and multimap containers, so you should have
little difficulty using these once you have learned how to apply the map containers.

651

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 651



Using Map Containers
The template for map containers is defined in the <map> header. When you create a map<K, T> con-
tainer, you must supply type arguments for the type of key you will use, K, and the type of the object
associated with a key, T. Here’s an example:

map<Person, string> phonebook;

This defines an empty map container that stores entries that are key/object pairs where the keys are of
type Person and the objects are of type string.

Note that although you use class objects here for both keys and objects to be stored in the map, the keys
and associated objects in a map can also be of any fundamental type such as int, or double or char.

You can also create a map container that is initialized with a sequence of key/object pairs from another
map container:

map<Person, string> phonebook(iter1, iter2);

iter1 and iter2 are a pair of iterators defining a series of key/object pairs from another container in the
usual way, with iter2 specifying a position one past the last pair to be included in the sequence. You
obtain iterators to access the contents of a map by calling the begin() and end() functions, just as you
would for a sequence container. The iterators for a map are bidirectional iterators.

The entries in a map are ordered based on a function object of type less<Key> by default, so they will
be stored in ascending key sequence. You can change the type function object used for ordering entries
in a map by supplying a third template type parameter. For example:

map<Person, string, greater<Person>> phonebook;

This map stores entries that are Person/string pairs, where Person is the key with an associated string
object. The ordering of entries will be determined by a function object of type greater<Person>, so the
entries will be in descending key sequence.

Storing Objects
The objects that you store in a map are always a key/object pair that are of a template type pair<K, T>,
where K is the type of key and T is the type of object associated with the key. The pair<K, T> type is
defined in the <utility> header, which is included into the <map> header, so if you are using a map
the type is automatically available. You can define a pair object like this:

pair<Person, string> entry = pair<Person, string>(Person(“Mel”, “Gibson”), 
“213 345 5678”);

This creates the variable entry of type

pair<Person, string>

and initializes it to an object created from a Person object and a string object. I’m representing a phone
number in a very simplistic way, just as a string, but of course it could be a more complicated class iden-
tifying the components of the number such as country code and area code. The Person class is the class
you used in the previous example. 

652

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 652



An instance of the pair<K, T> class template defines two constructors and the one you are using in the
previous fragment defines an object from a key and its associated object. The other constructor is a copy
constructor that allows you to construct a new pair from an existing one. You can access the elements in
a pair through the members first and second, so in the example entry.first references the Person
object and entry.second references the string object.

You can also use a helper function, make_pair(), that is defined in the <utility> header to create a
pair object:

pair<Person, string> entry = make_pair(Person(“Mel”, “Gibson”), 
“213 345 5678”);

Using the make_pair() function is a little less cluttered than using the explicit pair type. The make_pair()
function is defined as a template function, so it automatically deduces the type for the pair from the argu-
ment types you supply.

All of the comparison operators are overloaded for pair objects so you can compare them with any of the
operators <, <=, ==, !=, >=, and >.

It’s sometimes convenient to use a typedef statement to abbreviate the pair<K, T> type you are using
in a particular instance. For example:

map<Person, string> phonebook;
typedef pair<Person, string> Entry;

The first statement defines a map container that will store string objects using Person objects as keys. The
second statement defines Entry as the type for the key/object pair. Having defined the Entry type, you can
create objects of this type. For example:

Entry entry1 = Entry(Person(“Jack”, “Jones”), “213 567 1234”);

This statement defines a pair of type pair<Person, string> using Person(“Jack”, “Jones”) as the
Person argument and “213 567 1234” as the string argument.

You can insert one or more pairs in a map using the insert() function. For example, here’s how you
insert a single object:

phonebook.insert(entry1);

This statement inserts the entry1 pair into the phonebook container as long as there is no other entry in
the map that uses the same key. In fact this version of the insert() function returns a value that is also
a pair, where the first object in the pair is an iterator and the second is a value of type bool. The bool
value in the pair will be true if the insertion was made and false otherwise. The iterator value in the
pair will point to the element if it was stored in the map, or the element that is already in the map if the
insert failed. Therefore you can check if the object was stored like this:

pair<map<Person, string>::iterator, bool> checkpair;
checkpair = phonebook.insert(entry1);
if(checkpair.second)
cout << “Insertion succeeded.” << endl;

else
cout << “Insertion failed.” << endl;

653

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 653



The pair that the insert() function returns is stored in checkpair. The type for checkpair is a pair
encapsulating an iterator for our map of type map<Person, Number>::iterator, which you could access
as checkpair.first, and a value of type bool, which you access in the code as checkpair.second.

Dereferencing the iterator in the pair returned by the insert() function will give you access to the pair
that is stored in the map and you can use the first and second members of that pair to access the key and
object respectively. This can be a little tricky so let’s see what it looks like for checkpair in the code above:

cout << “The key for the entry is:” << endl;
checkpair.first->first.showPerson();

The expression checkpair.first references the first member of the checkpair pair, which is an itera-
tor, so you are accessing a pointer to the object in the map with this expression. The object in the map is
another pair, so the expression checkpair.first->first accesses the first member of that pair, which
is the Person object. You use this to call the showPerson() member to output the name. You could access
the object in the pair in a similar way with the expression checkpair.first->second. 

You have another version of the insert() function for inserting a series of pairs in a map. The pairs are
defined by two iterator arguments and the series would typically be from another map container.

The map<K,T> template defines the operator[]() function, so you can also use the subscript operator
to insert an object. Here’s how you could insert the entry1 object in the phonebook map:

phonebook[Person(“Jack”, “Jones”)] = “213 567 1234”;

The subscript value is the key to be used to store the object that appears on the right of the assignment
operator. This is perhaps a somewhat more intuitive way to store objects in a map. The only disadvantage
compared to the insert() function is that you lose the ability to discover whether the key was already in
the map.

Accessing Objects
You can use the subscript operator to retrieve the object from a map that corresponds to a given key. For
example:

string number = phonebook[Person(“Jack”, “Jones”)];

This stores the object corresponding to the key

Person(“Jack”, “Jones”)

in number. If the key is not in the map, then a pair entry will be inserted into the map for this key with
the object as the default for the object type, so here the no-arg Person class constructor will be called to
create the object for this key if the entry is not there.

Of course, you may not want a default object inserted when you attempt to retrieve an object correspon-
ding to a given key. In this case you could use the find() function to check if there’s an entry for a given
key and then retrieve it:

string number;
Person key = Person(“Jack”, “Jones”);

654

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 654



map<Person, string>::iterator iter = phonebook.find(key);

if(iter != phonebook.end())
{
number = iter->second;
cout << “The number is “ << number << endl;

}
else
{
cout << “No number for the key “;
key.showPerson();

}

The find() function returns an iterator that points to the object corresponding to the key if the key is
present in the map, or to one past the last entry in the map, which corresponds to the iterator returned
by the end() function. Thus if iter is not equal to the iterator returned by end(), the entry is present
and you can access the object through the second member of the pair. This fragment defines the iterator
as type map<Person, Number>::iterator. If you want to prevent the object in the map from being
modified, you could define the iterator as type map<Person, Number>::const_iterator.

Calling the count() function for a map with a key as the argument will return a count of the number of
entries found corresponding to the key. For a map the value returned can only be 0 or 1 because each key
in a map must be unique. A multimap container allows multiple entries for a given key, so in this case
other values are possible for the return value from count().

Other Map Operations
The erase() function enables you to remove a single entry or a range of entries from a map. You have
two versions of erase() that will remove a single entry. One version requires an iterator as the argu-
ment pointing to the entry to be erased, and the other requires a key corresponding to the entry to be
erased. For example:

Person key = Person(“Jack”, “Jones”);
map<Person, string>::size_type count = phonebook.erase(key);
if(count == 0)
cout << “Entry was not found.” << endl;

When you supply a key to the erase() function, it returns a count of the number of entries that were
erased. With a map container, the value returned can only be 0 or 1. A multimap container can have sev-
eral entries with the same key in which case the erase() function may return a value greater than 1.

You can also supply an iterator as an argument to erase():

Person key = Person(“Jack”, “Jones”);
map<Person, string>::iterator iter = phonebook.find(key);
iter = phonebook.erase(iter);
if(iter == phonebook.end())
cout << “End of the map reached.” << endl;

In this case the erase() function returns an iterator that points to the entry that remains in the map
beyond the entry that was erased, or a pointer to the ends of the map if no such element is present.

655

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 655



The following table shows the other operations available with a map container.

The lower_bound(), upper_bound(), and equal_range() functions are not very useful with a map
container. However, they come into their own with a multimap container when you want to find all the
elements with the same key.

Let’s see a map in action.

Try It Out Using a Map Container
In this example you use a map container to store phone numbers and provide a mechanism for finding a
phone number for a person. You use a variation on the Person class in this example:

// Person.h
// A class defining a person
#pragma once

Function Description

begin() Returns a bidirectional iterator pointing to the first entry in the map.

end() Returns a bidirectional iterator pointing to one past the last entry in the map. 

rbegin() Returns a reverse iterator pointing to the last entry in the map.

rend() Returns a reverse iterator pointing to one past the first entry in the map.

lower_bound() Accepts a key as an argument and returns an iterator pointing to the first
entry with a key that is greater than or equal to (the lower bound of) the
specified key. If the key is not present, the iterator pointing to one past the
last entry will be returned.

upper_bound() Accepts a key as an argument and returns an iterator pointing to the first
entry with a key that is greater than (the upper bound of) the specified key.
If the key is not present, the iterator pointing to one past the last entry will
be returned.

equal_range() Accepts a key as an argument and returns a pair object containing two itera-
tors. The first member of the pair points to the lower bound of the specified
key and the second member points to the upper bound of the specified key.
If the key is not present, both iterators in the pair will point to one past the
last entry in the map.

swap() Interchanges the entries in the map you pass as the argument with the
entries in the map for which the function is called.

clear() Erases all entries in the map.

size() Returns the number of elements in the map.

empty() Returns true if the map is empty and false otherwise.

656

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 656



#include <iostream>
#include <string>
#include <functional>
using std::cout;
using std::endl;
using std::string;

class Person
{
public:
Person(string first = “”, string second = “”)
{
firstname = first;
secondname = second;

}

// Less-than operator
bool operator<(const Person& p)const
{
if(secondname < p.secondname ||
((secondname == p.secondname) && (firstname < p.firstname)))
return true;

return false;
}

// Get the name 
string getName()const
{
return firstname + “ “ + secondname;

}

private:
string firstname;
string secondname;

};

There are only a few minor changes from the previous version of the Person class. The no-arg construc-
tor is now defined by providing default values for the constructor arguments. I have omitted the < oper-
ator function, the copy constructor, the assignment operator, and the showPerson() function. There is a
new function, getName() that returns the complete name as a string object. 

The source file containing main() and some helper functions looks like this:

// Ex10_10.cpp
// Using a map container

#include <iostream>
#include <cstdio>
#include <iomanip>
#include <string>
#include <map>
#include “Person.h”

657

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 657



using std::cin;
using std::cout;
using std::endl;
using std::setw;
using std::ios;
using std::string;
using std::pair;
using std::map;
using std::make_pair;

// Read a person from cin
Person getPerson()
{
string first;
string second;
cout << “Enter a first name: “ ;
getline(cin, first);
cout << “Enter a second name: “ ;
getline(cin, second);
return Person(first, second);

}

// Add a new entry to a phone book
void addEntry(map<Person, string>& book)
{
pair<Person, string> entry;          // Stores a phone book entry
string number;
Person person = getPerson();

cout << “Enter the phone number for “
<< person.getName() << “: “;
getline(cin, number);
entry = make_pair(person, number);
pair<map<Person,string>::iterator, bool> pr = book.insert(entry);

if(pr.second)
cout << “Entry successful.” << endl;

else
{
cout << “Entry exists for “ << person.getName()

<< “. The number is “ << pr.first->second << endl;
}

}

// List the contents of a phone book
void listEntries(map<Person, string>& book)
{
if(book.empty())
{
cout << “The phone book is empty.” << endl;
return;

}
map<Person, string>::iterator iter;
cout << setiosflags(ios::left);              // Left justify output
for(iter = book.begin() ; iter != book.end() ; iter++)

658

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 658



{
cout << setw(30) << iter->first.getName() 

<< setw(12) << iter->second << endl; 
}
cout << resetiosflags(ios::right);           // Right justify output

}

// Retrieve an entry from a phone book
void getEntry(map<Person, string>& book)
{
Person person = getPerson();
map<Person, string>::const_iterator iter = book.find(person);
if(iter == book.end())
cout << “No entry found for “ << person.getName() << endl;

else
cout << “The number for “ << person.getName()

<< “ is “ << iter->second << endl;
}

// Delete an entry from a phone book
void deleteEntry(map<Person, string>& book)
{
Person person = getPerson();
map<Person, string>::iterator iter = book.find(person);
if(iter == book.end())
cout << “No entry found for “ << person.getName() << endl;

else
{
book.erase(iter);
cout << person.getName() << “ erased.” << endl;

}
}

int main()
{  
map<Person, string> phonebook;
char answer = 0;

while(true)
{
cout << “Do you want to enter a phone book entry(Y or N): “ ;
cin >> answer;
cin.ignore();                      // Ignore newline in buffer
if(toupper(answer) == ‘N’)
break;

if(toupper(answer) != ‘Y’)
{
cout << “Invalid response. Try again.” << endl;
continue;

}
addEntry(phonebook);

}

// Query the phonebook
while(true)

659

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 659



{
cout << endl << “Choose from the following options:” << endl

<< “A  Add an entry   D Delete an entry   G  Get an entry” << endl
<< “L  List entries   Q  Quit” << endl; 

cin >> answer;
cin.ignore();                      // Ignore newline in buffer

switch(toupper(answer))
{
case ‘A’:
addEntry(phonebook);
break;

case ‘G’:
getEntry(phonebook);
break;

case ‘D’:
deleteEntry(phonebook);
break;

case ‘L’:
listEntries(phonebook);
break;

case ‘Q’:
return 0;

default:
cout << “Invalid selection. Try again.” << endl;
break;

}
}

}

Here is some output from this program:

Do you want to enter a phone book entry(Y or N): y
Enter a first name: Jack
Enter a second name: Bateman
Enter the phone number for Jack Bateman: 312 455 6576
Entry successful.
Do you want to enter a phone book entry(Y or N): y
Enter a first name: Mary
Enter a second name: Jones
Enter the phone number for Mary Jones: 213 443 5671
Entry successful.
Do you want to enter a phone book entry(Y or N): y
Enter a first name: Jane
Enter a second name: Junket
Enter the phone number for Jane Junket: 413 222 8134
Entry successful.
Do you want to enter a phone book entry(Y or N): n

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
a
Enter a first name: Bill
Enter a second name: Smith

660

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 660



Enter the phone number for Bill Smith: 213 466 7688
Entry successful.

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
g
Enter a first name: Mary
Enter a second name: Miller
No entry found for Mary Miller

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
g
Enter a first name: Mary
Enter a second name: Jones
The number for Mary Jones is 213 443 5671

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
d
Enter a first name: Mary
Enter a second name: Jones
Mary Jones erased.

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
L
Jack Bateman                  312 455 6576
Jane Junket                   413 222 8134
Bill Smith                    213 466 7688

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
q

How It Works
You define a map container in main() like this:

map<Person, string> phonebook;

The object in an entry in the map is a string containing a phone number and the key is a Person object.

You load up the map initially in a while loop:

while(true)
{

cout << “Do you want to enter a phone book entry(Y or N): “ ;
cin >> answer;
cin.ignore();                      // Ignore newline in buffer

661

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 661



if(toupper(answer) == ‘N’)
break;

if(toupper(answer) != ‘Y’)
{

cout << “Invalid response. Try again.” << endl;
continue;

}
addEntry(phonebook);

}

You check whether an entry is to be read by reading a character from the standard input stream. Reading
a character from cin leaves a newline character in the buffer and this can cause problems for subsequent
input. Calling ignore() for cin ignores the next character so subsequent input will work properly. If
‘n’ or ‘N’ is entered, the loop is terminated. When ‘y’ or ‘Y’ is entered, an entry is created by calling
the helper function addEntry() that is coded like this:

void addEntry(map<Person, string>& book)
{
pair<Person, string> entry;          // Stores a phone book entry
string number;
Person person = getPerson();

cout << “Enter the phone number for “
<< person.getName() << “: “;
getline(cin, number);
entry = make_pair(person, number);
pair<map<Person,string>::iterator, bool> pr = book.insert(entry);

if(pr.second)
cout << “Entry successful.” << endl;

else
{

cout << “Entry exists for “ << person.getName()
<< “. The number is “ << pr.first->second << endl;

}
}

Note that the parameter for addEntry() is a reference. The function modifies the container that is passed
as the argument, so the function must have access to the original object. In any event, even if only access
to the container argument was needed, it is important not to allow potentially very large objects such as a
map container to be passed by value because this can seriously degrade performance.

The process for adding an entry is essentially as you have seen in the previous section. The getPerson()
helper function reads a first name and a second name and then returns a Person object that is created
using the names. The getName() member of the Person class returns a name as a string object so you
use this in the prompt for a number. Calling the make_pair() function returns a pair<Person, string>
object that you store in entry. You then call insert() for the container object and store the object returned
in pr. The pr object enables you to check that the entry was successfully inserted into the map by testing its
bool member. The first member of pr provides access to the entry, whether it’s an existing entry or the new
entry, and you use this to output a message when insertion fails.

After initial input is complete, a while loop provides the mechanism for querying and modifying the
phone book. The switch statement in the body of the loop decides the action to be taken based on the

662

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 662



character that is entered and stored in answer. Querying the phone book is managed by the getEntry()
function:

void getEntry(map<Person, string>& book)
{

Person person = getPerson();
map<Person, string>::const_iterator iter = book.find(person);
if(iter == book.end())

cout << “No entry found for “ << person.getName() << endl;
else

cout << “The number for “ << person.getName()
<< “ is “ << iter->second << endl;

}

A Person object is created from a name that is read from the standard input stream by calling the
getPerson() function. The Person object is then used as the argument to the find() function for 
the map object. This returns an iterator that either points to the required entry, or points to one past the
last entry in the map. If an entry is found, accessing the second member of the pair pointed to by the 
iterator provides the number corresponding to the Person object key.

The deleteEntry() function deletes an entry from the map. The process is similar to that used in the
getEntry() function, the difference being that when an entry is found by the find() function, the
erase() function is called to remove it. You could use another version of erase() to do this, in which
case the code would be like this:

void deleteEntry(map<Person, string>& book)
{
Person person = getPerson();
if(book.erase(person))
cout << person.getName() << “ erased.” << endl;

else
cout << “No entry found for “ << person.getName() << endl;

}

The code turns out to be much simpler if you pass the key to the erase() function.

The listEntries() function lists the contents of a phone book:

void listEntries(map<Person, string>& book)
{

if(book.empty())
{

cout << “The phone book is empty.” << endl;
return;

}
map<Person, string>::iterator iter;
cout << setiosflags(ios::left);              // Left justify output
for(iter = book.begin() ; iter != book.end() ; iter++)
{

cout << setw(30) << iter->first.getName() 
<< setw(12) << iter->second << endl; 

}
cout << resetiosflags(ios::right);           // Right justify output

}

663

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 663



After an initial check for an empty map, the entries are listed in a for loop using an iterator. The output
is left-justified by the setiosflags manipulator to produce tidy output. This remains in effect until
resetiosflags manipulator is used to restore right-justification.

Using a Multimap Container
A multimap container works very much like the map container in that it supports the same range of
functions except for the subscript operator, which you cannot use with a multimap. The principle dif-
ference between a map and a multimap is that you can have multiple entries with the same key in a
multimap and this affects the way some of the functions behave. Obviously, with the possibility of 
several keys having the same value, overloading the operator[]() function would not make much
sense for a multimap.

The insert() function flavors for a multimap are a little different from the function for a map. The sim-
plest version of insert() that accepts a pair<K, T> object as an argument returns an iterator pointing
to the entry that was inserted in the multimap. The equivalent function for a map returns a pair object
because this provides an indication of when the key already exists in the map and the insertion is not
possible; of course, this cannot arise with a multimap. A multimap also has a version of insert() with
two arguments, the second being the pair to be inserted, the first being an iterator pointing to the posi-
tion in the multimap to start searching for an insertion point. This gives you some control over where a
pair will be inserted when the same key already exists. This version of insert() also returns an iterator
pointing to the element that was inserted. The third version of insert() accepts two iterator arguments
that specify a range of elements to be inserted from some other source.

When you pass a key to the erase() function for a multimap, it erases all entries with the same key and
the value returned indicates how many entries were deleted. The significance of having another version
of erase() available that accepts an iterator as an argument should now be apparent — it allows you to
delete a single element.

The find() function can only find the first element with a given key in a multimap. You really need a way
to find several elements with the same key and the lower_bound(), upper_bound(), and equal_range()
functions provide you with a way to do this. For example, given a phonebook object that is type

multimap<Person, string>

rather than type map<Person, string>, you could list the phone numbers corresponding to a given
key like this:

Person person = Person(“Jack”, “Jones”);
multimap<Person, string>::iterator iter = phonebook.lower_bound(person);
if(iter == phonebook.end())
cout << “The are no entries for “ << person.getName() << endl;

else
{
cout << “The following numbers are listed for “ << person.getName() << “:” << endl;
for(  ;  iter != phonebook.upper_bound(person) ; iter++)

cout << iter->second << endl;
}

664

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 664



It’s important to check the iterator returned by the lower_bound() function. If you don’t, you could end
up trying to reference an entry one beyond the last entry.

More on Iterators
The <iterator> header defines several templates for iterators for transferring data from a source to a
destination. Stream iterators act as pointers to a stream for input or output and they enable you to trans-
fer data between a stream and any source or destination that works with iterators, such as an algorithm.
Inserter interators can transfer data into a basic sequence container. The <iterator> header defines two
stream iterator templates, istream_iterator<T> for input streams and ostream_iterator<T> for
output streams, where T is the type of object to be extracted from, or written to, the stream. The header
also defines three inserter templates, inserter<T>, back_inserter<T> and front_inserter<T>,
where T is the type of sequence container in which data is to be inserted.

Let’s explore some of these iterators in a little more depth.

Using Input Stream Iterators
Here’s an example of how you create an input stream iterator:

istream_iterator<int> numbersInput(cin);

This creates the iterator numbersInput of type istream_iterator<int> that can point to objects of
type int in a stream. The argument to the constructor specifies the actual stream to which the iterator
relates, so this is an iterator that can read integers from cin, the standard input stream.

The default istream_iterator<T> constructor creates an end-of-stream iterator, which will be the equiv-
alent to the end iterator for a container that you have been obtaining by calling the end() function. Here’s
how you could create an end-of-stream iterator for cin complementing the numbersInput iterator:

istream_iterator<int> numbersEnd;

Now you have a pair of iterators that define a sequence of values of type int from cin. You could use
these to load values from cin into a vector<int> container for example:

vector<int> numbers;
istream_iterator<int> numbersInput(cin), numbersEnd;
cout << “Enter integers separated by spaces then a letter to end:” << endl;
while(numbersInput != numbersEnd)
numbers.pushback(*numbersIn++);

After defining the vector container to hold values of type int, you create two input stream iterators:
numbersIn is an input stream iterator reading values of type int from cin, and numbersEnd is an
end-of-stream iterator for the same input stream. The while loop continues as long as numbersEnd is
not equal to the end-of-stream iterator, numbersEnd. When you execute this fragment, input continues
until end-of-stream is recognized for cin, but what produces that condition? The end-of-stream condi-
tion will arise if you enter Ctrl+Z to close the input stream, or you enter an invalid character such as 
a letter.

665

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 665



Of course, you are not limited to using input stream iterators as loop control variables. You can use them
to pass data to an algorithm such as the accumulate() that is defined in the <numeric> header:

vector<int> numbers;
istream_iterator<int> numbersInput(cin), numbersEnd;
cout << “Enter integers separated by spaces then a letter to end:” << endl;

cout << “The sum of the input values that you entered is “
<< accumulate(intvecRead, endStream, 0) << endl;

This fragment outputs the sum of however many integers you enter. You will recall that the arguments to
the accumulate() algorithm are an iterator pointing to the first value in the sequence, an iterator pointing
to one past the last value, and the initial value for the sum. Here you are transferring data directly from cin
to the algorithm.

The <sstream> header defines the basic_istringstream<char> type that defines an object type that
can access data from a stream buffer such as a string object. The header also defines the istringstream
type as basic_istringstream<char>, which will be a stream of characters of type char. You can con-
struct an istringstream object from a string object, which means you can read data from the string
object just as you read from cin. Because an istringstream<T> object is a stream, you can pass it to an
input iterator constructor and use the iterator to access the data in the underlying stream buffer. Here’s an
example of how you do that:

string data(“2.4 2.5 3.6 2.1 6.7 6.8 94 95 1.1 1.4 32”);
istringstream input(data);
istream_iterator<double> begin(input), end;
cout << “The sum of the values from the data string is “

<< accumulate(begin, end, 0.0) << endl;

You create the istringstream object, input, from the string object, data, so you can read from data
as a stream. You create two stream iterators that can access double values in the input stream, and you
use these to pass the contents of data to the accumulate() algorithm. Note that the type of the third
argument to the accumulate() function determines the type of the result so you must specify this as a
value of type double to get the sum produced correctly.

Let’s try a working example.

Try It Out Using an Input Stream Iterator
In this example you use a stream iterator to read text from the standard input stream and transfer it to a
map container to produce a collocation for the text. Here’s the code:

// Ex10_11.cpp
// A simple word collocation
#include <iostream>
#include <iomanip>
#include <string>
#include <map>

666

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 666



using std::cout;
using std::cin;
using std::endl;
using std::string;

int main() 
{
typedef std::map<string, int>::const_iterator Iter;

std::map<string, int> words;           // Map to store words and word counts
cout << “Enter some text and press Enter followed by Ctrl+Z to end:”

<< endl << endl;

std::istream_iterator<string> begin(cin); // Stream iterator 
std::istream_iterator<string> end;        // End stream iterator

while(begin != end )                      // Iterate over words in the stream 
words[*begin++]++;                      // Increment and store a word count

// Output the words and their counts
cout << endl << “Here are the word counts for the text you entered:” << endl;
for(Iter iter = words.begin() ; iter != words.end() ; ++iter) 
cout << std::setw(5) << iter->second << “ “ << iter->first << endl;

return 0;
} 

Here’s an example of some output from this program:

Enter some text and press Enter followed by Ctrl+Z to end:

Peter Piper picked a peck of pickled pepper
A peck of pickled pepper Peter Piper picked
If Peter Piper picked a peck of pickled pepper
Where’s the peck of pickled pepper Peter Piper picked
^Z

Here are the word counts for the text you entered:
1 A
1 If
4 Peter
4 Piper
1 Where’s
2 a
4 of
4 peck
4 pepper
4 picked
4 pickled
1 the

667

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 667



How It Works
You first define a type for a const iterator for the map container:

typedef std::map<string, int>::const_iterator Iter;

Using this typedef statement to define the Iter type will make the loop statement that outputs the
contents of the map much more readable.

Next you define a map container to store the words and the word counts:

std::map<string, int> words;           // Map to store words and word counts

This container stores each word count of type int using the word of type string as the key. This will
make it easy to accumulate the count for each word when you read from the input stream using stream
iterators.

std::istream_iterator<string> begin(cin); // Stream iterator 
std::istream_iterator<string> end;        // End stream iterator

The begin iterator is a stream iterator for the standard input stream and end is an end-of-stream iterator
that you can use to detect when the end of the input is reached.

You read the words and accumulate the counts in a loop:

while(begin != end )                      // Iterate over words in the stream 
words[*begin++]++;                      // Increment and store a word count

This simple while loop does a great deal of work. The loop control expression will iterate over the words
entered via the standard input stream until the end-of-stream state is reached. The stream iterator reads
words from cin delimited by whitespace, just like the overloaded >> operator for cin. Within the loop
you use the subscript operator for the map container to store a count with the word as the key; remem-
ber, the argument to the subscript operator for a map is the key. The expression *begin accesses a word
and the expression *begin++ increments the iterator after accessing the word. 

The first time a word is read, it will not be in the map, so the expression words[*begin++] will store a
new entry with the count having the default value 0, and increment the begin iterator to the next word,
ready for the next loop iteration. The whole expression words[*begin++]++ will increment the count
for the entry, regardless of whether it is a new entry or not. Thus an existing entry will just get its count
incremented whereas a new entry will be created and then its count incremented from 0 to 1.

Finally you output the count for each word in a for loop:

for(Iter iter = words.begin() ; iter != words.end() ; ++iter) 
cout << std::setw(5) << iter->second << “ “ << iter->first << endl;

This uses the iterator for the container in the way you have seen several times before. The loop control
expressions are very much easier to read because of the typedef for Iter.

668

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 668



Using Inserter Iterators
An inserter iterator is an iterator that can add new elements to any of the sequence containers
vector<T>, deque<T>, and list<T>. There are three templates that create inserter iterators:

❑ back_inserter<T> inserts elements at the end of a container of type T.

❑ front_inserter<T> inserts elements at the beginning of a container of type T.

❑ inserter<T> inserts elements starting at a specified position within a container of type T.

The constructors for the first two types of inserter iterators expect a single argument specifying the con-
tainer in which elements are to be inserted. For example:

vector<int> numbers;
front_inserter<vector<int>> iter(numbers);

Here you create an inserter iterator that can insert data at the beginning of the vector<int> container
numbers.

Inserting a value into the container is very simple:

*iter = 99;                  // Insert 99 at the front of the numbers container

The constructor for an inserter<T> iterator requires two arguments:

inserter<vector<int>> iter_anywhere(numbers, numbers.begin());

The second argument to the constructor is an iterator specifying where data is to be inserted — the start
in the sequence in this instance. You can use this iterator in exactly the same way as the previous one.
Here’s how you could insert a series of values into a vector container using this iterator:

for(int i = 0 ; i<100 ; i++)
*iter_anywhere = i + 1;

This loop inserts the values from 1 to 100 in the numbers container.

The inserter iterators can be used in conjunction with the copy() algorithm in a particularly useful way.
Here’s how you could read values from cin and transfer them to a list<T> container:

list<double> values;
cout << “Enter a series of values separated by spaces” 

<< “ followed by Ctrl+Z or a letter to end:” << endl;
istream_iterator<double> input(cin), input_end;
copy(input, input_end, back_inserter<list<double>>(values));

You first create a list container that stores double values. After a prompt for input, you create two input
stream iterators for values of type double. The first iterator points to cin and the second iterator is an
end-of-stream iterator created by the default constructor. You specify the input to the copy() function
with the two iterators and the destination for the copy operation is a back inserter iterator that you cre-
ate in the third argument to the copy() function. The back inserter iterator adds the data transferred by

669

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 669



the copy operation to the list container, values. This is quite powerful stuff. If you ignore the prompt, in
three statements you can read an arbitrary number of values from the standard input stream and trans-
fer them to a list container.

Using Output Stream Iterators
Complementing the input stream iterator template, the ostream_iterator<T> template provides out-
put stream iterators for writing objects of type T to an output stream. There are two constructors for an
instance of the output stream iterator template. One creates an iterator that just transfers data to the des-
tination stream:

ostream_iterator<int> out(cout);

The type argument, int, to the template specifies the type of data to be handled and the constructor
argument, cout, specifies the stream that will be the destination for data so the out iterator can write
value of type int to the standard output stream. Here’s how you might use this iterator:

int data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
vector<int> numbers(data, data+9);     // Contents 1 2 3 4 5 6 7 8 9
copy(numbers.begin(), numbers.end(), out);

The copy() algorithm that is defined in the <algorithm> header copies the sequence of objects speci-
fied by the first two iterator arguments to the output iterator specified by the third argument. Here the
function copies the elements from the numbers vector to the out iterator, which will write the elements
to cout. The result of executing this fragment will be:

123456789

As you can see, the values are written to the standard output stream with no spaces between. The second
output stream iterator constructor can improve on this:

ostream_iterator<int>  out(cout, “, “);

The second argument to the constructor is a string to be used as a delimiter for output values. If you use
this iterator as the third argument to the copy() function in the previous fragment, the output will be:

1, 2, 3, 4, 5, 6, 7, 8, 9,

The delimiter string that you specify as a second constructor argument is written to the stream following
each value that is written out.

Let’s see how an output stream iterator works in practice.

Try It Out Using an Inserter Iterator
Suppose you want to read a series of integer values from cin and store them in a vector. You then want
to output the values and their sum. Here’s how you could do this with the STL:

// Ex10_12.cpp
// Using stream and inserter iterators
#include <iostream>

670

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 670



#include <numeric>
#include <vector>
using std::cout;
using std::cin;
using std::endl;
using std::vector;
using std::istream_iterator;
using std::ostream_iterator;
using std::back_inserter;
using std::accumulate;

int main()
{
vector<int> numbers;
cout << “Enter a series of integers separated by spaces” 

<< “ followed by Ctrl+Z or a letter:” << endl;

istream_iterator<int> input(cin), input_end;
ostream_iterator<int> out(cout, “ “);

copy(input, input_end, back_inserter<vector<int>>(numbers));

cout << “You entered the following values:” << endl;
copy(numbers.begin(), numbers.end(), out);

cout << endl << “The sum of these values is “ 
<< accumulate(numbers.begin(), numbers.end(), 0) << endl;

return 0;
} 

Here’s an example of some output:

Enter a series of integers separated by spaces followed by Ctrl+Z or a letter:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ^Z
You entered the following values:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The sum of these values is 120

How It Works
After creating the numbers vector to store integers and issuing a prompt for input, you create three
stream iterators:

istream_iterator<int> input(cin), input_end;
ostream_iterator<int> out(cout, “ “);

The first statement creates two input stream iterators for reading values of type int from the standard
input stream, input and input_end, the latter being an end-of-stream iterator. The second statement
creates an output stream iterator for transferring values of type int to the standard output stream with
the delimiter following each output value being a single space.

Data is read from cin and transferred to the vector container using the copy() algorithm:

copy(input, input_end, back_inserter<vector<int>>(numbers));

671

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 671



You specify the source of data for the copy operation by the two input stream iterators, input and
input_end, and the destination for the copy operation is a back inserter iterator for the numbers con-
tainer. Thus the copy operation will transfer data values from cin to the numbers container via the
back inserter.

You output the values that have been stored in the container using another copy operation:

copy(numbers.begin(), numbers.end(), out);

Here the source for the copy is specified by the begin() and end() iterators for the container, and the
destination is the output stream iterator, out. This operation will therefore write the data from numbers
to cout with the values separated by a space.

Finally you calculate the sum of the values in the numbers container in the output statement using the
accumulate() algorithm:

cout << endl << “The sum of these values is “ 
<< accumulate(numbers.begin(), numbers.end(), 0) << endl;

You specify the range of values to be summed by the begin() and end() iterators for the container and
the initial value for the sum is zero. If you wanted the average rather than the sum, this is easy too, being
given by the expression:

accumulate(numbers.begin(), numbers.end(), 0)/numbers.size()

More on Function Objects
The <functional> header defines an extensive set of templates for creating function objects that you
can use with algorithms and containers. I won’t discuss them in detail but I’ll summarize the most use-
ful ones. The function objects for comparisons are shown in the following table.

Function Object Template Description

less<T> Creates a binary predicate representing the < operation between
objects of type T. For example, less<string>() defines a function
object for comparing objects of type string. 

less_equal<T> Creates a binary predicate representing the <= operation between
objects of type T. For example, less_equal<double>() defines a
function object for comparing objects of type double.

equal<T> Creates a binary predicate representing the == operation between
objects of type T.

not_equal<T> Creates a binary predicate representing the!= operation between
objects of type T.

672

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 672



Here’s how you could use the not2<B> template to define a binary predicate for use with the sort()
algorithm:

sort(v.begin(), v.end(), not2(greater<string>()));

The argument to the not2 constructor is greater<string>(), which is a call to the constructor for the
greater<string> class type, so the sort() function will sort using “not greater than” as the compari-
son between objects in the container, v. 

The <functional> header also defines function objects for performing arithmetic operations on elements.
You would typically use these to apply operations to sequences of numerical values using the transform()
algorithm that is defined in the <algorithm> header. These function objects are described in the following
table where the parameter T specifies the type of the operands.

To make use of these you need to apply the transform() function, and I’ll explain how this works in
the next section.

Function Object Template Description

plus<T> Calculates the sum of two elements of type T.

minus<T> Calculates the difference between two elements of type T by sub-
tracting the second operand from the first.

multiplies<T> Calculates the product of two elements of type T.

divides<T> Divides the first operand of type T by the second operand of type T.

modulus<T> Calculates the remainder after dividing the first operand of type T
by the second.

negate<T> Returns the negative of its operand of type T.

Function Object Template Description

greater_equal<T> Creates a binary predicate representing the >= operation between
objects of type T.

greater<T> Creates a binary predicate representing the > operation between
objects of type T.

not2<B> Creates a binary predicate that is the negation of a binary predicate of
type B. For example, not2(less<int>) creates a binary predicate for
comparing objects of type int that returns true if the left operand is
not less than the right operand. The template type parameter value B
is deduced from the type of the constructor argument.

673

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 673



More on Algorithms
The <algorithm> and<numeric> headers define a large number of algorithms. The algorithms in the
<numeric> header are primarily devoted to processing arrays numerical values whereas those in the
algorithm header are more general purpose and provide such things as the ability to search, sort, copy,
and merge sequences of objects specified by iterators. There are far too many to discuss in detail in this
introductory chapter, so I’ll just introduce a few of the most useful algorithms from the <algorithm>
header to give you a basic idea of how they can be used.

You have already seen the sort() and copy() algorithms from the <algorithm> header in action. Take
a brief look at a few more of the more interesting functions in the <algorithm> header.

fill()
The fill() function is of this form: 

fill(ForwardIterator begin, ForwardIterator end, const Type& value)

This fills the elements specified by the iterators begin and end with value. For example, given a vector v
storing values of type string containing more than 10 elements, you could write:

fill(v.begin(), v.begin()+9, “invalid”);

This would set the first 10 elements in v to the value specified by the last argument to fill().

replace()
The replace() algorithm is of the form:

replace(ForwardIterator begin, ForwardIterator end,
const Type& oldValue, const Type& newValue)

This function examines each element in the range specified by begin and end and replaces each occurrence
of oldValue by newValue. Given a vector v that stores string objects, you could replace occurrences of
“yes” by “no” with the following statement:

replace(v.begin(), v.end(), “yes”, “no”);

Like all the algorithms that receive an interval defined by a couple of iterators, the replace() function
will also work with pointers. For example:

char str[] =  “A nod is as good as a wink to a blind horse.”;
replace(str, str+strlen(str), ‘o’, ‘*’);
cout << str << endl;

This will replace every occurrence of ‘o’ in the null-terminated string str by ‘*’, so the result of exe-
cuting this fragment will be the output:

A n*d is as g**d as a wink t* a blind h*rse.

674

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 674



find()
The find() function is of the form:

find(InputIterator begin, InputIterator end, const Type& value)

This function searches the sequence specified by the first two arguments for the first occurrence of value.
For example, given a vector v containing values of type int, you could write:

vector<int>::iterator iter = find(v.begin(), v.end(), 21);

Obviously by using iter as the starting point for a new search, you could use the find() algorithm
repeatedly to find all occurrences of a given value. Perhaps like this:

vector<int>::iterator iter = v.begin();
int value = 21, count = 0;
while((iter = find(iter, v.end(), value)) != v.end())
{
iter++;
count++;

}
cout << “The vector contains “ << count << “ occurrences of “ << value << endl; 

This fragment searches the vector v for all occurrences of value. On the first loop iteration, the search
starts at v.begin(). On subsequent iterations, the search starts at one past the previous position that
was found. The loop will accumulate the total number of occurrences of value in v. You could also code
the loop as a for loop:

for((iter = find(v.begin(), v.end(), value)); iter != v.end() ;
(iter = find(iter, v.end(), value))++, count++);

Now the find operation is in the third loop control expression and you increment iter after the result
from the find() function is stored. In my view the while loop is a better solution because it’s easier to
understand.

transform()
The transform() function comes in two versions. The first version applies an operation specified by a
unary function object to a set of elements specified by a pair of iterators, and is of the form:

transform(InputIterator begin, InputIterator end,
OutputIterator result, UnaryFunction f)

This version of transform() applies the unary function f to all elements in the range specified by the iter-
ators begin and end and stores the results beginning at the position specified by the iterator result. The
result iterator can be the same as begin, in which case the results will replace the original elements. The
function returns an iterator that is one past the last result stored.

Here’s an example:

double values[] = { 2.5, -3.5, 4.5, -5.5, 6.5, -7.5};

675

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 675



vector<double> data(values, values+6);
transform(data.begin(),data.end(),data.begin(), negate<double>());

The transform() function call applies a negate<double> function object to all the elements in the vec-
tor, data. The results are stored back in data and overwrite the original values; so after this operation the
vector will contain:

-2.5, 3.5, -4.5, 5.5, -6.5, 7.5

Because the operation writes the results back to the data vector, the transform() function will return
the iterator data.end().

The second version of transform() applies a binary function with the operands coming from two ranges
specified by iterators. The function is of the form:

transform(InputIterator1 begin1, InputIterator1 end1, InputIterator2 begin2,
OutputIterator result, BinaryFunction f)

The range specified by begin1 and end1 represents the set of left operands for the binary function f that
is specified by the last argument. The range representing the right operands starts at the position specified
by the begin2 iterator; an end iterator does not need to be supplied for this range because there must be
the same number of elements as in the range specified by begin1 and end1. The results will be stored 
in the range starting at the result iterator position. The result iterator can be the same as begin1 if
you want the results stored back in that range but it must not be any other position between begin1 and
end1. Here’s an example of how you might use this version of the transform() algorithm:

double values[] = { 2.5, -3.5, 4.5, -5.5, 6.5, -7.5};
vector<double> data(values, values+6);
vector<double> squares(data.size());
transform(data.begin(),data.end(),data.begin(),

squares.begin(), multiplies<double>());
ostream_iterator<double> out(cout, “ “);
copy(data.begin(), data.end(), out);

You initialize the data vector with the contents of the values array. You then create a vector squares
to store the results of the transform() operation with the same number of elements as data. The
transform() function uses the multiplies<double>() function object to multiply each element 
of data by itself. The results are stored in the squares vector. The last two statements use an output
stream iterator to list the contents of squares, which will be:

6.25 12.25 20.25 30.25 42.25 56.25

The STL for C++/CLI Programs
The STL/CLR library is an implementation of the STL for use with C++/CLI programs and the CLR. The
STL/CLR library covers all the capability that I have described for the STL for standard C++, so I won’t
go over the same ground again. I’ll simply highlight some of the differences and illustrate how you use
the STL/CLR with examples. 

676

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 676



The STL/CLR library is contained within the cliext namespace so all STL names are qualified by cliext
rather than std.  There are cliext include subdirectories that are equivalents for each of the standard C++
STL headers, including those for container adapters, algorithms and function objects and the STL/CLR
subdirectory name is the same in every case. Thus the C++/CLI equivalents to the templates defined in 
a standard STL header such as <functional> can be found in <cliext/functional>. So for example,
if you want to use vector containers in your C++/CLI program you need an #include directive for
<cliext/vector>, and to use the queue<T> adapter the include file is <cliext/queue>.

STL/CLR Containers
STL/CLR containers can store reference types, handles to reference types, and unboxed value types;
they cannot store boxed value types. Most of the time, you will use STL/CLR containers with handles
or value types. If you do choose to store reference types in a container, they will be passed by value,
and the requirements for storing such objects in an STL/CLR container are essentially the same as for 
a native STL container. Any reference type stored in an STL/CLR container must at least implement a
public copy constructor, a public assignment operator, and a public destructor. These requirements do
not apply when you are storing value types or handles to reference types in an STL/CLR container. 

Don’t forget that the compiler does not supply default versions of the copy constructor and assignment
operator for reference types so when they are needed, you must always define them in your ref classes.
Just to remind you, for a type T, in a C++/CLI class these functions will be of the form:

T(const T% t)                          // Copy constructor
{

// Function body...
}

T% operator=(const T% t)               // Assignement operator
{

// Function body...
}

~T()                                   // Destructor
{

// Function body...
}

Some container operations also require a no-arg constructor and the operator==() function to be defined.
A no-arg constructor may be used when space for elements in a container need to be allocated when the
container is storing objects rather than handles. If you are storing handles to reference types or value types
in an associative container such as a set or a map, they must overload at least one comparison operator —
the default requirement is for operator<().

Using Sequence Containers
All the sequence containers provided by STL for native C++ are also available with the STL/CLR. The
STL/CLR implements all the operations that the native STL containers support, so the differences 
tend to be notational arising from the use of C++/CLI types. Let’s explore the differences through
some examples.

677

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 677



Try It Out Storing Handles in a Vector
First, define Person as a ref class type:

// Person.h
// A class defining a person
#pragma once
using namespace System;

ref class Person
{
public:
Person():firstname(“”), secondname(“”){}

Person(String^ first, String^ second):firstname(first), secondname(second) {}

// Destructor
~Person(){}

// String representation of a person
virtual String^ ToString() override
{
return firstname + L” “ + secondname;

}

private:
String^ firstname;
String^ secondname;

};

The class has two constructors including a no-arg constructor, and a destructor. You will be only storing
handles to Person objects in a vector, so you don’t need to implement a copy constructor or an assign-
ment operator. The ToString() function here overrides the version inherited from class Object and
provides the way to get a String representation of a Person object for output purposes.

You can define a main() program that will store Person object handles in a vector like this:

// Ex10_13.cpp
// Storing handles in a vector

#include “Person.h”
#include <cliext/vector>

using namespace System;
using namespace cliext;

int main(array<System::String ^> ^args)
{
vector<Person^>^ people = gcnew vector<Person^>(); 
String^ first;             // Stores a first name
String^ second;            // Stores a second name
Person^ person;            // Stores a Person

678

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 678



while(true)
{
Console::Write(L”Enter a first name or press Enter to end: “);
first = Console::ReadLine();
if(first->Length == 0)
break;

Console::Write(L”Enter a second name: “);
second = Console::ReadLine();
person = gcnew Person(first->Trim(),second->Trim());
people->push_back(person);

}

// Output the contents of the vector
Console::WriteLine(L”\nThe persons in the vector are:”);
for each(Person^ person in people)
Console::WriteLine(“{0}”,person);

return 0;
}

Here is a sample of output from this program:

Enter a first name or press Enter to end: Marilyn
Enter a second name: Monroe
Enter a first name or press Enter to end: Nicole
Enter a second name: Kidman
Enter a first name or press Enter to end: Judy
Enter a second name: Dench
Enter a first name or press Enter to end: Sally
Enter a second name: Field
Enter a first name or press Enter to end:

The persons in the vector are:
Marilyn Monroe
Nicole Kidman
Judy Dench
Sally Field

How It Works
You create the vector container on the CLR heap like this:

vector<Person^>^ people = gcnew vector<Person^>(); 

The template type argument is Person^, which is a handle to a Person object. The container is also
created on the CLR heap so the people variable is a handle of type vector<Person^>^.

You create three handles for use as working storage in the input process:

String^ first;             // Stores a first name
String^ second;            // Stores a second name
Person^ person;            // Stores a Person

The first two refer to String objects and the third is a handle to a Person object.

679

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 679



You read names from the standard input stream and create Person objects in an indefinite while loop:

while(true)
{

Console::Write(L”Enter a first name or press Enter to end: “);
first = Console::ReadLine();
if(first->Length == 0)

break;
Console::Write(L”Enter a second name: “);
second = Console::ReadLine();
person = gcnew Person(first->Trim(),second->Trim());
people->push_back(person);

}

After prompting for the input, the Console::ReadLine() function reads a name from the standard
input stream and stores it in first. If just the Enter key was pressed, the length of the string will be
zero so you test for this to decide when to exit the loop. If the first name read is not of zero length, you
read the second name. You then create a Person object on the CLR heap and store the handle in person.
For each String^ argument to the constructor, you call the Trim() function to remove any leading or
trailing spaces. Calling the push_back() function for the people container stores the person handle in
the vector.

The objects exist independently of the container, so if you were to discard the container (by assigning
nullptr to people for example) it would not necessarily destroy the objects pointed to by the handles 
it contains. In our example, we do not retain any handles to the objects, so in this case destroying the
container would result in the objects not being referenced anywhere so eventually the garbage collector
would get around to destroying them and freeing the memory they occupy on the CLR heap.

After the input loop ends, you output the contents of a vector in a for each loop:

for each(Person^ person in people)
Console::WriteLine(“{0}”,person);

The for each loop works directly with sequence containers so you can use this to iterate over all the
handles stored in the people vector. The Console::WriteLine() function calls the ToString()
function for each Person object to produce the string to be inserted in the first argument string.

It is not normal usage but let’s look at another working example to explore how you can store ref class
objects in a sequence container, rather than handles.

Try It Out Storing Reference Class Objects in a Double-Ended Queue
You will use Person object again but this time you will sort the contents of the container before you 
generate the output. Here’s the new version of the Person class:

// Person.h
// A class defining a person
#pragma once

680

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 680



using namespace System;

ref class Person
{
public:
Person():firstname(“”), secondname(“”){}

Person(String^ first, String^ second):firstname(first), secondname(second)
{}

// Copy constructors
Person(const Person% p):firstname(p.firstname),secondname(p.secondname){}
Person(Person^ p):firstname(p->firstname), secondname(p->secondname){}

// Destructor
~Person(){}

// Assignment operator
Person% operator=(const Person% p)
{
if(this != %p)
{
firstname = p.firstname;
secondname = p.secondname;

}
return *this;

}

// Less-than operator
bool operator<(Person^ p)
{
if(String::Compare(secondname, p->secondname) < 0 ||

(String::Compare(secondname, p->secondname)== 0 &&
String::Compare(firstname, p->firstname) < 0))

return true;
return false;

}

// String representation of a person
virtual String^ ToString() override
{
return firstname + L” “ + secondname;

}

private:
String^ firstname;
String^ secondname;

};

You now have two copy constructors for Person objects, one accepting a Person object as an argument
and the other accepting a handle to a Person object. A sequence container requires both copy construc-
tors if it is to compile. You also have the assignment operator for Person objects, which is also required
by the container. The operator<() function is needed for the sort() algorithm. 

681

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 681



Here’s the program code that will utilize this version of the Person class:

// Ex10_14.cpp
// Storing ref class objects in a double-ended queue

#include “Person.h”
#include <cliext/deque>
#include <cliext/algorithm>

using namespace System;
using namespace cliext;

int main(array<System::String ^> ^args)
{

deque<Person>^ people = gcnew deque<Person>(); 

String^ first;             // Stores a first name
String^ second;            // Stores a second name
Person person;             // Stores a Person

while(true)
{
Console::Write(L”Enter a first name or press Enter to end: “);
first = Console::ReadLine();
if(first->Length == 0)
break;

Console::Write(L”Enter a second name: “);
second = Console::ReadLine();
person = Person(first->Trim(),second->Trim());
people->push_back(person);

}

sort(people->begin(), people->end());

// Output the contents of the vector
Console::WriteLine(L”\nThe persons in the vector are:”);
for each(Person^ p in people)
Console::WriteLine(“{0}”,p);

return 0;
}

Here is some output, similar to that of the previous example, except that the objects have been sorted in
ascending sequence:

Enter a first name or press Enter to end: Brad
Enter a second name: Pitt
Enter a first name or press Enter to end: George
Enter a second name: Clooney
Enter a first name or press Enter to end: Mel
Enter a second name: Gibson
Enter a first name or press Enter to end: Clint
Enter a second name: Eastwood
Enter a first name or press Enter to end:

682

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 682



The persons in the vector are:
George Clooney
Clint Eastwood
Mel Gibson
Brad Pitt

How It Works
You create the double-ended queue container like this:

deque<Person>^ people = gcnew deque<Person>(); 

The type parameter to the deque<T> template is now Person, so you will be storing Person objects, not
handles.

The storage for the element to be inserted into the container is now defined like this:

Person person;             // Stores a Person

You are now going to store Person objects, so the working storage is no longer a handle as in the previous
example.

The input loop is the same as in the previous example except for the last two statements in the while loop:

person = Person(first->Trim(),second->Trim());
people->push_back(person);

You create a Person object using the same syntax as in native C++. Although you don’t use the gcnew
keyword here, the compiler will arrange for the object to be created on the CLR heap because ref class
objects cannot be created on the stack.

After the input loop, you sort the elements in the container:

sort(people->begin(), people->end());

The sort() algorithm expects two iterators to specify the range of elements to be sorted and you obtain
these by calling the begin() and end() functions for the container.

Finally you list the contents of the container in a for each loop:

for each(Person^ p in people)
Console::WriteLine(“{0}”,p);

Note that you still use a handle as the loop variable. Even though the container stores the objects them-
selves, you access them through a handle in a for each loop.

Of course, you could use the subscript operator for the container to access the objects. In this case the
output loop could be like this:

for(int i = 0 ; i<people->size() ; i++)
Console::WriteLine(“{0}”, %people[i]);

683

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 683



The subscript operator returns a reference to an object in the container, so because the
Console::WriteLine() function expects a handle, you have to use the % operator to obtain 
the address of the object.

You also have the possibility to use iterators:

deque<Person>::iterator iter;
for(iter = people->begin() ; iter < people->end() ; ++iter)

Console::WriteLine(“{0}”, *iter);

The iterator type is defined in the deque<Person> class, as in native STL. The loop is very similar to a
native STL iterator loop but when you dereference the iterator, you get a handle to the element to which
the iterator points. This gives a clue as to why the for each loop iterates over handles — because it uses
an iterator.

Just to complete the set, let’s see a sequence container storing elements that are value types.

Try It Out Storing Values Types in a List
This time you will use a list as the container and store values of type double. You will also try out the
sort() member of the list<T> container. Here’s the code:

// Ex10_15.cpp
// Storing value class objects in a list

#include <cliext/list>

using namespace System;
using namespace cliext;

int main(array<System::String ^> ^args)
{
array<double>^ values = {2.5, -4.5, 6.5, -2.5, 2.5, 7.5, 1.5, 3.5}; 
list<double>^ data = gcnew list<double>(); 
for(int i = 0 ; i<8 ; i++)
data->push_back(values[i]);

Console::WriteLine(“The list contains: “);
for each(double value in data)
Console::Write(“{0} “, value);

Console::WriteLine();

data->sort(greater<double>());
Console::WriteLine(“\nAfter sorting the list contains: “);
for each(double value in data)
Console::Write(“{0} “, value);

Console::WriteLine();

return 0;
}

684

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 684



Here is the output from this example:

The list contains:
2.5 -4.5 6.5 -2.5 2.5 7.5 1.5 3.5

After sorting the list contains:
7.5 6.5 3.5 2.5 2.5 1.5 -2.5 -4.5

How It Works
You first create a handle to a list<T> object with this statement:

list<double>^ data = gcnew list<double>(); 

The elements to be stored are of type double, so the template type parameter is the same as for the
native STL list.

The elements from the values array are stored in the data container in a loop:

for(int i = 0 ; i<8 ; i++)
data->push_back(values[i]);

This is a straightforward loop that indexes through the values array and passes each element to the
push_back() function for the list. Of course, you could also use a for each loop for this:

for each(double value in values)
data->push_back(value);

You could also have initialized the list container with the contents of the values array:

list<double>^ data = gcnew list<double>(values);

Once the elements have been inserted in the list and the list contents have been written to the stan-
dard output stream, you sort the contents of the list using the sort() function that is defined in the
list<double> class:

data->sort(greater<double>());

The sort() function will use the default function object, less<double>(), to sort the list unless you spec-
ify an alternative function object as the argument to the function. Here you specify greater<double>() as
the function object to be used so the contents of the list are sorted in ascending sequence. Finally you out-
put the contents of the list so you can confirm the sort does work as it should.

Using Associative Containers
All the associative containers in STL/CLR work in essentially the same way as the equivalent native
STL containers but there are some important small differences, generally to do with how pairs are 
represented.

685

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 685



First, the type of an element that you store in a map of type

map<K, T>

in native STL is of type pair<K, T>, but in an STL/CLR map container it is of type
map<K,T>::value_type, which is a value type. This implies that you can no longer use the
make_pair() function to create a map entry in STL/CLR. Instead you use the static make_value()
function that is defined in the map<K, T> class.

Second, the insert() function that inserts a single element in a map<K, T> returns a value of type
pair<map<K, T>::iterator, bool> for a native STL container, whereas for a STL/CLR map<K, T>
container the insert() function returns an object of type

map<K, T>::pair_iter_bool

which is a reference type. An object of type map<K, T>::pair_iter_bool has two public fields, first
and second. first is a handle to an iterator of type

map<K, T>::iterator^

and second is of type bool. If second has the value true, then first points to the newly inserted element;
otherwise it points to an element that already exists in the map with the same key.

I’ll take one example to illustrate how associative containers in the STL/CLR work, and reproduce
Ex10_12 as a C++/CLI program.

Try It Out Implementing a Phone Book Using a Map
This example works in more or less the same way as the native STL example you saw earlier, Ex10_10.
First you must define a suitable version of the ref class Person that will represent keys in the map:

// Person.h
// A class defining a person
#pragma once
using namespace System;

ref class Person
{
public:
Person():firstname(L””), secondname(L””){}

Person(String^ first, String^ second):
firstname(first), secondname(second) {}

// Destructor
~Person(){}

// Less-than operator
bool operator<(Person^ p)
{
if(String::Compare(secondname, p->secondname) < 0 ||

686

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 686



(String::Compare(secondname, p->secondname)== 0 &&
String::Compare(firstname, p->firstname) < 0))

return true;
return false;

}

// String representation of a person
virtual String^ ToString() override
{
return firstname + L” “ + secondname;

}

private:
String^ firstname;
String^ secondname;

};

The operator<() member is essential because you will use Person objects as keys in the map and to
store a key/object pair, the map has to be able to compare keys.

Here is the content of Ex10_16.cpp, including the same helper functions as the native STL version:

// Ex10_16.cpp
// Storing phone numbers in a map
#include “Person.h”
#include <cliext/map>

using namespace System;
using namespace cliext;

// Read a person from standard input
Person^ getPerson()
{
String^ first;
String^ second;
Console::Write(L”Enter a first name: “) ;
first = Console::ReadLine();
Console::Write(L”Enter a second name: “) ;
second = Console::ReadLine();
return gcnew Person(first->Trim(), second->Trim());

}

// Add a new entry to a phone book
void addEntry(map<Person^, String^>^ book)
{
map<Person^, String^>::value_type entry;       // Stores a phone book entry
String^ number;
Person^ person = getPerson();

Console::Write(L”Enter the phone number for {0}: “, person);
number = Console::ReadLine()->Trim();

entry = book->make_value(person, number);

687

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:11 AM  Page 687



map<Person^,String^>::pair_iter_bool pr = book->insert(entry);
if(pr.second)
Console::WriteLine(L”Entry successful.”);

else
Console::WriteLine(L”Entry exists for {0}. The number is {1}”,

person, pr.first->second);
}

// List the contents of a phone book
void listEntries(map<Person^, String^>^ book)
{
if(book->empty())
{
Console::WriteLine(L”The phone book is empty.”);
return;

}
map<Person^, String^>::iterator iter;
for(iter = book->begin() ; iter != book->end() ; iter++)
Console::WriteLine(L”{0, -30}{1,-12}”,

iter->first, iter->second); 
}

// Retrieve an entry from a phone book
void getEntry(map<Person^, String^>^ book)
{
Person^ person = getPerson();
map<Person^, String^>::const_iterator iter = book->find(person);
if(iter == book->end())
Console::WriteLine(L”No entry found for {0}”, person);

else
Console::WriteLine(L”The number for {0} is {1}”,

person, iter->second);
}

// Delete an entry from a phone book
void deleteEntry(map<Person^, String^>^ book)
{
Person^ person = getPerson();
map<Person^, String^>::iterator iter = book->find(person);

if(iter == book->end())
Console::WriteLine(L”No entry found for {0}”, person);

else
{
book->erase(iter);
Console::WriteLine(L”{0} erased.”, person);

}
}

int main(array<System::String ^> ^args)
{
map<Person^, String^>^ phonebook = gcnew map<Person^, String^>();
String^ answer;

688

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:12 AM  Page 688



while(true)
{
Console::Write(L”Do you want to enter a phone book entry(Y or N): “) ;
answer = Console::ReadLine()->Trim();
if(Char::ToUpper(answer[0]) == L’N’)
break;

addEntry(phonebook);
}

// Query the phonebook
while(true)
{
Console::WriteLine(L”\nChoose from the following options:”);
Console::WriteLine(L”A  Add an entry   D Delete an entry   G  Get an entry”);
Console::WriteLine(L”L  List entries   Q  Quit”); 
answer = Console::ReadLine()->Trim();

switch(Char::ToUpper(answer[0]))
{
case L’A’:
addEntry(phonebook);
break;

case L’G’:
getEntry(phonebook);
break;

case L’D’:
deleteEntry(phonebook);
break;

case L’L’:
listEntries(phonebook);
break;

case L’Q’:
return 0;

default:
Console::WriteLine(L”Invalid selection. Try again.”);
break;

}
}

return 0;
}

Here’s a sample of output from this example:

Do you want to enter a phone book entry(Y or N): y
Enter a first name: Jack
Enter a second name: Bateman
Enter the phone number for Jack Bateman: 312 455 6576
Entry successful.
Do you want to enter a phone book entry(Y or N): y
Enter a first name: Mary
Enter a second name: Jones
Enter the phone number for Mary Jones: 213 443 5671

689

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:12 AM  Page 689



Entry successful.
Do you want to enter a phone book entry(Y or N): y
Enter a first name: Jane
Enter a second name: Junket
Enter the phone number for Jane Junket: 413 222 8134
Entry successful.
Do you want to enter a phone book entry(Y or N): n

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
a
Enter a first name: Bill
Enter a second name: Smith
Enter the phone number for Bill Smith: 213 466 7688
Entry successful.

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
g
Enter a first name: Mary
Enter a second name: Miller
No entry found for Mary Miller

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
g
Enter a first name: Mary
Enter a second name: Jones
The number for Mary Jones is 213 443 5671

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
d
Enter a first name: Mary
Enter a second name: Jones
Mary Jones erased.

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
L
Jack Bateman                  312 455 6576
Jane Junket                   413 222 8134
Bill Smith                    213 466 7688

Choose from the following options:
A  Add an entry   D Delete an entry   G  Get an entry
L  List entries   Q  Quit
q

690

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:12 AM  Page 690



How It Works
The first action in main() is to define a suitable map object:

map<Person^, String^>^ phonebook = gcnew map<Person^, String^>();

This map stores an object that combines a handle to a Person object as the key and a handle to a
String object as the associated object. Because this is an STL/CLR map, elements in the map are of type
map<Person^, String^>::value_type; for a native STL map the elements would typically be of type
pair<Person, string>.

Next you define somewhere to store an input response:

String^ answer;

The Console::ReadLine() function that you will use to obtain input from the standard input stream
always reads a line of input as a String object, so it’s convenient to store a response as type String^.

Within the while loop that loads the map with new entries, you obtain a response to the first prompt
like this:

answer = Console::ReadLine()->Trim();

The Console::ReadLine() call reads a line of input as a String object and you call the Trim() function
for the object returned to eliminate leading and railing spaces. The result is stored in answer and the first
character will be the input response.

You check for L’n’ or L’N’ being entered as the response like this:

if(Char::ToUpper(answer[0]) == L’N’)
break;

This uses the ToUpper() function in the Char class to convert the first character in answer to uppercase
before comparing it to L’N’. If the response is negative, you exit the loop. As it is coded, entering any
response other than L’n’ or L’N’ is interpreted as L’Y’. To remove this anomaly you could add this if
statement following the one above:

if(Char::ToUpper(answer[0]) != L’Y’)
{
Console::WriteLine(L”’{0}’ response is not valid. Try again.”, answer[0]);
continue;

}

With this amendment, you output a message and go to the next iteration if an invalid response is entered.

If the response in answer is not in the negative, you call the addEntry() helper function to add a new entry
to the map. The first statement in addEntry() defines a variable you will use to store a new map entry:

map<Person^, String^>::value_type entry;       // Stores a phone book entry

691

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:12 AM  Page 691



The value_type type is defined in the map<K,T> template and is the equivalent of a pair in native STL.

You obtain a handle to a new Person object by calling the getPerson() helper function. This uses
Console::ReadLine() to read the names and creates the Person object on the CLR heap. The phone
number corresponding to the Person object is read in the getEntry() function, and you call the
make_value() function for the map with person and number as arguments to create the new map
entry. You insert the new entry using this statement:

map<Person^,String^>::pair_iter_bool pr = book->insert(entry); 

The insert() function returns an object of type pair_iter_bool, which is similar to the pair object
returned by the native STL version of the function. The first field in the pr object is a handle to an itera-
tor and the second field is a bool value that indicates whether or not the insert operation was successful.
You use the second field in pr to output a suitable message, depending on how effective the insert oper-
ation was.

When the input loop ends, you prompt for operations on the map using a switch, as in the native version
of the program. All the code for these operations is very similar to that in the native version. Note that the
output in the listEntries() function could be coded like this:

for each(map<Person^, String^>::value_type entry in book)
Console::WriteLine(L”{0, -30}{1,-12}”, entry->first, entry->second);

This iterates over all the entries in the map using a for each loop. You access the key and object in each
entry via the first and second fields.

Summary
This chapter introduced the capabilities of the STL in native C++ and how the same facilities are provided
by STL/CLR for use in your C++/CLI programs. The important points discussed in this chapter are:

❑ The STL and STL/CLR capabilities include templates for containers, iterators, algorithms, and
function objects.

❑ A container is a class object for storing and organizing other objects. Sequence containers store
objects in a sequence, like an array. Associative containers store elements that are key/object
pairs, where the key determines where the pair is stored in the container.

❑ Iterators are objects that behave like pointers. Iterators are used in pairs to define a set of objects
by a semi-open interval, where the first iterator points to the first object in the series and the sec-
ond iterator points to a position one past the last object in the series.

❑ Stream iterators are iterators that allow you to access or modify the contents of a stream.

❑ There are four categories of iterators: input and output iterators, forward iterators, bidirectional
iterators, and random access iterators. Each successive category of iterator provides more func-
tionality than the previous one, so input and output iterators provide the least functionality and
random access iterators provide the most.

692

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:12 AM  Page 692



❑ Algorithms are template functions that operate on a sequence of objects specified by a pair of
iterators.

❑ Function objects are objects of a type that overloads the () operator (by implementing the func-
tion operator()() in the class). The STL and STL/CLR define a wide range of standard itera-
tors for use with containers and algorithms, and you can also write your own classes to define
function objects.

My objective in this chapter was to introduce enough of the details of the STL and STL/CLR to enable
you to explore the rest on your own. There’s a great deal more there than I was able to discuss here, so I
encourage you to browse the documentation.

Exercises
1. Write a native C++ program that will read some text from the standard input stream, possibly

involving several lines of input, and store the letters from the text in a list<T> container. Sort
the letters in ascending sequence and output them.

2. Use a priority_queue<T> container from the native STL to achieve the same result as Exercise 1.

3. Implement Exercise 2 as a C++/CLI program.

4. Modify Ex10_10.cpp so that it allows multiple phone numbers to be stored for a given name.
The functionality in the program should reflect this, so the getEntry() function should display
all numbers for a given name and the deleteEntry() function should delete a particular person/
number combination.

5. Modify Ex10_16.cpp to use an STL/CLR multimap to support multiple phone numbers for a
person in the phone book.

6. Write a native C++ program to implement a phone book capability that will allow a name to be
entered to retrieve one or more numbers or a number to be entered to retrieve a name.

7. Implement the previous exercise solution as a C++/CLI program.

693

Chapter 10: The Standard Template Library

25905c10.qxd:WroxPro  2/21/08  9:12 AM  Page 693



25905c10.qxd:WroxPro  2/21/08  9:12 AM  Page 694



11
Debugging Techniques

If you have been doing the exercises in the previous chapters, you have most likely been battling
with bugs in your code. In this chapter you will explore how the basic debugging capabilities built
into Visual C++ 2008 can help with this. You will also investigate some additional tools that you can
use to find and eliminate errors from your programs, and see some of the ways in which you can
equip your programs with specific code to check for errors.

In this chapter, you will learn about:

❑ How to run your program under the control of the Visual C++ 2008 debugger

❑ How to step through your program a statement at a time

❑ How to monitor or change the values of variables in your programs

❑ How to monitor the value of an expression in your program

❑ The call stack

❑ Assertions and how to use them to check your code

❑ How to add debugging specific code to a program

❑ How to detect memory leaks in a native C++ program

❑ How to use the execution tracing facilities and generate debugging output in C++/CLI
programs

Understanding Debugging
Bugs are errors in your program and debugging is the process of finding and eliminating them. You
are undoubtedly aware by now that debugging is an integral part of the programming process — it
goes with the territory as they say. The facts about bugs in your programs are rather depressing:

❑ Every program you write that is more than trivial will contain bugs that you need to try to
expose, find, and eliminate if your program is to be reliable and effective. Note the three
phases here — a program bug is not necessarily apparent; even when it is apparent you may
not know where it is in your source code; and even when you know roughly where it is, it
may not be easy to determine what exactly is causing the problem and thus eliminate it.

25905c11.qxd:WroxPro  2/21/08  9:12 AM  Page 695



❑ Many programs that you write will contain bugs even after you think you have fully tested them.

❑ Program bugs can remain hidden in a program that is apparently operating correctly — some-
times for years. They generally become apparent at the most inconvenient moment.

❑ Programs beyond a certain size and complexity always contain bugs, no matter how much time
and effort you expend testing them. (The measure of size and complexity that guarantees the
presence of bugs is not precisely defined, but Visual C++ 2008 and your operating system cer-
tainly come into this category!)

It is unwise to dwell on this last point if you are of a nervous disposition, especially if you fly a lot or
regularly are in the vicinity of any process dependent on computers for proper operation that can be
damaging to your health in the event of failure.

Many potential bugs are eliminated during the compile and link phases, but there are still quite a few
left even after you manage to produce an executable module for your program. Unfortunately, despite
the fact that program bugs are as inevitable as death and taxes, debugging is not an exact science; how-
ever, you can still adopt a structured approach to eliminating bugs. There are four broad strategies you
can adopt to make debugging as painless as possible:

❑ Don’t re-invent the wheel. Understand and use the library facilities provided as part of Visual
C++ 2008 (or other commercial software components you have access to) so that your program
uses as much pre-tested code as possible. Note that while this will reduce the likelihood of bugs
in your code, libraries, operating systems, and commercial software, components will still con-
tain bugs in general, so your code can share those bugs.

❑ Develop and test your code incrementally. By testing each significant class and function individ-
ually, and gradually assembling separate code components after testing them, you can make the
development process much easier, with fewer obscure bugs occurring along the way.

❑ Code defensively — which means writing code to guard against potential errors. For example,
declare member functions of native C++ classes that don’t modify an object as const. Use const
parameters where appropriate. Don’t use ‘magic numbers’ in your code — define const objects
with the required values.

❑ Include debugging code that checks and validates data and conditions in your program from
the outset. This is something you will look at in detail later in this chapter.

Because of the importance of ending up with programs that are as bug-free as is humanly possible, Visual
C++ 2008 provides you with a powerful armory of tools for finding bugs. Before you get into the detailed
mechanics, however, look a little closer at how bugs arise.

Program Bugs
Of course, the primary originator of bugs in your program is you and the mistakes you make. These
mistakes range from simple typos — just pressing the wrong key — to getting the logic completely
wrong. I, too, find it hard to believe that I can make such silly mistakes so often, but no one has yet
managed to come up with a credible alternative as to how bugs get into your code — so it must be
true! Humans are creatures of habit so you will probably find yourself making some mistakes time
and time again. Frustratingly, many errors are glaringly obvious to others, but invisible to you — this 

696

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:12 AM  Page 696



is just your computer’s way of teaching you a bit of humility. Broadly there are two kinds of errors
you can make in your code that result in program bugs:

❑ Syntactic errors — These are errors that result from statements that are not of the correct form; for
example, if you miss a semicolon from the end of a statement or use a colon where you should 
put a comma. You don’t have to worry too much about syntactic errors. The compiler recognizes all
syntactic errors, and you generally get a fairly good indication of what the error is so it’s easy to fix.

❑ Semantic errors — These are errors where the code is syntactically correct, but it does not do
what you intended. The compiler cannot know what you intended to achieve with your pro-
gram, so it cannot detect semantic errors; however, you will often get an indication that some-
thing is wrong because the program terminates abnormally. The debugging facilities in Visual
C++ 2008 are aimed at helping you find semantic errors. Semantic errors can be very subtle 
and difficult to find, for example, where the program occasionally produces the wrong results 
or crashes infrequently. Perhaps the most difficult of such bugs arise in multi-threaded pro-
grams where concurrent paths of execution are not managed properly.

Of course, there are bugs in the system environment that you are using (Visual C++ 2008 included) but this
should be the last place you suspect when your program doesn’t work. Even when you do conclude that it
must be the compiler or the operating system, nine times out of ten you will be wrong. There are certainly
bugs in Visual C++ 2008, however, and if you want to keep up with those identified to date, together with
any fixes available, you can search the information provided on the Microsoft Web site related to Visual C++
( http://msdn2.microsoft.com/en-us/visualc/default.aspx), or better still, if you can afford a sub-
scription to Microsoft Developer Network, you get quarterly updates on the latest bugs and fixes.

It can be helpful to make a checklist of bugs you find in your code for future reference. By examining
new code that you write for the kinds of errors you have made in the past, you can often reduce the 
time needed to debug new projects.

From the nature of programming, bugs are virtually infinite in their variety, but there are some kinds that
are particularly common. You may be well aware of most of these, but take a quick look at them anyway.

Common Bugs
A useful way of cataloguing bugs is to relate them to the symptoms they cause because this is how 
you experience them in the first instance. The following list of five common symptoms is by no means
exhaustive, and you are certainly able to add to it as you gain programming experience:

Continued

Symptom Possible Causes

Data corrupted Failure to initialize variable
Exceeding integer type range
Invalid pointer
Error in array index expression
Loop condition error
Error in size of dynamically allocated array
Failing to implement class copy constructor, assignment operator,
or destructor

697

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:12 AM  Page 697



Look at how many different kinds of errors can be caused by invalid pointers and the myriad symptoms
that bad pointers can generate. This is possibly the most frequent cause of those bugs that are hard to find,
so always double-check your pointer operations. If you are conscious of the ways in which bad pointers
arise, you can avoid many of the pitfalls. The common ways in which bad pointers arise are:

❑ Failing to initialize a pointer when you declare it

❑ Failing to set a pointer to free store memory to null when you delete the space allocated

❑ Returning the address of a local variable from a function

❑ Failing to implement the copy constructor and assignment operator for classes that allocate free
store memory

Even if you do all this, there will still be bugs in your code, so now look at the tools that Visual C++ 2008
provides to assist debugging.

Basic Debugging Operations
So far, although you have been creating debug versions of the program examples, you haven’t been
using the debugger. The debugger is a program that controls the execution of your program in such a
way that you can step through the source code one line at a time, or run to a particular point in the pro-
gram. At each point in your code where the debugger stops, you can inspect or even change the values of
variables before continuing. You can also change the source code, recompile, and then restart the program
from the beginning. You can even change the source code in the middle of stepping through a program.
When you move to the next step after modifying the code, the debugger automatically recompiles before
executing the next statement.

Symptom Possible Causes

Unhandled exceptions Invalid pointer or reference
Missing catch handler

Program hangs or crashes Failure to initialize variable
Infinite loop
Invalid pointer
Freeing the same free store memory twice
Failure to implement, or error in, class destructor
Failure to process unexpected user input properly

Stream input data incorrect Reading using the extraction operator and the getline() function

Incorrect results Typographical error: = instead of ==, or i instead of j etc.
Failure to initialize a variable
Exceeding the range of an integer type 
Invalid pointer
Omitting break in a switch statement

698

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:12 AM  Page 698



To understand the basic debug capabilities of Visual C++ 2008, you will use the debugger on a program
that you are reasonably sure works. You can then just pull the levers to see how things operate. Take a
simple example from back in Chapter 4 that uses pointers:

// Ex4_05.cpp
// Exercising pointers
#include <iostream>
using namespace std;

int main()
{
long* pnumber = NULL;                // Pointer declaration & initialization
long number1 = 55, number2 = 99;

pnumber = &number1;                  // Store address in pointer
*pnumber += 11;                      // Increment number1 by 11
cout << endl

<< “number1 = “ << number1
<< “   &number1 = “ << hex << pnumber;

pnumber = &number2;                  // Change pointer to address of number2
number1 = *pnumber*10;               // 10 times number2

cout << endl
<< “number1 = “ << dec << number1
<< “   pnumber = “ << hex << pnumber
<< “   *pnumber = “ << dec << *pnumber;

cout << endl;
return 0;

}

If you still have this example on your system, just open the project; otherwise, you need to download the
code or enter it again.

When you write a program that doesn’t behave as it should, the debugger enables you to inspect work
through a program one step at a time to find out where and how it’s going wrong, and to inspect the state
of your program’s data at any time during execution. You arrange to execute this example one statement
at a time and to monitor the contents of the variables that you are interested in. In this case you want to
look at pnumber, the contents of the location pointed to by pnumber (which is *pnumber), number1, and
number2.

First you need to be sure that the build configuration for the example is set to Win32 Debug rather than
Win32 Release (Win32 Debug is the default, unless you’ve changed it). The build configuration selects
the set of project settings for the build operation on your program that you can see when you select the
Project/Settings menu option. The current build configuration in effect is shown in the pair of adjacent
drop-down lists on the Standard toolbar. To display or remove a particular toolbar you just right-click
the toolbar and select or deselect a toolbar in the list. Make sure you check the box against Debug to dis-
play the debugging toolbar. It comes up automatically when the debugger is operating, but you should
take a look at what it contains before you get to start the debugger. You can change the build configuration
by extending the drop-down list and choosing the alternative. You can also use the Build > Configuration
Manager... menu option. The Standard toolbar is shown in Figure 11-1.

699

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 699



Figure 11-1

You can find out what the toolbar buttons are for by letting the mouse cursor linger over a toolbar button.
A tool tip for that button appears that identifies its function.

The Debug configuration in a project causes additional information to be included in your executable pro-
gram when you compile it so that the debugging facilities can be used. This extra information is stored in
the .pdb file that will be in the Debug folder for your project. The ‘release’ configuration omits this infor-
mation as it represents overhead that you wouldn’t want in a fully tested program. With the Professional
version of Visual C++ 2008, the compiler also optimizes the code when compiling the release version of a
program. Optimization is inhibited when the debug version is compiled because the optimization process
can involve resequencing code to make it more efficient, or even omitting redundant code altogether.
Because this destroys the one-to-one mapping between the source code and corresponding blocks of
machine code, optimization makes stepping through a program potentially confusing to say the least.

The Debug toolbar is shown in Figure 11-2.

Figure 11-2

If you inspect the tooltips for the buttons on this toolbar, you get a preliminary idea of what they do —
you will use some of them shortly. With the example from Chapter 4, you won’t use all the debugging
facilities available to you, but you will try out some of the more important features. After you are famil-
iar with stepping through a program using the debugger, you explore more of the features with a pro-
gram that has bugs.

You can start the debugger by clicking the leftmost button on the Debug toolbar, by selecting the Debug >
Start Debugging menu item, or by pressing F5. I suggest that you use the toolbar for the example. The
debugger has two primary modes of operation — it works through the code by single stepping (which is
essentially executing one statement at a time), or runs to a particular point in the source code. The point
in the source where the debugger is to stop is determined either by where you have placed the cursor or,
more usefully, at a designated stopping point called a breakpoint. Check out how you define breakpoints.

Setting Breakpoints
A breakpoint is a point in your program where the debugger automatically suspends execution when in
debugging mode. You can specify multiple breakpoints so that you can run your program, stopping at
points of interest that you select along the way. At each breakpoint you can look at variables within the
program and change them if they don’t have the values they should. You are going to execute the Ex4_05
program one statement at a time, but with a large program this would be impractical. Usually, you will only
want to look at a particular area of the program where you think there might be an error. Consequently, you
would usually set breakpoints where you think the error is and run the program so that it halts at the first
breakpoint. You can then single step from that point if you want, where a single step implies executing a
single source code statement.

700

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 700



To set a breakpoint at the beginning of a line of source code, you simply click in the grayed-out column
to the left of the line number for the statement where you want execution to stop. A red circular symbol
called a glyph appears showing the presence of the breakpoint at that line and you can remove a break-
point by double-clicking the glyph. Figure 11-3 shows the Editor pane with a couple of breakpoints set
for Ex4_05.

Figure 11-3

When debugging, you would normally set several breakpoints, each chosen to show when the variables
that you think are causing a problem are changing. Execution stops before the statement indicated by the
breakpoint is executed. Execution of the program can only break before a complete statement and not
halfway through it. If you place a cursor in a line that doesn’t contain any code (for example, the line
above the second breakpoint in Figure 11-3), the breakpoint is set on that line, and the program stops at
the beginning of the next executable line.

As I said, you can remove a breakpoint by double-clicking the red dot. You can also disable a breakpoint
by right-clicking the line containing the breakpoint and selecting from the pop-up. You can remove all
the breakpoints in the active project by selecting the Debug > Delete All Breakpoints menu item or by
pressing Ctrl+Shift+F9. Note that this removes breakpoints from all files in the project, even if they’re
not currently open in the Editor pane. You can also disable all breakpoints by selecting the Debug >
Disable All Breakpoints menu item.

Advanced Breakpoints
A more advanced way of specifying breakpoints is provided through a window you can display by press-
ing Alt+F9 or by selecting Breakpoints from the list displayed when you select the Windows button on the
Debug toolbar — its at the right end. This window is shown in Figure 11-4.

701

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 701



Figure 11-4

The Columns button on the toolbar enables you to add more columns to be displayed in the window.
For example, you can display the source file name or the function name where the breakpoint is, or you
can display what happens when the statement is reached.

You can set further options for a breakpoint by right-clicking the breakpoint line in the Breakpoints win-
dow and selecting from the pop-up. As well as setting a breakpoint at a location other than the begin-
ning of a statement, you can set a breakpoint when a particular Boolean expression evaluates to true.
This is a powerful tool but it does introduce very substantial overhead in a program, as the expression
needs to be re-evaluated continuously. Consequently, execution is slow, even on the fastest machines.
You can also arrange that execution only breaks when the hit count, which is when the number of the
point has been reached, reaches a given value. This is most useful for code inside a loop where you won’t
want to break execution on every iteration. If you set any condition on a breakpoint, the glyph changes so
that a + appears in the center.

Setting Tracepoints
A tracepoint is a special kind of breakpoint that has a custom action associated with it. You create a tra-
cepoint by right-clicking the line where you want the tracepoint to be set and selecting the Breakpoint >
When Hit menu item from the pop-up. You’ll see the dialog window shown in Figure 11-5.

Figure 11-5

702

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 702



As you see, the tracepoint action can be to print a message and/or run a macro and you can choose whether
execution stops or continues at the tracepoint. The presence of a tracepoint on a source code line where exe-
cution does not stop is indicated by a red diamond-shaped glyph. The dialog text explains how to specify
the message to be printed. For instance, you could print the name of the current function and the value of
pnumber by specifying the following in the text box:

$FUNCTION, The value of pnumber is {pnumber}

The output produced by this when the tracepoint is reached is displayed in the Output pane in the
Visual Studio application window.

When you check the Run a macro: checkbox, you’ll be able to choose from a long list of standard
macros that are available.

Starting Debugging
There are five ways of starting your application in debug mode from the options on the Debug menu,
shown in Figure 11-6.

Figure 11-6

1. The Start Debugging option (also available from a button on the Debug toolbar) simply exe-
cutes a program up to the first breakpoint (if any) where execution will halt. After you’ve exam-
ined all you need to at a breakpoint, selecting the same menu item or toolbar button again will
continue execution up to the next breakpoint. In this way, you can move through a program from
breakpoint to breakpoint, and at each halt in execution have a look at critical variables, changing
their values if you need to. If there are no breakpoints, starting the debugger in this way executes
the entire program without stopping. Of course, just because you started debugging in this way
doesn’t mean that you have to continue using it; at each halt in execution, you can choose any of
the possible ways of moving through your code.

2. The Start With Application Verifier option is for run-time verification of native C++ code. The
Application Verifier is an advanced tool for identifying errors due to incorrect handle and criti-
cal section usage and corruption of the heap. I won’t be discussing this in detail in this book.

703

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 703



3. The Attach to Process option on the Debug menu enables you to debug a program that is already
running. This option displays a list of the processes that are running on your machine and you
can select the process you want to debug. This is really for advanced users and you should avoid
experimenting with it unless you are quite certain that you know what you are doing. You can
easily lock up your machine or cause other problems if you interfere with critical operating sys-
tem processes.

4. The Step Into menu item (also available as a button on the Debug toolbar) executes your program
one statement at a time, stepping into every code block — which includes every function that is
called. This would be something of a nuisance if you used it throughout the debugging process
because, for example, it would also execute all the code in the library functions for stream output
— you’re not really interested in this as you didn’t write these routines. Quite a few of the library
functions are written in Assembler language — including some of those supporting stream input/
output. Assembler language functions execute one machine instruction at a time, which can be
rather time consuming as you might imagine.

5. The Step Over menu item (also available as a button on the Debug toolbar) simply executes the
statements in your program one at a time and run all the code used by functions that might be
called within a statement such as stream operations without stopping.

You have a sixth option for starting in debug mode that does not appear on the Debug menu. You can
right-click any line of code and select Run to Cursor from the Context menu. This does precisely what
it says — it runs the program up to the line where the cursor is and then breaks execution to allow 
you to inspect or change variables in the program. Whatever way you choose to start the debugging
process, you can continue execution using any of the five options you have available from any inter-
mediate breakpoint.

It’s time to try it with the example. Start the program using the Step Into option, click the appropriate
menu item or toolbar button, or press F11 to begin. After a short pause (assuming that you’ve already
built the project), Visual C++ 2008 switches to debugging mode.

When the debugger starts, two tabbed windows appear below the Editor window. You can choose what
is displayed at any time in either window by selecting one of the tabs. You can choose which windows
appear when the debugger is started and they can be customized. The complete list of windows is shown
on the Debug | Windows menu drop-down. The Autos window on the left shows current values for
automatic variables in the context of the function that is currently executing. The Call Stack window 
on the right identifies the function calls currently in progress but the Output tab in the same window is
probably more interesting in this example. In the Editor pane, you’ll see that the opening brace of your
main() function is highlighted by an arrow to indicate that this is the current point in the program’s
execution. This is shown in Figure 11-7.

You can also see the breakpoint at line 11 and the tracepoint at line 17. At this point in the execution of
the program, you can’t choose any variables to look at because none exist at present. Until a declaration
of a variable has been executed, you cannot look at its value or change it.

To avoid having to step through all the code in the stream functions that deal with I/O, you’ll use the
Step Over facility to continue execution to the next breakpoint. This simply executes the statements in

704

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 704



your main()function one at a time, and runs all the code used by the stream operations (or any other
functions that might be called within a statement) without stopping.

Figure 11-7

Inspecting Variable Values
Defining a variable that you want to inspect is referred to as setting a watch for the variable. Before you
can set any watches, you must get some variables declared in the program. You can execute the declara-
tion statements by invoking Step Over three times. Use the Step Over menu item, the toolbar icon, or press
F10 three times so that the arrow now appears at the start of the line 11:

pnumber = &number1;             // Store address in pointer

If you look at the Autos window now, it should appear as shown in Figure 11-8 (although the value for
&number1 may be different on your system as it represents a memory location). Note that the values for
&number1 and pnumber are not equal to each other because the line in which pnumber is set to the address
of number1 (the line that the arrow is pointing at) hasn’t yet been executed. You initialized pnumber as a
null pointer in the first line of the function, which is why the address it contains is zero. If you had not ini-
tialized the pointer, it would contain a junk value that still could be zero on occasion, of course, because it
contains whatever value was left by the last program to use these particular four bytes of memory.

705

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 705



Figure 11-8

The Autos window has five tabs, including the Autos tab that is currently displayed, and the information
they show is as follows:

❑ The Autos tab shows the automatic variables in use in the current statement and its immediate
predecessor (in other words, the statement pointed to by the arrow in the Editor pane and the
one before it).

❑ The Locals tab shows the values of the variables local to the current function. In general, new 
variables come into scope as you trace through a program and then go out of scope as you exit 
the block in which they are defined. In this case, this window always shows values for number1,
number2 and pnumber because you have only one function, main(), consisting of a single code
block.

❑ The Threads tab allows you to inspect and control threads in advanced applications.

❑ The Modules tab lists details of the code modules currently executing. If your application
crashes, you can determine in which module the crash happened by comparing the address
when the crash occurred with the range of addresses in the Address column on this tab.

❑ You can add variables to the Watch1 tab that you want to watch. Click a line in the window and
type the variable name. You can also watch the value of a C++ expression that you enter in the
same way as a variable. You can add up to three additional Watch windows via the Debug >
Windows > Watch menu item.

Notice that pnumber has a plus sign to the left of its name in the Autos window. A plus sign appears for
any variable for which additional information can be displayed, such as for an array, or a pointer, or a
class object. In this case, you can expand the view for the pointer variables by clicking the plus sign. If
you press F10 twice more and click the + adjacent to pnumber, the debugger displays the value stored
at the memory address contained in the pointer, as shown in Figure 11-9.

Figure 11-9

706

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 706



The Autos window automatically provides you with all the information you need, displaying both the
memory address and the data value stored at that address. Integer values can be displayed as decimal
or hexadecimal. To toggle between the two, right-click anywhere on the Autos tab and select from the
pop-up menu. You can view the variables that are local to the current function by selecting the Locals
tab. There are also other ways that you can inspect variables using the debugging facilities of Visual
C++ 2008.

Viewing Variables in the Edit Window
If you need to look at the value of a single variable, and that variable is visible in the Text Editor win-
dow, the easiest way to look at its value is to position the cursor over the variable for a second. A tool
tip pops up showing the current value of the variable. You can also look at more complicated expres-
sions by highlighting them and resting the cursor over the highlighted area. Again, a tool tip pops up to
display the value. Try highlighting the expression *pnumber*10 a little lower down. Hovering the cur-
sor over the highlighted expression results in the current value of the expression being displayed. Note
that this won’t work if the expression is not complete; if you miss the * that dereferences pnumber out of
the highlighted text for instance, or you just highlight *pnumber*, the value won’t be displayed.

Changing the Value of a Variable
The Watch windows also allow you to change the values of the variables you are watching. You would
use this in situations where a value displayed is clearly wrong, perhaps because there are bugs in your
program, or maybe all the code is not there yet. If you set the “correct” value, your program staggers 
on so that you can test out more of it and perhaps pick up a few more bugs. If your code involves a loop
with a large number of iterations, say 30000, you could set the loop counter to 29995 to step through the
last few to verify that the loop terminates correctly. It sure beats pressing F10 30,000 times! Another use-
ful application of the ability to set values for variable during execution is to set values that cause errors.
This enables you to check out the error handling code in your program, something almost impossible
otherwise.

To change the value of a variable in a Watch window, double-click the variable value that is displayed,
and type the new value. If the variable you want to change is an array element, you need to expand the
array by clicking the + box alongside the array name and then changing the element value. To change the
value for a variable displayed in hexadecimal notation, you can either enter a hexadecimal number, or
enter a decimal value prefixed by 0n (zero followed by n), so you could enter a value as A9, or as 0n169. If
you just enter 169 it is interpreted as a hexadecimal value. Naturally, you should be cautious about fling-
ing new values into your program willy-nilly. Unless you are sure you know what effect your changes are
going to have, you may end up with a certain amount of erratic program behavior, which is unlikely to
get you closer to a working program.

You’ll probably find it useful to run a few more of the examples you have seen in previous chapters in
debug mode. It will enable you to get a good feel for how the debugger operates under various condi-
tions. Monitoring variables and expressions is a considerable help in sorting out problems with your 
code, but there’s a great deal more assistance available for seeking out and destroying bugs. Take a 
look at how you can add code to a program that provides more information about when and why 
things go wrong.

707

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 707



Adding Debugging Code
For a program involving a significant amount of code, you certainly need to add code that is aimed at
highlighting bugs wherever possible and providing tracking output to help you pin down where the
bugs are. You don’t want to be in the business of single stepping through code before you have any idea
of what bugs there are, or which part of the code is involved. Code that does this sort of thing is only
required while you are testing a program. You won’t need it after you believe the program is fully work-
ing, and you won’t want to carry the overhead of executing it or the inconvenience of seeing all the out-
put in a finished product. For this reason, code that you add for debugging only operates in the debug
version of a program, not in the release version (provided you implement it in the right way, of course).

The output produced by debug code should provide clues as to what is causing a problem, and if you
have done a good job of building debug code into your program, it will give you a good idea of which
part of your program is in error. You can then use the debugger to find the precise nature and location 
of the bug, and fix it.

The first way you can check the behavior of your program that you will look at is provided by a C++
library function.

Using Assertions
The standard library header <cassert> declares the assert()function that you can use to check logical
conditions within your program when a special preprocessor symbol, NDEBUG, is not defined. The function
is declared as:

void assert(int expression);

The argument to the function specifies the condition to be checked, but the effect of the assert() func-
tion is suppressed if a special preprocessor symbol, NDEBUG, is defined. The symbol NDEBUG is automati-
cally defined in the release version of a program, but not in the debug version. Thus an assertion checks its
argument in the debug version of a program but does nothing in a release version. If you want to switch off
assertions in the debug version of a program, you can define NDEBUG explicitly yourself using a #define
directive. To be effective, you must place the #define directive for NDEBUG preceding the #include direc-
tive for the <cassert> header in the source file:

#define NDEBUG                        // Switch off assertions in the code
#include <cassert>                    // Declares assert()

If the expression passed as an argument to assert() is non-zero (i.e. true), the function does nothing. If
the expression is 0 (false in other words) and NDEBUG are not defined, a diagnostic message is output
showing the expression that failed, the source file name, and the line number in the source file where the
failure occurred. After displaying the diagnostic message, the assert() function calls abort() to end
the program. Here’s an example of an assertion used in a function:

char* append(char* pStr, const char* pAddStr)
{
// Verify non-null pointers
assert(pStr != 0);
assert(pAddStr != 0);

// Code to append pAddStr to pStr...
}

708

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 708



Calling the append() function with a null pointer argument in a simple program produced the following
diagnostic message on my machine:

Assertion failed: pStr != 0, file c:\beginning visual c++.net\examples\testassert\
testassert \ testassert.cpp, line 11

The assertion also displays a message box offering you the three options shown in Figure 11-10.

Figure 11-10

Clicking the Abort button ends the program immediately. The Retry button starts the Visual C++ 2008
debugger so you can step through the program to find out more about why the assertion failed. In prin-
ciple, the Ignore button allows the program to continue in spite of the error, but this is usually an unwise
choice as the results are likely to be unpredictable.

You can use any kind of logical expression as an argument to assert(). You can compare values, check
pointers, validate object types, or whatever is a useful check on the correct operation of your code. Getting
a message when some logical condition fails helps a little, but in general you will need considerably more
assistance than that to detect and fix bugs. Now take a look at how you can add diagnostic code of a more
general nature.

Adding Your Own Debugging Code
Using preprocessor directives, you can arrange to add any code you like to your program so that it 
is only compiled and executed in the debug version. Your debug code is omitted completely from 
the release version, so it does not affect the efficiency of the tested program at all. You could use the
absence of the NDEBUG symbol as the control mechanism for the inclusion of debugging code; that’s the
symbol used to control the assert() function operation in the standard library, as discussed in the
last section. Alternatively, for a better and more positive control mechanism, you can use another pre-
processor symbol, _DEBUG, that is always defined automatically in Visual C++ in the debug version of 
a program, but is not defined in the release version. You simply enclose code that you only want com-
piled and executed when you are debugging between a preprocessor #ifdef/#endif pair of direc-
tives, with the test applied to the _DEBUG symbol, as follows:

#ifdef _DEBUG

// Code for debugging purposes...

#endif // _DEBUG

709

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 709



The code between the #ifdef and the #endif is compiled only if the symbol _DEBUG is defined. This
means that once your code is fully tested, you can produce the release version completely free of any
overhead from your debugging code. The debug code can do anything that is helpful to you in the
debugging process, from simply outputting a message to trace the sequence of execution (each function
might record that it was called for example) to providing additional calculations to verify and validate
data, or calling functions providing debug output.

Of course, you can have as many blocks of debug code like this in a source file as you want. You also have
the possibility of using your own preprocessor symbols to provide more selectivity as to what debug code
is included. One reason for doing this is if some of your debug code produced voluminous output, so you
would only want to generate this when it was really necessary. Another is to provide granularity in your
debug output, so you can pick and choose which output is produced on each run. But even in these
instances it is still a good idea to use the _DEBUG symbol to provide overall control because this automati-
cally ensures that the release version of a program is completely free of the overhead of debugging code.

Consider a simple case. Suppose you used two symbols of your own to control debug code: MYDEBUG
that managed “normal” debugging code and VOLUMEDEBUG that you use to control code that produced 
a lot more output, and that you only wanted some of the time. You can arrange that these symbols are
defined only if _DEBUG is defined:

#ifdef _DEBUG

#define MYDEBUG
#define VOLUMEDEBUG

#endif

To prevent volume debugging output you just need to comment out the definition of VOLUMEDEBUG, and
neither symbol is defined if _DEBUG is not defined. Where your program has several source files, you
will probably find it convenient to place your debug control symbols together in a header file and then
#include the header into each file that contains debugging code.

Examine a simple example to see how adding debugging code to a program might work in practice.

Try It Out Adding Code for Debugging
To explore these and some general debugging approaches, take an example of a program that, while sim-
ple, still contains quite a few bugs that you can find and eliminate. Thus you must regard all the code in the
remainder of this chapter as suspect, particularly because it will not necessarily reflect good programming
practice.

For experimenting with debugging operations, start by defining a class that represents a person’s name
and then proceed to test it in action. There is a lot wrong with this code, so resist the temptation to fix the
obviously erroneous code here; the idea is to exercise the debugging operations to find them. However,
in practice a great many bugs are very evident as soon as you run a program. You don’t necessarily need
the debugger or additional code to spot them.

Create an empty Win32 console application, Ex11_01. Next, add a header file, Name.h, to which you’ll add
the definition of the Name class. The class represents a name by two data members that are pointers to
strings storing a person’s first and second names. If you want to be able to declare arrays of Name objects

710

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 710



you must provide a default constructor in addition to any other constructors. You want to be able to com-
pare Name objects, so you should include overloaded operators in the class to do this. You also want to be
able to retrieve the complete name as a single string for convenience. You can add a definition of the Name
class to the Name.h file as follows:

// Name.h – Definition of the Name class
#pragma once

// Class defining a person’s name
class Name
{
public:
Name();                                        // Default constructor
Name(const char* pFirst, const char* pSecond); // Constructor

char* getName(char* pName) const;              // Get the complete name
size_t getNameLength() const;                  // Get the complete name length

// Comparison operators for names    
bool operator<(const Name& name) const;
bool operator==(const Name& name) const;
bool operator>(const Name& name) const;

private:
char* pFirstname;
char* pSurname;

};

You can now add a Name.cpp file to the project to hold the definitions for the member functions of Name.
The constructor definitions are shown here:

// Name.cpp – Implementation of the Name class
#include “Name.h”                                // Name class definitions
#include “DebugStuff.h”                          // Debugging code control
#include <cstring>                               // For C-style string functions
#include <cassert>                               // For assertions
#include <iostream>
using namespace std;

// Default constructor
Name::Name()
{
#ifdef CONSTRUCTOR_TRACE
// Trace constructor calls
cerr << “\nDefault Name constructor called.”;

#endif
pFirstname = pSurname = “\0”;

}

// Constructor
Name::Name(const char* pFirst, const char* pSecond):

pFirstname(pFirst), pSurname(pSecond)
{

711

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 711



// Verify that arguments are not null
assert(pFirst != 0);
assert(pSecond != 0);

#ifdef CONSTRUCTOR_TRACE
// Trace constructor calls
cout << “\nName constructor called.”;

#endif
}

Of course, you don’t particularly want to have Name objects that have null pointers as members, so the
default constructor assigns empty strings for the names. You have used your own debug control symbol,
CONSTRUCTOR_TRACE, to control output that traces constructor calls. You can add the definition of this
symbol to the DebugStuff.h header a little later. You could put anything at all as debug code here, such
as displaying argument values, but it is usually best to keep it as simple as your debugging requirements
allow; otherwise, your debug code may introduce further bugs. Here you just identify the constructor
when it is called.

You have two assertions in the constructor to check for null pointers being passed as arguments. You
could have combined these into one, but by using a separate assertion for each argument, you can iden-
tify which pointer is null (unless they both are, of course).

You might also want to check that the strings are not empty in an application by counting the characters
prior to the terminating ‘\0’ for instance. However, you should not use an assertion to flag this. This
sort of thing could arise as a result of user input, so ordinary program checking code should be added to
deal with errors that may arise in the normal course of events. It is important to recognize the difference
between bugs (errors in the code) and error conditions that can be expected to arise during normal oper-
ation of a program. The constructor should never be passed a null pointer, but a zero length name could
easily arise under normal operating conditions (from keyboard input, for example). In this case it would
probably be better if the code reading the names were to check for this before calling the Name class con-
structor. You want errors that arise during normal use of a program to be handled within the release ver-
sion of the code.

The getName() function requires the caller to supply the address of an array that accommodates the name:

// Return a complete name as a string containing first name, space, surname
// The argument must be the address of a char array sufficient to hold the name
char* Name::getName(char* pName) const
{
assert(pName != 0);                                 // Verify non-null argument

#ifdef FUNCTION_TRACE
// Trace function calls
cout << “\nName::getName() called.”;

#endif

strcpy(pName, pFirstname);                          // copy first name
pName[strlen(pName)] = ‘ ‘;                         // Append a space

// Append second name and return total
return strcpy(pName+strlen(pName)+1, pSurname);  

} 

712

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 712



Here you have an assertion to check that the pointer argument passed is not null. Note that you have no
way to check that the pointer is to an array with sufficient space to hold the entire name. You must rely
on the calling function to do that. You also have debug code to trace when the function is called. Having
a record of the complete sequence of calls up to the point where catastrophe strikes can sometimes pro-
vide valuable insights as to why and how the problem arose.

The getNameLength() member is a helper function that enables the user of a Name object to determine
how much space must be allocated to accommodate a complete name:

// Returns the total length of a name
size_t Name::getNameLength() const
{
#ifdef FUNCTION_TRACE
// Trace function calls
cout << “\nName::getNameLength() called.”;

#endif
return strlen(pFirstname)+strlen(pSurname);

}

A function that intends to call getName() is able use the value returned by getNameLength() to
determine how much space is needed to accommodate a complete name. You also have trace code in
this member function.

In the interests of developing the class incrementally, you can omit the definitions for the overloaded
comparison operators. Definitions are only required for member functions that you actually use in your
program, and in your initial test program you keep it very simple.

You can define the preprocessor symbols control whether or not the debug code is executed in the
DebugStuff.h header:

// DebugStuff.h - Debugging control
#pragma once

#ifdef _DEBUG

#define CONSTRUCTOR_TRACE         // Output constructor call trace
#define FUNCTION_TRACE            // Trace function calls

#endif

Your control symbols are defined only if _DEBUG is defined, so none of the debug code is included in a
release version of the program.

You can now try out the Name class with the following main() function:

// Ex11_01.cpp : Including debug code in a program

#include <iostream>
using namespace std;
#include “Name.h”

713

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 713



int main(int argc, char* argv[])
{
Name myName(“Ivor”, “Horton”);                 // Try a single object

// Retrieve and store the name in a local char array  
char theName[10];
cout << “\nThe name is “ << myName.getName(theName);

// Store the name in an array in the free store
char* pName = new char[myName.getNameLength()+1]; 
cout << “\nThe name is “ << myName.getName(pName);

cout << endl;
return 0;

}

Now that all the code has been entered, double-checked, and is completely correct, all you have to do is
run it to make sure. Hardly seems necessary.

How It Works
Well it doesn’t — it doesn’t even compile, does it? The major problem is the Name constructor. The param-
eters are const, as they should be, but the data members are not. You could declare the data members as
const, but anyway, you should be copying the name strings, not just copying the pointers. Amend the
constructor definition to:

// Constructor
Name::Name(const char* pFirst, const char* pSecond)
{
// Verify that arguments are not null
assert(pFirst != 0);
assert(pSecond != 0);

#ifdef CONSTRUCTOR_TRACE
// Trace constructor calls
cout << “\nName constructor called.”;

#endif
pFirstname = new char[strlen(pFirst)+1];
strcpy(pFirstname, pFirst);
pFirstname = new char[strlen(pSecond)+1];
strcpy(pSurname, pSecond);

}

Now you are copying the strings so you should be OK now, shouldn’t you?

When you recompile the program there are some warnings about the strcpy() function being deprecated
because it’s much better to use strcpy_s() but strcpy() does work so ignore these in this exercise.
However, when you rerun the program it fails almost immediately. You can see from the Console window
that you got a message from the constructor, so you know roughly how far the execution went. Restart the
program under the control of the debugger and you can see what happened.

714

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 714



Debugging a Program
When the debugger starts, you get a message box indicating you have an unhandled exception. In the
debugger, you have a comprehensive range of facilities for stepping through your code and tracing the
sequence of events. Click Break in the dialog that indicates there is an unhandled exception to halt exe-
cution. The program is at the point where the exception occurred and the code currently executing is 
in the Editor window. The exception is caused by referring to a memory location way outside the realm
of the program, so a rogue pointer in our program is the immediate suspect.

The Call Stack
The call stack stores information about functions that have been called and are still executing because
they have not returned yet. As you saw earlier, the Call Stack window shows the sequence of function
calls outstanding at the current point in the program. Refer to Figure 11-11.

Figure 11-11

The sequence of function calls outstanding runs from the most recent call at the top, the library function
strcat(), down to the Kernel32 calls at the bottom of the window in Figure 11-11. Each function was
called directly or indirectly by the one below it, and none of those displayed have yet executed a return.
The Kernel32 lines are all system routines that start executing prior to our main() function. Your interest
is the role of your code in this, and you can see from the second line down in the window that the Name
class constructor was still in execution (had not returned) when the exception was thrown. If you double-
click on that line, the Editor window displays the code for that function, and indicates the line in the source
code being executed when the problem arose, which in this case is:

strcpy(pSurname, pSecond);

This call caused the unhandled exception to be thrown — but why? The original problem is not neces-
sarily here; it just became apparent here. This is typical of errors involving pointers. Take a look at the
window showing the values in the variables in the context of the Name constructor that is presently dis-
played in the Editor pane. Figure 11-12 shows how it looks.

Figure 11-12

715

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 715



Because the context is a function that is a member of the Name class, the Autos window displays the this
pointer that contains the address of the current object. The pSurname pointer contains a weird address,
0xcccccccc, and it has been flagged with <Bad Ptr>.The debugger recognizes that pSurname has got
to be a rogue pointer and has marked it as such. If you look at pFirstname, this is also in a mess. At the
point where you are in the code (copying the surname) the first name should already have been copied,
but the contents are rubbish.

The culprit is in the preceding line. Hasty copying of code has resulted in allocating memory for
pFirstname for a second time, instead of allocating space for pSurname. The copy is to a junk address,
and this causes the exception to be thrown. Don’t you wish you had checked what you did, properly? 
The line should be:

pSurname = new char[strlen(pSecond)+1];

It is typically the case that the code causing a bad pointer address is not the code where the error makes
itself felt. In general it may be very far away. Just examining the pointer or pointers involved in the state-
ment causing the error can often lead you directly to the problem, but sometimes it can involve a lot of
searching. You can always add more debug code if you get really stuck.

Change the statement in the Editor window to what it should be and recompile the project with the
change included. You can then restart the program inside the debugger after it has been recompiled by
clicking the button on the Debug toolbar, but surprise, surprise you get another unhandled exception.
This undoubtedly means more pointer trouble, and you can see from the output in the Console window
that the last function call was to getNameLength():

Name constructor called.
Name::getName() called.
The name is Horton
Name::getNameLength() called.

The output for the name is definitely not right; however, you don’t know where exactly the problem is.
Restarting and stepping through the program once more should provide some clues.

Note that you can change the way numeric values are displayed in the Debugger windows. The default
is to display values in hexadecimal format but you can change this to a decimal by right-clicking in a
Debugger window and unchecking Hexadecimal Display. The change will apply to all Debugger windows.

Step Over to the Error
The getNameLength() function is currently displayed in the Editor pane and the debugger has indicated
that the following line is where the problem arose:

return strlen(pFirstname)+strlen(pSurname)+1;

In the Call Stack window, you can see that the program is in the getNameLength() function member,
which merely calls the strlen() library function to get the overall length of the name. The strlen()
function is unlikely to be at fault, so this must mean there is something wrong with part of the object.
The Autos window showing the variables in the context of this function shows that the current object
has been corrupted, as you can see in Figure 11-13.

716

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 716



Figure 11-13

The current object is pointed to by this, and by clicking the plus symbol alongside this you can see the
data members. It’s the pSurname member that is the problem. The address it contains should refer to the
string “Horton,” but it clearly doesn’t. Further, the debugger has flagged it as a bad pointer.

On the assumption that this kind of error does not originate at the point where you experience the effect,
you can go back, restart the program, and single step through, looking for where the Name object gets
messed up. You can select Step Over or press F10 to restart the application, and single step through the
statements by repeatedly pressing F10. After executing the statement that defines the myName object, the
Autos window for the main() function shows that it has been constructed successfully, as you can see in
Figure 11-14.

Figure 11-14

Executing the next statement that outputs the name corrupts the object, myName. You can clearly see that
this is the case from the Autos window for main() in Figure 11-15.

Figure 11-15

717

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 717



On the reasonable assumption that the stream output operations work OK, it must be your getName()
member doing something it shouldn’t. Restart the debugger once more, but this time use Step Into when
execution reaches the output statement. When execution is at the first statement of the getName() func-
tion, you can step through the statements in the getName() function using Step Over. Watch the Context
window as you progress through the function. You will see that everything is fine until you execute the
statement:

strcpy(pName+strlen(pName)+1, pSurname);    // Append second name after the space

This statement causes the corruption of pSurname for the current object, pointed to by this. You can see
this in the Autos window in Figure 11-16.

Figure 11-16

How can copying from the object to another array corrupt the object, especially because pSurname is
passed as an argument for a const parameter? You need to look at the address stored in pName for a
clue. Compare it with the address contained in the this pointer. The difference is only 20 bytes — they
could hardly be closer really! The address calculation for the position in pName is incorrect, simply
because you forgot that copying a space to overwrite the terminating ‘\0’ in the pName array means
that strlen(pName) can no longer calculate the correct length of pName. The whole problem is caused
by the statement:

pName[strlen(pName)] = ‘ ‘;          // Append a space

This is overwriting the ‘\0’ and thus making the subsequent call to strlen() produce an invalid result.

This code is unnecessarily messy anyway; using the library function strcat() to catenate a string is much
better than using strcpy(), as it renders all this pointer modification unnecessary. You should rewrite the
statement as:

strcat(pName, “ “);                  // Append a space

Of course, the subsequent statement also needs to be changed to:

return strcat(pName, pSurname);      // Append second name and return total

With these changes you can recompile and give it another go. The program appears to run satisfactorily
as you can see from the output:

Name constructor called.
Name::getName() called.

718

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 718



The name is Ivor Horton
Name::getNameLength() called.
Name::getName() called.
The name is Ivor Horton

Getting the right output does not always mean that all is well, and it certainly isn’t in this case. You get the
message box displayed by the debug library shown in Figure 11-17 indicating that the stack is corrupted.

Figure 11-17

The following code shows where the problem lies:

int main(int argc, char* argv[])
{

Name myName(“Ivor”, “Horton”);                 // Try a single object

// Retrieve and store the name in a local char array  
char theName[10];
cout << “\nThe name is “ << myName.getName(theName);

// Store the name in an array in the free store
char* pName = new char[myName.getNameLength()]; 
cout << “\nThe name is “ << myName.getName(pName);

cout << endl;
return 0;

}

Both the shaded lines are in error. The first shaded line provides an array of 10 characters to store the
name. In fact, 12 are required: 10 for the two names, one for the space, and one for ‘\0’ at the end. The
second shaded line should add 1 to the value returned by the getNameLength() function to allow for
the ‘\0’ at the end. Thus, the code in main() should be:

int main(int argc, char* argv[])
{

Name myName(“Ivor”, “Horton”);                 // Try a single object

// Retrieve and store the name in a local char array  
char theName[12];
cout << “\nThe name is “ << myName.getName(theName);

// Store the name in an array in the free store
char* pName = new char[myName.getNameLength()+1]; 

719

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 719



cout << “\nThe name is “ << myName.getName(pName);

cout << endl;
return 0;

}

There’s a more serious problem in the definition getNameLength() member of the class. It omits to add 1
for the space between the first and second names, so the value returned is always one short. The definition
should be:

int Name::getNameLength() const
{
#ifdef FUNCTION_TRACE
// Trace function calls
cout << “\nName::getNameLength() called.”;

#endif
return strlen(pFirstname)+strlen(pSurname)+1;

}

That’s not the end of it by any means. You may have already spotted that your class still has serious
errors, but press on with testing to see if they come out in the wash.

Testing the Extended Class
Based on the output, everything is working, so its time to add the definitions for the overloaded compari-
son operators to the Name class. I’ll assume this is a new Win32 console project, Ex11_02. To implement the
comparison operators for Name objects you can use the comparison functions declared in the <cstring>
header. Start with the ‘less than’ operator:

// Less than operator
bool Name::operator<(const Name& name) const
{
int result = strcmp(pSurname, name.pSurname);
if(result < 0)
return true;

if(result == 0 && strcmp(pFirstname, name.pFirstname) < 0)
return true;

else
return false;

}

You can now define the > operator very easily in terms of the < operator:

// Greater than operator
bool Name::operator>(const Name& name) const
{
return name > *this;

}

720

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 720



For determining equal names you use the strcmp() function from the standard library again:

// Equal to operator
bool Name::operator==(const Name& name) const
{
if(strcmp(pSurname, name.pSurname) == 0 &&

strcmp(pFirstname, name.pFirstname) == 0)
return true;

else
return false;

}

Now extend the test program. You can create an array of Name objects, initialize them in some arbitrary
way, and then compare the elements of the array using your comparison operators for a Name object.
Here’s main() along with a function, init(), to initialize a Name array:

// Ex11_02.cpp : Extending the test operation

#include <iostream>
using namespace std;
#include “Name.h”

// Function to initialize an array of random names
void init(Name* names, int count)
{
char* firstnames[] = { “Charles”, “Mary”, “Arthur”, “Emily”, “John”};
int firstsize = sizeof (firstnames)/sizeof(firstnames[0]);
char* secondnames[] = { “Dickens”, “Shelley”, “Miller”, “Bronte”, “Steinbeck”};
int secondsize = sizeof (secondnames)/sizeof(secondnames[0]);
char* first = firstnames[0];
char* second = secondnames[0];

for(int i = 0 ; i<count ; i++)
{
if(i%2)
first = firstnames[i%firstsize];

else
second = secondnames[i%secondsize];

names[i] = Name(first, second);
}

}

int main(int argc, char* argv[])
{

Name myName(“Ivor”, “Horton”);                 // Try a single object

// Retrieve and store the name in a local char array  
char theName[12];
cout << “\nThe name is “ << myName.getName(theName);

// Store the name in an array in the free store
char* pName = new char[myName.getNameLength()+1]; 

721

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 721



cout << “\nThe name is “ << myName.getName(pName);

const int arraysize = 10;
Name names[arraysize];                          // Try an array

// Initialize names
init(names, arraysize);

// Try out comparisons
char* phrase = 0;                               // Stores a comparison phrase
char* iName = 0;                                // Stores a complete name  
char* jName = 0;                                // Stores a complete name  

for(int i = 0; i < arraysize ; i++)             // Compare each element
{
iName = new char[names[i].getNameLength()+1]; // Array to hold first name
for(int j = i+1 ; j<arraysize ; j++)          // with all the others
{
if(names[i] < names[j])
phrase = “ less than “;

else if(names[i] > names[j])
phrase = “ greater than “;

else if(names[i] == names[j])     // Superfluous - but it calls operator==() 
phrase = “ equal to “;

jName = new char[names[j].getNameLength()+1]; // Array to hold second name
cout << endl << names[i].getName(iName) << “ is” << phrase 

<< names[j].getName(jName);
}

}

cout << endl;
return 0;

}

The init() function picks successive combinations of first and second names from the array of names to
initialize the array Name objects. Names repeat after 25 have been generated, but you need only 10 here.

Finding the Next Bug
If you start the program under the control of the debugger using the Start Debugging button on the
Debug toolbar it fails again. The message box shown in Figure 11-18 is displayed.

Figure 11-18

722

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 722



The message box indicates you have exceeded the capacity of the stack memory available and if you
select the Break button the Call Stack window tells you what is wrong. You have successive calls of the
operator>() function so it must be calling itself. If you look at the code, you can see why: a typo. The
single line in the body of the function should be:

bool Name::operator>(const Name& name) const
{
return name < *this;

}

You can fix that, recompile, and try again. This time it works correctly, but unfortunately the class is still
defective. It has a memory leak that exhibits no symptoms here, but in another context could cause may-
hem. Memory leaks are hard to detect ordinarily, but you can get some extra help from Visual C++ 2008.

Debugging Dynamic Memory
Allocating memory dynamically is a potent source of bugs and perhaps the most common bugs in this
context are memory leaks. Just to remind you, a memory leak arises when you use the new operator 
to allocate memory, but you never use the delete operator to free it again when you are done with it.
Apart from just forgetting to delete memory that you have allocated, you should particularly be aware
that non-virtual destructors in a class hierarchy can also cause the problem because they can cause the
wrong destructor to be called when an object is destroyed, as you have seen. Of course, when your
program ends, all the memory is freed; however, while it is running, it remains allocated to your pro-
gram. Memory leaks present no obvious symptoms much of the time, maybe never in some cases, but
memory leaks are detrimental to the performance of your machine because memory is being occupied
to no good purpose. Sometimes, it can result in a catastrophic failure of the program when all available
memory has been allocated.

For checking your program’s use of the free store, Visual C++ 2008 provides a range of diagnostic routines;
these use a special debug version of the free store. These are declared in the header crtdbg.h. All calls 
to these routines are automatically removed from the release version of your program, so you don’t need to
worry about adding preprocessor controls for them.

Functions Checking the Free Store
Here’s an overview of what’s involved in checking free store operations and how memory leaks can be
detected. The functions declared in ctrdbg.h check the free store using a record of its status stored in a
structure of type _CrtMemState. This structure is relatively simple and is defined as:

typedef struct _CrtMemState
{
struct _CrtMemBlockHeader* pBlockHeader; // Ptr to most recently allocated block
unsigned long lCounts[_MAX_BLOCKS];      // Counter for each type of block
unsigned long lSizes[_MAX_BLOCKS];// Total bytes allocated in each block type
unsigned long lHighWaterCount;    // The most bytes allocated at a time up to now
unsigned long lTotalCount;        // The total bytes allocated at present

} _CrtMemState;

723

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 723



You won’t be concerned directly with the details of the state of the free store because you are using func-
tions that present the information in a more readable form. There are quite a few functions involved in
tracking free store operations but you will only look at the five most interesting ones. These provide you
with the following capabilities:

❑ To record the state of the free store at any point

❑ To determine the difference between two states of the free store

❑ To output state information

❑ To output information about objects in the free store

❑ To detect memory leaks

Here are the declarations of these functions together with a brief description of what they do:

void _CrtMemCheckpoint(_CrtMemState* state);

This stores the current state of the free store in a _CrtMemState structure. The argument you pass to the
function is a pointer to a _CrtMemState structure in which the state is to be recorded.

int _CrtMemDifference(_CrtMemState* stateDiff,
const _CrtMemState* oldState,
const _CrtMemState* newState);

This function compares the state specified by the third argument, with a previous state that you specify
in the second argument. The difference is stored in a _CrtMemState structure that you specify in the
first argument. If the states are different, the function returns a non-zero value (true); otherwise, 0
(false) is returned.

void _CrtMemDumpStatistics(const _CrtMemState* state);

This dumps information about the free store state specified by the argument to an output stream. The
state structure pointed to by the argument can be a state that you recorded using _CrtMemCheckpoint()
or the difference between two states produced by _CrtMemDifference().

void _CrtMemDumpAllObjectsSince(const _CrtMemState* state);

This function dumps information on objects allocated in the free store, since the state of the free store speci-
fied by the argument; this has been recorded by an earlier call in your program to _CrtMemCheckpoint().
If you pass null to the function, it dumps information on all objects allocated since the start of execution of
your program.

int _CrtDumpMemoryLeaks();

This is the function you need for the example as it checks for memory leaks and dumps information on
any leak that is detected. You can call this function at any time, but a very useful mechanism can cause
the function to be called automatically when your program ends. If you enable this mechanism, you get
automatic detection of any memory leaks that occurred during program execution, so see how you can
do that.

724

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 724



Controlling Free Store Debug Operations
You control free store debug operations by setting a flag, _crtDbgFlag, which is of type int. This flag
incorporates five separate control bits, including one to enable automatic memory leak checking. You
specify these control bits using the following identifiers:

By default, the _CRTDBG_ALLOC_MEM_DF bit is on, and all the others are off. You must use the bitwise opera-
tors to set and unset combinations of these bits. To set the _crtDbgFlag flag you pass a flag of type int to
the _CrtDbgFlag() function that implements the combination of indicators that you require. This puts your
flag into effect and returns the previous status of _CrtDbgFlag. One way to set the indicators you want is
to first obtain the current status of the _crtDbgFlag flag. Do this by calling the _CrtSetDbgFlag() func-
tion with the argument _CRTDBG_REPORT_FLAG as follows:

int flag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);              // Get current flag

You can then set or unset the indicators by combining the identifiers for the individual indicators with
this flag using bitwise operators. To set an indicator on, you OR the indicator identifier with the flag.
For example, to set the automatic leak checking indicator on, in the flag, you could write:

flag |= _CRTDBG_LEAK_CHECK_DF;

To turn an indicator off, you must AND the negation of the identifier with the flag. For example, to turn
off tracking of memory that is used internally by the library, you could write:

flag &= ~_CRTDBG_CHECK_CRT_DF;

_CRTDBG_ALLOC_MEM_DF When this bit is on, it turns on debug allocation so the free
store state can be tracked. 

_CRTDBG_DELAY_FREE_MEM_DF When this is on, it prevents memory from being freed by
delete, so that you can determine what happens under 
low-memory conditions. 

_CRTDBG_CHECK_ALWAYS_DF When this is on, it causes the _CrtCheckMemory() function
to be called automatically at every new and delete operation.
This function verifies the integrity of the free store, checking,
for example, that blocks have not been overwritten by storing
values beyond the range of an array. A report is output if any
defect is discovered. This slows execution but catches errors
quickly.

_CRTDBG_CHECK_CRT_DF When this is on, the memory used internally by the run-time
library is tracked in debug operations. 

_CRTDBG_LEAK_CHECK_DF Causes leak checking to be performed at program exit by
automatically calling _CrtDumpMemoryLeaks(). You only
get output from this if your program has failed to free all the
memory that it allocated.

725

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 725



To put your new flag into effect, you just call _CrtSetDbgFlag() with your flag as the argument:

_CrtSetDbgFlag(flag);

Alternatively, you can OR all the identifiers for the indicators that you want together, and pass the
result as the argument to _CrtSetDbgFlag(). If you just want to leak check when the program exits,
you could write:

_CrtSetDbgFlag(_CRTDBG_LEAK_CHECK_DF|_CRTDBG_ALLOC_MEM_DF);

If you need to set a particular combination of indicators, rather than setting or unsetting bits at various
points in your program, this is the easiest way to do it. You are almost at the point where you can apply
the dynamic memory debugging facilities to our example. You just need to look at how you determine
where free store debugging output goes.

Free Store Debugging Output
The destination of the output from the free store debugging functions is not the standard output stream;
by default it goes to the debug message window. If you want to see the output on stdout you must set
this up. There are two functions involved in this: _CrtSetReportMode(), which sets the general desti-
nation for output, and _CrtSetReportFile(), which specifies a stream destination specifically. The
_CrtSetReportMode() function is declared as:

int _CrtSetReportMode(int reportType, int reportMode);

There are three kinds of output produced by the free store debugging functions. Each call to the
_CrtSetReportMode() function sets the destination specified by the second argument for the output
type specified by the first argument. You specify the report type by one of the following identifiers:

The crtdbg.h header defines two macros, ASSERT and ASSERTE, that work in much the same way as
the assert() function in the standard library. The difference between these two macros is that ASSERTE
reports the assertion expression when a failure occurs, whereas the ASSERT macro does not.

You specify the report mode by a combination of the following identifiers:

_CRTDBG_MODE_DEBUG This is the default mode, which sends output to a debug
string that you see in the Debug window when running
under control of the debugger.

_CRTDBG_MODE_FILE Output is to be directed to an output stream.

_CRT_WARN Warning messages of various kinds. The output when a
memory leak is detected is a warning.

_CRT_ERROR Catastrophic errors that report unrecoverable problems.

_CRT_ASSERT Output from assertions (not output from the assert()
function that I discussed earlier).

726

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 726



To specify more than one destination, you simply OR the identifiers using the | operator. You set the des-
tination for each output type with a separate call of the _CrtSetReportMode() function. To direct the
output when a leak is detected to a file stream, you can set the report mode with the following statement:

CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);

This just sets the destination generically as a file stream. You still need to call the _CrtSetReportFile()
function to specify the destination specifically.

The _CrtSetReportFile() function is declared as:

_HFILE _CrtSetReportFile(int reportType, _HFILE reportFile);

The second argument here can either be a pointer to a file stream (of type _HFILE), which I will not go
into further, or can be one of the following identifiers:

To set the leak detection output to the standard output stream, you can write:

_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);

You now have enough knowledge of the free store debug routines to try out leak detection in your
example.

Try It Out Memory Leak Detection
Even though you have set the project settings to direct the standard output stream to a file, it would be a
good idea to reduce the volume of output, so reduce the size of the names array to five elements. Here’s
the new version of main() for Ex11_02 to use the free store debug facilities in general and leak detection
in particular:

int main(int argc, char* argv[])
{
// Turn on free store debugging and leak-checking bits
_CrtSetDbgFlag( _CRTDBG_LEAK_CHECK_DF|_CRTDBG_ALLOC_MEM_DF );

// Direct warnings to stdout

_CRTDBG_FILE_STDERR Output is directed to the standard error stream, stderr.

_CRTDBG_FILE_STDOUT Output is directed to the standard output stream, stdout.

_CRTDBG_REPORT_FILE If you specify this argument, the _CrtSetReportFile()
function will just return the current destination.

_CRTDBG_MODE_WNDW Output is presented in a message box.

_CRTDBG_REPORT_MODE If you specify this, the _CrtSetReportMode() function just
returns the current report mode.

727

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 727



_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);

Name myName(“Ivor”, “Horton”);                 // Try a single object

// Retrieve and store the name in a local char array  
char theName[12];
cout << “\nThe name is “ << myName.getName(theName);

// Store the name in an array in the free store
char* pName = new char[myName.getNameLength()+1]; 
cout << “\nThe name is “ << myName.getName(pName);

const int arraysize = 5;
Name names[arraysize];                      // Try an array

// Initialize names
init(names, arraysize);

// Try out comparisons
char* phrase = 0;                             // Stores a comparison phrase
char* iName = 0;                              // Stores a complete name  
char* jName = 0;                              // Stores a complete name  

for(int i = 0; i < arraysize ; i++)           // Compare each element
{

iName = new char[names[i].getNameLength()+1]; // Array to hold first name
for(int j = i+1 ; j<arraysize ; j++)          // with all the others
{

if(names[i] < names[j])
phrase = “ less than “;

else if(names[i] > names[j])
phrase = “ greater than “;

else if(names[i] == names[j])    // Superfluous - but it calls operator==()
phrase = “ equal to “;

jName = new char[names[j].getNameLength()+1]; // Array to hold second name
cout << endl << names[i].getName(iName) << “ is” << phrase 

<< names[j].getName(jName);
}

}
cout << endl;
return 0;

}

To reduce output further, you could switch off the trace output by commenting out the control symbols
in the DebugStuff.h header:

// DebugStuff.h - Debugging control
#pragma once

#ifdef _DEBUG

728

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 728



//#define CONSTRUCTOR_TRACE         // Output constructor call trace
//#define FUNCTION_TRACE            // Trace function calls
#endif

You can recompile the example and run it again.

How It Works
It works just as expected. You get a report that your program does indeed have memory leaks, and you
get a list of the objects in the free store at the end of the program. The output generated by the free store
debug facility starts with:

Detected memory leaks!
Dumping objects ->
{143} normal block at 0x00355F08, 15 bytes long.
Data: <               > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
{142} normal block at 0x00355EC8, 15 bytes long.
Data: <Emily Steinbeck> 45 6D 69 6C 79 20 53 74 65 69 6E 62 65 63 6B
{141} normal block at 0x00355E90, 12 bytes long.
Data: <Emily Miller> 45 6D 69 6C 79 20 4D 69 6C 6C 65 72
...

and ends with:

...
{120} normal block at 0x003559D8, 8 bytes long.
Data: <Dickens > 44 69 63 6B 65 6E 73 00
{119} normal block at 0x003559A0, 8 bytes long.
Data: <Charles > 43 68 61 72 6C 65 73 00
{118} normal block at 0x00355968, 11 bytes long.
Data: <Ivor Horton> 49 76 6F 72 20 48 6F 72 74 6F 6E
{117} normal block at 0x00355930, 7 bytes long.
Data: <Horton > 48 6F 72 74 6F 6E 00
{116} normal block at 0x003558F8, 5 bytes long.
Data: <Ivor > 49 76 6F 72 00
Object dump complete.

The objects reported as being left in the free store are presented with the most recently allocated first, and the
earliest last. It is obvious from the output that the Name class is allocating memory for its data members, and
never releasing it. The last three objects dumped correspond to the pName array allocated in main(), and the
data members of the object, myName. The blocks for the complete names are allocated in main(), and they
too are left lying about. The problem our class has is that we forgot the fundamental rules relating to classes
that allocate memory dynamically; they should always define a destructor, a copy constructor, and the
assignment operator. The class should be declared as:

class Name
{

public:
Name();                                             // Default constructor
Name(const char* pFirst, const char* pSecond);      // Constructor
Name(const Name& rName);                            // Copy constructor

729

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 729



~Name();                                            // Destructor

char* getName(char* pName) const;            // Get the complete name
int getNameLength() const;                   // Get the complete name length

// Comparison operators for names    
bool operator<(const Name& name) const;
bool operator==(const Name& name) const;
bool operator>(const Name& name) const;

Name& operator=(const Name& rName);                 // Assignment operator

private:
char* pFirstname;
char* pSurname;

};

You can define the copy constructor as:

Name:: Name(const Name& rName)
{
pFirstname = new char[strlen(rName.pFirstname)+1]; // Allocate space for 1st name
strcpy(pFirstname, rName.pFirstname);              // and copy it.
pSurname = new char[strlen(rName.pSurname)+1];     // Same for the surname...
strcpy(pSurname, rName.pSurname);

}

The destructor just needs to release the memory for the two data members:

Name::~Name()
{
delete[] pFirstname;
delete[] pSurname;

}

In the assignment operator, you must make the usual provision for the left and right sides being identical:

Name& Name::operator=(const Name& rName)
{
if(this == &rName)                                 // If lhs equals rhs
return *this;                                    // just return the object

delete[] pFirstname;
pFirstname = new char[strlen(rName.pFirstname)+1]; // Allocate space for 1st name
strcpy(pFirstname, rName.pFirstname);              // and copy it.
delete[] pSurname;
pSurname = new char[strlen(rName.pSurname)+1];     // Same for the surname...
strcpy(pSurname, rName.pSurname);
return *this;

}

730

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 730



You also should make the default constructor work properly. If the default constructor doesn’t allocate
memory in the free store, you have the possibility that the destructor will erroneously attempt to delete
memory that was not allocated in the free store. You need to modify it to:

Name::Name()
{
#ifdef CONSTRUCTOR_TRACE
// Trace constructor calls
cout << “\nDefault Name constructor called.”;

#endif

// Allocate array of 1 for empty strings
pFirstname = new char[1];
pSurname = new char[1];

pFirstname[0] = pSurname[0] = ‘\0’;           // Store null character
}

If you add statements to main() to delete the memory that is allocate dynamically there, the program
should run without any messages relating to memory leaks. In main() you need to add the following
statement to the end of the inner loop that is controlled by j:

delete[] jName;

You also need to add the following statement to the end of the outer loop that is controlled by i:

delete[] iName;

Finally, you still have to release the memory for pName after the loops in main():

delete[] pName;

Debugging C++/CLI Programs
Life is simpler with C++/CLI programming. None of the complications of corrupted pointers or mem-
ory leaks arise in programs written for the CLR, so this reduces the debugging problem substantially
compared to native C++ at a stroke. You set breakpoints and tracepoints in a CLR program exactly the
same way as you do for a native C++ code. You have a specific option that applies to C++/CLI code 
for preventing the debugger from stepping through library code. If you select the Tools > Options menu
item a dialog is displayed, and if you select the Debugging/General set of options the dialog looks as
shown in Figure 11-19.

Checking the option highlighted in Figure 11-19 ensures that the debugger only steps through your source
statements and executes the library code normally.

731

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 731



Figure 11-19

Using the Debug and Trace Classes
The Debug and Trace classes in the System::Diagnostics namespace are for tracing execution of a
program for debugging purposes. The capabilities provided by the Debug and Trace classes are identi-
cal; the difference between them is that Trace functions are compiled into release builds, whereas Debug
functions are not. Thus you can use Debug class functions when you are just debugging your code, and
Trace class functions when you want to obtain Trace information in release versions of your code for
performance monitoring or diagnostic and maintenance purposes. You also have control over whether
the compile includes trace code in your program.

Because the functions and other members in the Debug and Trace classes are identical, I’ll just describe
the capability in terms of the Debug class.

Generating Output
You can produce output using the Debug::WriteLine() and Debug::Write() functions that write
messages to an output destination; the difference between these two functions is that the WriteLine()
function writes a newline character after the output whereas the Write() function does not. They both
come in four overloaded versions; I’ll use the Write() function as the example but WriteLine() ver-
sions have the same parameter lists:

Function Description

Debug::Write(String^ message) Writes message to the output destination.

Debug::Write(String^ message,
String^ category)

Writes categoryname followed by message to the
output destination. A category name is used to organ-
ize the output.

732

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 732



The WriteIf() and WriteLineIf() are conditional versions of the Write() and WriteLine() functions
in the Debug class: 

As you see, the WriteIf() and WriteLineIf() functions have an extra parameter of type bool at the
beginning of the parameter list for the corresponding Write() or WriteLine() function and the argu-
ment for this determines whether or not output occurs.

You can also write output using the Debug::Print() function that comes in two overloaded versions:

Function Description

Print(String^ message) This writes message to the output destination fol-
lowed by a newline character.

Print(String^ format,
...array<Object^>^ args)

This works in the same way as formatted output with
the Console::WriteLine() function. The format
string determines how the arguments that follow it
are presented in the output. 

Function Description

Debug::WriteIf(bool condition,
String^ message)

Writes message to the output destination if condition
is true; otherwise, no output is produced.

Debug::WriteIf(bool condition,
String^ message,
String^ category)

Writes category followed by message to the output
destination if condition is true; otherwise, no out-
put is produced. 

Debug::WriteIf(bool condition,
Object^ value)

Writes the string returned by value>ToString() to
the output destination if condition is true; other-
wise, no output is produced.

Debug::WriteIf(bool condition,
Object^ value,
String^ category)

Writes category followed by the string returned 
by value->ToString() to the output destination if
condition is true; otherwise, no output is produced.

Function Description

Debug::Write(Object^ value) Writes the string returned by value>ToString() to
the output destination.

Debug::Write(Object^ value,
String^ category)

Writes categoryname followed by the string returned
by value->ToString() to the output destination.

733

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 733



Setting the Output Destination
By default the output messages are sent to the Output window in the IDE, but you can change this by
using a listener, and a listener is an object that directs debug and trace output to one or more destina-
tions. Here’s how you can create a listener and direct debug output to the standard output stream:

TextWriterTraceListener^ listener = gcnew TextWriterTraceListener( Console::Out);
Debug::Listeners->Add(listener);

The first statement creates a TextWriterTraceListener object that directs the output to the standard
output stream, which is returned by the static property, Out, in the Console class. (The In and Error
properties in the Console class return the standard input stream and standard error stream respectively.)
The Listeners property in the Debug class returns a collection of listeners for debug output so the state-
ment adds the listener object to the collection. You could add other listeners that additionally directed
output elsewhere (to a file perhaps).

Indenting the Output
You can control the indenting of the debug and trace messages. This is particularly useful in situations
where functions are called at various depths. By indenting the output at the beginning of a function and
removing the indent before leaving the function, the debug or trace output is easily identified and you’ll
be able to see the depth of function call from the amount of indentation of the output.

To increase the current indent level for output by one (one indent unit is four spaces by default), you call
the static Indent() function in the Debug class like this:

Debug::Indent();                       // Increase indent level by 1

To reduce the current indent level by one you call the static Unindent() function:

Debug::Unindent();                     // Decrease indent level by 1

The current indent level is recorded in the static IndentLevel property in the Debug class so you can get
or set the current indent level through this property. For example:

Debug::IndentLevel = 2*Debug::IndentLevel;

This statement doubles the current level of indentation for subsequent debug output.

The number of spaces in one indent unit is recorded in the static IndentSize property in the Debug class.
You can retrieve the current indent size and change it to a different value. For example:

Console::WriteLine(L”Current indent unit = {0}”, Debug::IndentSize);
Debug::IndentSize = 2;                 // Set indent unit to 2 spaces

The first statement simply outputs the indent size and the second statement sets it to a new 
value. Sub sequent calls to Indent()increases the current indentation by the new size, which is 
two spaces.

734

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 734



Controlling Output
Trace switches provide you with a way to switch any of the debug or trace output on and off. You have
two kinds of trace switches you can use:

❑ The BooleanSwitch reference class objects provide you with a way to switch segment of output
on or off depending on the state of the switch.

❑ The TraceSwitch reference class objects provide you with a more sophisticated control mecha-
nism because each TraceSwitch object has four properties that correspond to four control levels
for output statements.

You could create a BooleanSwitch object to control output as a static class member like this:

public ref class MyClass
{
private:
static BooleanSwitch^ errors =

gcnew BooleanSwitch(L”Error Switch”, L”Controls error 
output”);

public:
void DoIt()
{
// Code...

if(errors->Enabled)
Debug::WriteLine(L”Error in DoIt()”);

// More code...
}
// Rest of the class...

};

This shows the errors object as a static member of MyClass. The first argument to the BooleanSwitch
constructor is the display name for the switch that is used to initialize the DisplayName property and the
second argument sets the value of the Description property for the switch. There’s another constructor
that accepts a third argument of type String^ that sets the Value property for the switch.

The Enabled property for a Boolean switch is of type bool and is false by default. To set it to true, you
just set the property value accordingly:

errors->Enabled = true;

The DoIt() function in MyClass outputs the debug error message only when the errors switch is enabled.

The TraceSwitch reference class has two constructors that have the same parameters as the
BooleanSwitch class constructors. You can create a TraceSwitch object like this:

TraceSwitch^ traceCtrl =
gcnew TraceSwitch(L”Update”, L”Traces update operations”);

735

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 735



The first argument to the constructor sets the value of the DisplayName property, and the second argument
sets the value of the Description property.

The Level property for a TraceSwitch object is an enum class type, TraceLevel, and you can set this
property to control trace output to any of the following values:

The value you set determines the output produced. To get all messages, you set the property as follows:

traceCtrl->Level = TraceLevel::Verbose;

You determine whether a particular message should be issued by your trace and debug code by testing
the state of one of four properties of type bool for the TraceSwitch object:

You can see from the significance of these property values that setting the Level property also sets 
the states of these properties. If you set the Level property to TraceLevel::Warning for instance,
TraceWarning and TraceError is set to true and TraceVerbose and TraceInfo are set to false.

To decide whether to output a particular message, you just test the appropriate property:

if(traceCtrl->TraceWarning)
Debug::WriteLine(L”This is your last warning!”);

The message is output only if the TraceWarning property for traceCtrl is true.

Assertions
The Debug and Trace classes have static Assert() functions that provide a similar capability to the
native C++ assert() function. The first argument to the Debug::Assert() function is a bool value or

Property Description

TraceVerbose Returns the value true when all messages are to be output.

TraceInfo Returns the value true when information messages are to be output.

TraceWarning Returns the value true when warning messages are to be output.

TraceError Returns the value true when error messages are to be output.

Value Description

TraceLevel::Off No trace output.

TraceLevel::Info Output information, warning, and error messages.

TraceLevel::Warning Output warning and error messages.

TraceLevel::Error Output Error messages.

TraceLevel::Verbose Output all messages.

736

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 736



expression that causes the program to assert when the argument is false. The call stack is then displayed
in a dialog as shown in Figure 11-20.

Figure 11-20

Figure 11-20 shows an assertion that is produced by the next example. When the program asserts the call
stack presented in the dialog shows the line numbers in the code and the names of the functions that are
executing at that point. Here there are four functions executing, including main().

You have three courses of action after an assertion. Clicking the Abort button ends the program immedi-
ately; clicking the Ignore button allows the program to continue; and clicking the Retry button gives you
the option of executing the program in debug mode.

You have three overloaded versions of the Assert() function available:

Seeing it working is the best aid to understanding, so put together an example that demonstrates debug
and trace code in action.

Try It Out Using Debug and Trace
This example is just an exercise for some of the trace and debug functions I have described. Create a CLR
console project and modify it to the following:

// Ex11_03.cpp : main project file.
// CLR trace and debug output

#include “stdafx.h”

using namespace System;

Function Description

Debug::Assert(bool condition) When condition is false, a dialog displays showing
the call stack at that point.

Debug::Assert(bool condition,
String^ message)

As above but with message displayed in the dialog
above the call stack information.

Debug::Assert(bool condition,
String^ message,
String^ details)

As the preceding version but with details displayed
additionally in the dialog.

737

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 737



using namespace System::Diagnostics;

public ref class TraceTest
{
public:
TraceTest(int n):value(n){}

property TraceLevel Level
{
void set(TraceLevel level) {sw->Level = level; }
TraceLevel get(){return sw->Level; }

}

void FunA()
{
++value;
Trace::Indent();
Trace::WriteLine(L”Starting FunA”);
if(sw->TraceInfo)
Debug::WriteLine(L”FunA working...”);

FunB();
Trace::WriteLine(L”Ending FunA”);
Trace::Unindent();

}

void FunB()
{
Trace::Indent();
Trace::WriteLine(L”Starting FunB”);
if(sw->TraceWarning)
Debug::WriteLine(L”FunB warning...”);

FunC();
Trace::WriteLine(L”Ending FunB”);
Trace::Unindent();

}

void FunC()
{
Trace::Indent();
Trace::WriteLine(L”Starting FunC”);
if(sw->TraceError)
Debug::WriteLine(L”FunC error...”);

Debug::Assert(value < 4);
Trace::WriteLine(L”Ending FunC”);
Trace::Unindent();

}
private:
int value;
static TraceSwitch^ sw =

gcnew TraceSwitch(L”Trace Switch”, L”Controls trace output”);
};

int main(array<System::String ^> ^args)
{

738

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 738



// Direct output to the command line
TextWriterTraceListener^ listener = gcnew TextWriterTraceListener( Console::Out);
Debug::Listeners->Add(listener);

Debug::IndentSize = 2;              // Set the indent size

array<TraceLevel>^ levels = { TraceLevel::Off,     TraceLevel::Error,
TraceLevel::Warning ,TraceLevel::Verbose};

TraceTest^ obj = gcnew TraceTest(0);

Console::WriteLine(L”Starting trace and debug test...”);
for each(TraceLevel level in levels)
{
obj->Level = level;                // Set level for messages
Console::WriteLine(L”\nTrace level is {0}”, obj->Level);
obj->FunA();

}
return 0;
}

This example results in an assertion dialog being displayed during execution. You can then choose to
continue or abort execution or retry the program in debug mode by selecting the appropriate button in
the dialog.

Depending on what you do when the program asserts, this example produces the following output:

Starting trace and debug test...

Trace level is Off
Starting FunA

Starting FunB
Starting FunC
Ending FunC

Ending FunB
Ending FunA

Trace level is Error
Starting FunA

Starting FunB
Starting FunC
FunC error...
Ending FunC

Ending FunB
Ending FunA

Trace level is Warning
Starting FunA

Starting FunB
FunB warning...

Starting FunC
FunC error...
Ending FunC

Ending FunB

739

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 739



Ending FunA

Trace level is Verbose
Starting FunA
FunA working...

Starting FunB
FunB warning...

Starting FunC
FunC error...
Fail:
Ending FunC

Ending FunB
Ending FunA

How It Works
The TraceTest class defines three instance functions FunA(), FunB(), and FunC(). Each function 
contains a call to the Trace::Indent() function to increase indentation for debug output and
Debug::WriteLine() function calls to track when the function is entered and exited. The
Trace::Unindent() function is called immediately before exiting each function to restore the 
indent level to what it was when the function was called.

The TraceTest class defines a private TraceSwitch member, sw, which controls what level of debug
output is displayed. Each of the three member functions also calls the Debug::WriteLine() function 
to issue a debug message depending on the level set in the sw member of the class.

The FunA() function increments the value member of the class object each time it is called and the
FunC() function asserts if value exceeds 3.

In main() you create a TextWriterTraceListener object that directs trace and debug output to the
command line:

TextWriterTraceListener^ listener = gcnew TextWriterTraceListener( Console::Out);

You then add the listener object to the collection of listeners in the Debug class:

Debug::Listeners->Add(listener);

This causes debug and trace output to be directed to Console::Out, the standard output stream.

You create an array of TraceLevel objects that represent various control levels for debug and trace output:

array<TraceLevel>^ levels = { TraceLevel::Off,     TraceLevel::Error,
TraceLevel::Warning ,TraceLevel::Verbose};

After creating the TraceLevel object you set the trace levels for it in a for each loop:

for each(TraceLevel level in levels)
{
obj->Level = level;                // Set level for messages
Console::WriteLine(L”\nTrace level is {0}”, obj->Level);
obj->FunA();

}

740

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 740



The level is set through the Level property for obj. This sets the Level property in the TraceSwitch
member, sw, which is used in the instances functions to control output.

From the output you can see that the indent you set affects output from the static WriteLine() function
in both the Debug and Trace classes. You can also see how the level that you set in the TraceSwitch
class member affects the output. When the value member of the TraceTest class object, obj, reaches 4,
the FunC() function asserts. You can rerun the example and try out the effects of the three buttons on the
assertion dialog.

Getting Trace Output in Windows Forms Applications
It’s often useful to be able to output trace information from a Windows Forms application. There’s a
couple of barriers in the way of doing this: Firstly, the output can be voluminous, particularly if you
want to trace the execution of functions that executed very frequently such as those dealing with mouse
events, and secondly and more significantly, there is no console with a Windows Forms application to
receive the output. You can get over this by adding some code to the constructor of the class encapsulat-
ing the form for the application, which reassigns output for Console::Out stream to a file. I won’t
explain every detail of the class objects involved and how this code works at this point but just offer it
here as something you can plug into a Windows Forms application:

FileStream^ fs = gcnew FileStream(L”Trace.txt”, FileMode::Create);
StreamWriter^ sw = gcnew StreamWriter(fs);
sw->Autoflush = true;
Console::SetOut(sw);

The first statement creates a stream that encapsulates the file Trace.txt that will be created in the current
directory. You can specify a full path if you want; just set the first argument to the FileStream constructor
as L”C\Debug Output\MyTrace.txt” for example. The next two statements set up an object that can
write to the stream, fs, and make it flush data to the stream automatically. The last statement reassigns
Console::Out to the StreamWriter object. To compile this code successfully you must add a using
directive for the System::IO namespace to the header file containing the class definition for the form.

With this code in place you can put Console output statements anywhere in the code for the form to
trace the execution sequence or to record data values. You can inspect the trace file with any simple text
editor such as Notepad.

Summary
Debugging is a big topic and Visual C++ 2008 provides many debugging facilities beyond what I have
discussed here. If you are comfortable with what I have covered in this chapter, you should have little
trouble expanding your knowledge of the debug capabilities through the Visual C++ 2008 documenta-
tion.  Searching on “debugging” should generate a rich list of further information.

The essential points introduced in this chapter were:

❑ You can use the assert() library function that is declared in the <cassert> header to check
logical conditions in your native C++ program that should always be true.

741

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 741



❑ The preprocessor symbol, _NDEBUG, is automatically defined in the debug version of a native
C++program. It is not defined in the release version.

❑ You can add your own debugging code by enclosing it between an #ifdef/#endif pair of
directives testing for _NDEBUG. Your debug code is then included only in the debug version of
the program.

❑ The crtdbg.h headers supplies declarations for functions to provide debugging of free store
operations.

❑ By setting the _crtDbgFlag appropriately, you can enable automatic checking of your program
for memory leaks.

❑ To direct output messages from the free store debugging functions, you call the
_CrtSetReportMode() and _CrtSetReportFile() functions.

❑ Debugging operations using breakpoints and trace points in C++/CLI programs are exactly 
the same as in native C++ programs.

❑ The Debug and Assert classes defined in the System::Diagnostics namespace provide 
functions for tracing execution and generating debugging output in CLR programs.

❑ The static Assert() function in the Debug and Trace classes provides an assertion capability 
in CLR programs.

With the basics of debugging added to your knowledge of C++, you are ready for the big one: Windows
programming!

742

Chapter 11: Debugging Techniques

25905c11.qxd:WroxPro  2/21/08  9:13 AM  Page 742



12
Windows Programming

Concepts

In this chapter, you take a look at the basic ideas that are involved in every Windows program 
in C++. You’ll first develop a very simple example that uses the Windows operating system 
API directly. This will enable you to understand how a Windows application works behinds 
the scenes, which will be useful to you when you are developing applications using the more
sophisticated facilities provided by Visual C++ 2008. You then see what you get when you create 
a Windows program using the Microsoft Foundation Classes, better known as the MFC. Finally,
you’ll create a basic program using Windows Forms that will execute with the CLR, so by the
end of the chapter you’ll have an idea of what each of the three approaches to developing a
Windows application involves.

By the end of this chapter, you will have learned about:

❑ The basic structure of a window 

❑ The Windows API and how it is used

❑ Windows messages and how you deal with them

❑ The notation that is commonly used in Windows programs

❑ The basic structure of a Windows program 

❑ How you create an elementary program using the Windows API and how it works

❑ Microsoft Foundation Classes 

❑ The basic elements of an MFC-based program

❑ Windows Forms 

❑ The basic elements of a Windows Forms application

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 743



Windows Programming Basics
With Visual C++ 2008 you have three basic ways of creating an interactive Windows application:

❑ Using the Windows API. This is the fundamental interface that the Windows operating system
provides for communications between itself and the applications that are executing under its
control.

❑ Using the Microsoft Foundation Classes, better known as the MFC. This is a set of C++ classes
that encapsulate the Windows API. 

❑ Using Windows Forms. This is a forms-based development mechanism for creating applications
that execute with the CLR.

In a way these three approaches form a progression from the most programming intensive to the least
programming intensive. With the Windows API you are writing code throughout — all the elements that
make up the GUI for your application must be created programmatically. With MFC applications there’s
some help with GUI build in that you can assemble controls on a dialog form graphically and just pro-
gram the interactions with the user; however, you still are involved in a lot of coding. With a Windows
Forms application you can build the complete GUI including the primary application window by assem-
bling the controls that the user interacts with graphically. You just place the controls wherever you want
them in a form window, and the code to create them is generated automatically. Using Windows Forms
is by far the fastest and easiest mechanism for generating an application because the amount of code that
you have to write is greatly reduced compared to the other two possibilities. The code for a Windows
Forms application also gains all the benefits of executing with the CLR. 

Using the MFC involves more programming effort than Windows Forms, but you have more control of
how the GUI is created and you end up with a program that will execute natively on your PC. Because
using the Windows API directly is the most laborious method for developing an application I won’t go
into this in detail. However, you will put together a basic Windows API application so you’ll have an
opportunity to understand the principles of the mechanism that all Windows applications use to work
with the operating system under the covers. You’ll explore the fundamentals involved in all three possi-
bilities for Windows application development in this chapter and investigate using MFC and Windows
Forms in more detail later in the book. Of course, it also is possible to develop applications in C++ that
do not require the Windows operating system, and games programs often take this approach when the
ultimate in graphics performance is required. Although this is itself an interesting topic, it would require 
a whole book to do it justice so I won’t pursue this topic further.

Before you get into the examples in this chapter, I’ll review the terminology that is used to describe 
an application window. You have already created a Windows program in Chapter 1 without writing a
single line of code yourself and I’ll use the window generated by this to illustrate the various elements
that go to make up a window.

Elements of a Window
You will inevitably be familiar with most, if not all, of the principal elements of the user interface to a
Windows program. However, I will go through them anyway just to be sure we have a common under-
standing of what the terms mean. The best way to understand what the elements of a window can be is
to look at one. An annotated version of the window displayed by the example that you saw in Chapter 1
is shown in Figure 12-1.

744

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 744



Figure 12-1

The example actually generated two windows. The larger window with the menu and the tool bars is the
main, or parent window, and the smaller window is a child window of the parent. Although the child
window can be closed without closing the parent window by double-clicking the title bar icon that is in
the upper-left corner of the child window, closing the parent window automatically closes the child win-
dow as well. This is because the child window is owned by, and dependent upon, the parent window. In
general, a parent window may have a number of child windows, as you’ll see.

The most fundamental parts of a typical window are its border, the title bar that shows the name that
you give to the window, the title bar icon that appears at the left end of the title bar, and the client area,
which is the area in the center of the window not used by the title bar or borders. You can get all of these
created for free in a Windows program. As you will see, all you have to do is provide some text for the
title bar.

The border defines the boundary of a window and may be fixed or resizable. If the border is resizable,
you can drag it to alter the size of the window. The window also may possess a size grip, which you can
use to alter the size of a window while maintaining its aspect ratio — the ratio of the width to the height.
When you define a window you can modify how the border behaves and appears if you want. Most win-
dows will also have the maximize, minimize, and close buttons in the upper-right corner of the window.
These allow the window to be increased to full screen size, reduced to an icon or closed.

When you click the title bar icon with the left mouse button, it provides a standard menu for altering or
closing the window called the system menu or control menu. The system menu also appears when you
right-click the title bar of a window. Although it’s optional, it is a good idea always to include the title bar
icon in any main windows that your program generates. Including the title bar icon provides you with a
very convenient way of closing the program when things don’t work during debugging.

The client area is the part of the window where you usually want your program to write text or graphics.
You address the client area for this purpose in exactly the same way as the yard that you saw in Figure 7-1
in Chapter 7. The upper-left corner of the client area has the coordinates (0, 0), with x increasing from left
to right, and y increasing from top to bottom.

Size grip

Child window client area

Parent window client area

Close button
Maximize button

Minimize button

Child window icon

MIDI child window

MIDI parent window

Status bar

Toolbar

Title bar icon

Sizing border

Child window title bar text

Title bar text

Menu bar

745

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 745



The menu bar is optional in a window but is probably the most common way to control an application.
Each menu in the menu bar displays a drop-down list of menu items when you click it. The contents of a
menu and the physical appearance of many objects that are displayed in a window, such as the icons on
the toolbar that appear above, the cursor, and many others, are defined by a resource file. You will see
many more resource files when we get to write some more sophisticated Windows programs.

The toolbar provides a set of icons that usually act as alternatives to the menu options that you use most
often. Because they give a pictorial clue to the function provided, they can often make a program easier
and faster to use.

I’ll mention a caveat about terminology that you need to be conscious of before I move on. Users tend to
think of a window as the thing that appears on the screen with a border around it, and of course it is, but
it is only one kind of window; however, in Windows a window is a generic term covering a whole range
of entities. In fact almost any entity that is displayed is a window — for example, a dialog box is a window
and each button is also a window. I will generally use terminology to refer to objects that describe what
they are, buttons, dialogs, and so on, but you need to have tucked in the back of your mind that they are
windows, too, because you can do things to them that you can do with a regular window — you can draw
on a button for instance.

Windows Programs and the Operating System
When you write a Windows program, your program is subservient to the operating system and Windows
is in control. Your program must not deal directly with the hardware and all communications with the
outside must pass through Windows. When you use a Windows program you are interacting primarily
with Windows, which then communicates with the application program on your behalf. Your Windows
program is the tail, Windows is the dog, and your program wags only when Windows tells it to.

There are a number of reasons why this is so. First and foremost, because your program is potentially
always sharing the computer with other programs that may be executing at the same time, Windows has 
to have primary control to manage the sharing of machine resources. If one application was allowed to
have primary control in a Windows environment this would inevitably make programming more com-
plicated because of the need to provide for the possibility of other programs, and information intended
for other applications could be lost. A second reason for Windows being in control is that Windows
embodies a standard user interface and needs to be in charge to enforce that standard. You can only dis-
play information on the screen using the tools that Windows provides, and then only when authorized.

Event-Driven Programs
You have already seen, in Chapter 1, that a Windows program is event-driven, so a Windows program
essentially waits around for something to happen. A significant part of the code required for a Windows
application is dedicated to processing events that are caused by external actions of the user, but activities
that are not directly associated with your application can nonetheless require that bits of your program
code are executed. For example, if the user drags the window of another application that is active along-
side your program and this action uncovers part of the client area of the window devoted to your appli-
cation, your application needs to redraw that part of the window.

746

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 746



Windows Messages
Events in a Windows application are occurrences such as the user clicking the mouse or pressing a key, 
or a timer reaching zero. The Windows operating system records each event in a message and places the
message in a message queue for the program for which the message is intended. Thus a Windows mes-
sage is simply a record of the data relating to an event, and the message queue for an application is just a
sequence of such messages waiting to be processed by the application. By sending a message Windows
can tell your program that something needs to be done, or that some information has become available, or
that an event such as a mouse click has occurred. If your program is properly organized, it will respond in
the appropriate way to the message. There are many different kinds of messages and they can occur very
frequently — many times per second when the mouse is being dragged, for example.

A Windows program must contain a function specifically for handling these messages. The function is
often called WndProc() or WindowProc(), although it doesn’t have to have a particular name because
Windows accesses the function through a pointer to a function that you supply. So the sending of a
message to your program boils down to Windows calling a function that you provide, typically called
WindowProc(), and passing any necessary data to your program by means of arguments to this func-
tion. Within your WindowProc() function, it is up to you to work out what the message is from the
data supplied and what to do about it.

Fortunately, you don’t need to write code to process every message. You can filter out those that are 
of interest in your program, deal with those in whatever way you want, and pass the rest back to
Windows. You pass a message back to Windows by calling a standard function provided by Windows
called DefWindowProc(), which provides default message processing.

The Windows API
All of the communications between any Windows application and Windows itself uses the Windows appli-
cation programming interface, otherwise known as the Windows API. This consists of literally hundreds of
functions that are provided as a standard with the Windows operating system that provides the means by
which an application communicates with Windows, and vice versa. The Windows API was developed in
the days when C was the primary language in use, long before the advent of C++, and for this reason struc-
tures rather than classes are frequently used for passing some kinds of data between Windows and your
application program. 

The Windows API covers all aspects of the communications between Windows and your application.
Because there is such a large number of functions in the API, using them in the raw can be very difficult —
just understanding what they all are is a task in itself. This is where Visual C++ 2008 makes the life of the
application developer very much easier. Visual C++ 2008 packages the Windows API in a way that struc-
tures the API functions in an object-oriented manner, and provides an easier way to use the interface in
C++ with more default functionality. This takes the form of the Microsoft Foundation Classes, MFC. Also,
for applications targeting the CLR you have a facility called Windows Forms where the code necessary 
to create a GUI is all created automatically. All you have to do is supply the code necessary to handle the
events in the way that your application requires. You’ll be creating a Windows Forms application a little
later in this chapter and you’ll explore the use of Windows Forms in more detail in Chapter 23.

747

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 747



Visual C++ also provides Application Wizards that create basic applications of various kinds, includ-
ing MFC and Windows Forms-based applications. The Application Wizard can generate a complete
working application that includes all of the boilerplate code necessary for a basic Windows applica-
tion, leaving you just to customize this for your particular purposes. The example in Chapter 1 illus-
trated how much functionality Visual C++ is capable of providing without any coding effort at all on
your part. I will discuss this in much more detail when we get to write some more practical examples
using the MFC Application Wizard.

Windows Data Types
Windows defines a significant number of data types that are used to specify function parameter types and
return types in the Windows API. These Windows-specific types also propagate through to functions that
are defined in MFC. Each of these Windows types will map to some C++ type, but because the mapping
between Windows types and C++ types can change, you should always use the Windows type where this
applies. For example, in the past the Windows type WORD has been defined in one version of Windows as
type unsigned short and in another Windows version as type unsigned int. On 16-bit machines these
types are equivalent, but on 32-bit machines they are decidedly different so anyone using the C++ type
rather than the Windows type could run into problems. 

You can find the complete list of Windows data types in the documentation but here are a few of the
most common you are likely to meet:

BOOL or BOOLEAN A Boolean variable can have the values TRUE or FALSE. Note that this 
is not the same as the C++ type bool, which can have the values true or
false.

BYTE An 8-bit byte.

CHAR An 8-bit character.

DWORD A 32-bit unsigned integer that corresponds to type unsigned long in C++.

HANDLE A handle to an object — a handle being a 32-bit integer value that
records the location of an object in memory. 

HBRUSH A handle to a brush, a brush being used to fill an area with color.

HCURSOR A handle to a cursor.

HDC Handle to a device context — a device context being an object that
enables you to draw on a window.

HINSTANCE Handle to an instance.

LPARAM A message parameter.

LPCSTR A pointer to a constant null-terminated string of 8-bit characters.

748

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 748



I’ll introduce any other Windows types we are using in examples as the need arises. All the types used
by Windows, as well as the prototypes of the Windows API functions, are contained in the header file
windows.h, so you need to include this header file when you put your basic Windows program together.

Notation in Windows Programs
In many Windows programs variable names have a prefix, which indicates what kind of value the vari-
able holds and how it is used. There are quite a few prefixes and they are often used in combination. For
example, the prefix lpfn signifies a long pointer to a function. A sample of the prefixes you might come
across is:

Prefix Meaning

b a logical variable of type BOOL, equivalent to int

by type unsigned char; a byte

c type char

dw type DWORD, which is unsigned long

fn a function

h a handle, used to reference something.

i type int

l type long

lp long pointer

n type int

p a pointer

s a string

sz a zero terminated string

w type WORD, which is unsigned short

LPHANDLE A pointer to a handle.

LRESULT A signed value that results from processing a message.

WORD A 16-bit unsigned integer so it corresponds to type unsigned short in C++.

749

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 749



This use of these prefixes is called Hungarian notation. It was introduced to minimize the possibility of
misusing a variable by interpreting it differently from how it was defined or intended to be used. Such
misinterpretation was easily done in the C language, a precursor of C++. With C++ and its stronger type
checking you don’t need to make such a special effort with your notation to avoid such problems. The
compiler always flags an error for type inconsistencies in your program, and many of the kinds of bugs
that plagued earlier C programs can’t occur with C++. 

On the other hand, Hungarian notation can still help to make programs easier to understand, particu-
larly when you are dealing with a lot of variables of different types that are arguments to Windows
API functions. Because Windows programs are still written in C, and of course because parameters 
for Windows API functions are still defined using Hungarian notation, the method is still used quite
widely. You can find out more about Hungarian notation at http://web.umr.edu/~cpp/common/
hungarian.html.

You can make up your own mind as to the extent to which you want to use Hungarian notation, as it is by
no means obligatory. You may choose not to use it at all, but in any event, if you have an idea of how it
works, you will find it easier to understand what the arguments to the Windows API functions are. There
is a small caveat, however. As Windows has developed, the types of some of the API function arguments
have changed slightly, but the variable names that are used remain the same. As a consequence, the prefix
may not be quite correct in specifying the variable type.

The Structure of a Windows Program
For a minimal Windows program that just uses the Windows API, you will write two functions. These
are a WinMain() function, where execution of the program begins and basic program initialization is
carried out, and a WindowProc() function that is called by Windows to process messages for the appli-
cation. The WindowProc() part of a Windows program is usually the larger portion because this is
where most of the application-specific code is, responding to messages caused by user input of one
kind or another.

Although these two functions make up a complete program, they are not directly connected. WinMain()
does not call WindowProc(), Windows does. In fact, Windows also calls WinMain(). This is illustrated
in Figure 12-2.

The function WinMain() communicates with Windows by calling some of the Windows API functions. The
same applies to WindowProc(). The integrating factor in your Windows program is Windows itself,
which links to both WinMain() and WindowProc(). You will take a look at what the pieces are that
make up WinMain() and WindowProc() and then assemble the parts into a working example of a 
simple Windows program.

750

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 750



Figure 12-2

The WinMain() Function
The WinMain() function is the equivalent of the main() function in a console program. It’s where 
execution starts and where the basic initialization for the rest of the program is carried out. To allow

Windows API

WINDOWS

Your Program

WinMain() WindowProc()
P

rogram
 Start

M
essages

751

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 751



Windows to pass data to it, WinMain() has four parameters and a return value of type int. Its proto-
type is:

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow
);

Following the return type specifier, int, you have a specification for the function, WINAPI, which is
new to you. This is a Windows-defined macro that causes the function name and arguments to be han-
dled in a special way, which happens to correspond to the way that a function is handled in the Pascal
and Fortran languages. This is different from the way functions are normally handled in C++. The pre-
cise details are unimportant — this is simply the way Windows requires things to be, so you need to 
put the WINAPI macro name in front of the names of functions called by Windows.

The four arguments that are passed by Windows to your WinMain() function contain important data. The
first argument, hInstance, is of type HINSTANCE which is a handle to an instance — an instance here being
a running program. A handle is an integer value which identifies an object of some kind — in this case, the
instance of the application. The actual integer value of a handle is not important. There can be several pro-
grams in execution under Windows at any given instant. This raises the possibility of several copies of the
same application being active at once, and this needs to be recognized. Hence, the hInstance handle identi-
fies a particular copy. If you start more than one copy of a program, each one has its own unique hInstance
value. As you will see shortly, handles are also used to identify all sorts of other things. Of course, all han-
dles in a particular context — application instance handles for example — need to be different from one
another.

The next argument passed to your WinMain() function, hPrevInstance, is a legacy from the 16-bit
versions of the Windows operating system. Under Windows 3.x, this parameter gave you the handle 
to the previous instance of the program, if there was one. If hPrevInstance was NULL, you knew that
there was no previous instance of the program, so this must be the only copy of the program executing
(at the moment, anyway). This information was necessary in many cases, because programs running
under Windows 3.x share the same address space and multiple copies of a program executing simulta-
neously could cause complications. For this reason, programmers often limited their applications to
only one running instance at a time and having the hPrevInstance argument passed to WinMain()
allowed them to provide for this very easily by testing it in an if statement.

Under 32-bit versions of Windows the hPrevInstance parameter is completely irrelevant because each
application runs in its own address space, and one application has no direct knowledge of the existence
of another that is executing concurrently. This parameter is always NULL, even if another instance of an
application is running.

The next argument, lpCmdLine, is a pointer to a string containing the command line that started the pro-
gram. For instance, if you started it using the Run command from the Start button menu of Windows, the
string contains everything that appears in the Open box. Having this pointer allows you to pick up any
parameter values that may appear in the command line. The type LPSTR is another Windows type, speci-
fying a 32-bit (long) pointer to a string.

752

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 752



The last argument, nCmdShow, determines how the window is to look when it is created. It could be dis-
played normally or it might need to be minimized; for example, the shortcut for the program might specify
that the program should be minimized when it starts. This argument can take one of a fixed set of val-
ues that are defined by symbolic constants such as SW_SHOWNORMAL and SW_SHOWMINNOACTIVE. There
are a number of other constants like these that define the way a window is to be displayed and they all
begin SW_. Other examples are SW_HIDE or SW_SHOWMAXIMIZED. You don’t usually need to examine the
value of nCmdShow. You typically pass it directly to the Windows API function responsible for displaying
your application window.

If you want to know what all the other constants are that specify how a window displays, you can find 
a complete list of the possible values if you search for WinMain in the MSDN Library. You can access the
MSDN library online at http://msdn2.microsoft.com/en-us/library/default.aspx.

The function WinMain() in your Windows program needs to do four things:

❑ Tell Windows what kind of window the program requires

❑ Create the program window

❑ Initialize the program window

❑ Retrieve Windows messages intended for the program

Take a look at each of these in turn and then create a complete WinMain() function.

Specifying a Program Window
The first step in creating a window is to define just what sort of window it is that you want to create.
Windows defines a special struct type called WNDCLASSEX to contain the data specifying a window.
The data that is stored in an instance of the struct defines a window class, which determines the type
of window. Do not confuse this with a C++ class — the MFC defines a class that represents a window
but this is not the same this at all. You need to create a variable of type WNDCLASSEX, and give values
to each of its members (just like filling in a form). After you’ve filled in the variables, you can pass it to
Windows (via a function that you’ll see later) to register the class. When that’s been done, whenever
you want to create a window of that class, you can tell Windows to look up the class that you’ve
already registered.

The definition of the WNDCLASSEX structure is as follows:

struct WNDCLASSEX
{
UINT cbSize;            // Size of this object in bytes
UINT style;             // Window style
WNDPROC lpfnWndProc;    // Pointer to message processing function
int cbClsExtra;         // Extra byte after the window class
int cbWndExtra;         // Extra bytes after the window instance
HINSTANCE hInstance;    // The application instance handle
HICON hIcon;            // The application icon
HCURSOR hCursor;        // The window cursor

753

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 753



HBRUSH hbrBackground;   // The brush defining the background color
LPCTSTR lpszMenuName;   // A pointer to the name of the menu resource
LPCTSTR lpszClassName;  // A pointer to the class name
HICON hIconSm;          // A small icon associated with the window

};

You construct an object of type WNDCLASSEX in the way that you saw when I discussed structures, for
example:

WNDCLASSEX WindowClass;                // Create a window class object

All you need to do now is fill in values for the members of WindowClass.

Setting the value for the cbSize member of the struct is easy when you use the sizeof operator:

WindowClass.cbSize = sizeof(WNDCLASSEX);

The style member of the struct determines various aspects of the window’s behavior, in particular,
the conditions under which the window should be redrawn. You can select from a number of options 
for this member’s value, each defined by a symbolic constant beginning CS_.

You’ll find all the possible constant values for style if you search for WNDCLASSEX in the MSDN
Library that you’ll find at http://msdn2.microsoft.com/en-us/library.

Where two or more options are required, the constants can be combined to produce a composite value
using the bitwise OR operator, |. For example:

WindowClass.style = CS_HREDRAW | CS_VREDRAW;

The option CS_HREDRAW indicates to Windows that the window is to be redrawn if its horizontal width is
altered, and CS_VREDRAW indicates that it is to be redrawn if the vertical height of the window is changed.
In the preceding statement you have elected to have the window redrawn in either case. As a result,
Windows sends a message to your program indicating that you should redraw the window whenever the
width or height of the window is altered by the user. Each of the possible options for the window style is
defined by a unique bit in a 32-bit word being set to 1. That’s why the bitwise OR is used to combine them.
These bits indicating a particular style are usually called flags. Flags are used very frequently, not only in
Windows but also in C++ because they are an efficient way of representing and processing features that 
are either there or not or parameters that are either true or false.

The member lpfnWndProc stores a pointer to the function in your program that handles messages for
the window you create. The prefix to the name signifies that this is a long pointer to a function. If you
followed the herd and called the function to handle messages for the application WindowProc(), you
would initialize this member with the statement:

WindowClass.lpfnWndProc = WindowProc;

The next two members, cbClsExtra and cbWndExtra, allow you to ask that extra space be provided
internally to Windows for your own use. An example of this could be when you want to associate addi-
tional data with each instance of a window to assist in message handling for each window instance.

754

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 754



Normally you won’t need extra space allocated for you, in which case you must set the cbClsExtra
and cbWndExtra members to zero.

The hInstance member holds the handle for the current application instance, so you should set this to
the hInstance value that was passed to WinMain() by Windows.

The members hIcon, hCursor, and hbrBackground are handles that in turn define the icon that repre-
sents the application when minimized, the cursor the window uses, and the background color of the
client area of the window. (As you saw earlier, a handle is just a 32-bit integer used as an ID to represent
something.) These are set using Windows API functions. For example:

WindowClass.hIcon = LoadIcon(0, IDI_APPLICATION);
WindowClass.hCursor = LoadCursor(0, IDC_ARROW);
WindowClass.hbrBackground =                        

static_cast<HBRUSH>(GetStockObject(GRAY_BRUSH));

All three members are set to standard Windows values by these function calls. The icon is a default pro-
vided by Windows and the cursor is the standard arrow cursor used by the majority of Windows appli-
cations. A brush is a Windows object used to fill an area, in this case the client area of the window. The
function GetStockObject() returns a generic type for all stock objects, so you need to cast it to type
HBRUSH. In the preceding example it returns a handle to the standard gray brush, and the background
color for our window is thus set to gray. This function can also be used to obtain other standard objects
for a window, such as fonts for example. You could also set the hIcon and hCursor members to null, in
which case Windows would provide the default icon and cursor. If you set hbrBackground to null, your
program is expected to paint the window background and messages are sent to your application when-
ever this becomes necessary.

The lpszMenuName member is set to the name of a resource defining the window menu, or to zero if
there is no menu for the window. You will look into creating and using menu resources when you use
the AppWizard.

The lpszClassName member of the struct stores the name that you supply to identify this particular
class of window. You would usually use the name of the application for this. You need to keep track of
this name because you will need it again when a window is created. This member would therefore be
typically set with the statements:

static LPCTSTR szAppName = L”OFWin”;       // Define window class name
WindowClass.lpszClassName = szAppName;     // Set class name

I have defined szAppName as a Unicode string here. In fact the LPCTSTR type is defined as const wchar_t*
if UNICODE is defined for the application, or const char* if it is not. Thus, the definition for szAppName
here assumes a Unicode application.

The last member is hIconSm, which identifies a small icon associated with the window class. If you specify
this as null, Windows searches for a small icon related to the hIcon member and use that.

In fact, the WNDCLASSEX structure replaces another structure, WNDCLASS that was used for the same pur-
pose. The old structure did not include the cbSize member that stores the size of the structure in bytes or
the hIconSm member.

755

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 755



Creating a Program Window
After all the members of your WNDCLASSEX structure have been set to the values required, the next step
is to tell Windows about it. You do this using the Windows API function RegisterClassEx(). Given
that your structure is WindowClass, the statement to do this would be:

RegisterClassEx(&WindowClass);

Easy, isn’t it? The address of the struct is passed to the function, and Windows extracts and squirrels
away all the values that you have set in the structure members. This process is called registering the
window class. Just to remind you, the term class here is used in the sense of classification and is not the
same as the idea of a class in C++, so don’t confuse the two. Each instance of the application must make
sure that it registers the window classes that it needs. If you were using the obsolete WNDCLASS structure
that I mentioned, you would have to use a different function here, RegisterClass().

After Windows knows the characteristics of the window that you want, and the function that is going to
handle messages for it, you can go ahead and create it. You use the function CreateWindow() for this.
The window class that you’ve already created determines the broad characteristics of a window, and
further arguments to the function CreateWindow() add additional characteristics. Because an applica-
tion may have several windows in general, the function CreateWindow() returns a handle to the win-
dow created that you can store to enable you to refer to that particular window later. There are many
API calls that require you to specify the window handle as a parameter if you want to use them. You
will look at a typical use of the CreateWindow() function at this point. This might be:

HWND hWnd;                              // Window handle
...
hWnd = CreateWindow(

szAppName,                      // the window class name
“A Basic Window the Hard Way”,  // The window title
WS_OVERLAPPEDWINDOW,            // Window style as overlapped
CW_USEDEFAULT,                  // Default screen position of upper left
CW_USEDEFAULT,                  // corner of our window as x,y...
CW_USEDEFAULT,                  // Default window size, width...
CW_USEDEFAULT,                  // ...and height 
0,                              // No parent window
0,                              // No menu
hInstance,                      // Program Instance handle
0                               // No window creation data

);

The variable hWnd of type HWND is a 32-bit integer handle to a window. You’ll use this variable to record
the value that the CreateWindow() function returns that identifies the window. The first argument that
you pass to the function is the class name. This is used by Windows to identify the WNDCLASSEX struct
that you passed to it previously, in the RegisterClassEx() function call, so that the information from
this struct can be used in the window creation process.

The second argument to CreateWindow() defines the text that is to appear on the title bar. The third 
argument specifies the style that the window has after it is created. The option specified here,

756

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 756



WS_OVERLAPPEDWINDOW, actually combines several options. It defines the window as having 
the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX and 
WS_MAXIMIZEBOX styles. This results in an overlapped window, which is a window intended to 
be the main application window, with a title bar and a thick frame, which has a title bar icon, 
system menu, and maximize and minimize buttons. A window that you specify as having a 
thick frame has borders that can be resized.

The next four arguments determine the position and size of the window on the screen. The first two are
the screen coordinates of the upper-left corner of the window, and the second two define the width and
height of the window. The value CW_USEDEFAULT indicates that you want Windows to assign the default
position and size for the window. This tells Windows to arrange successive windows in cascading posi-
tions down the screen. CW_USEDEFAULT only applies to windows specified as WS_OVERLAPPED.

The next argument value is zero, indicating that the window being created is not a child window (a window
that is dependent on a parent window). If you wanted it to be a child window, you would set this argument
to the handle of the parent window. The next argument is also zero, indicating that no menu is required. You
then specify the handle of the current instance of the program that was passed to the program by Windows.
The last argument for window creation data is zero because you just want a simple window in the example.
If you wanted to create a multiple-document interface (MDI) client window, the last argument would point
to a structure related to this. You’ll learn more about MDI windows later in the book.

After calling the CreateWindow() function, the window now exists but is not yet displayed on the screen.
You need to call another Windows API function to get it displayed:

ShowWindow(hWnd, nCmdShow);             // Display the window

Only two arguments are required here. The first identifies the window and is the handle returned by the
function CreateWindow(). The second is the value nCmdShow that was passed to WinMain(), and that
indicates how the window is to appear onscreen.

Initializing the Program Window
After calling the function ShowWindow(), the window appears onscreen but still has no application con-
tent, so you need to get your program to draw in the client area of the window. You could just put together
some code to do this directly in the WinMain() function, but this would be most unsatisfactory: in this
case, the contents of the client area are not considered to be permanent — if you want the client area con-
tents to be retained, you can’t afford to output what you want and forget about it. Any action on the part of
the user that modifies the window in some way, such as dragging a border or dragging the whole window,
typically requires that the window and its client area are redrawn.

When the client area needs to be redrawn for any reason, Windows sends a particular message to your pro-
gram and your WindowProc() function needs to respond by reconstructing the client area of the window.

Note that the Windows API also includes a CreateWindowEx() function that you
use to create a window with extended style information.

757

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 757



Therefore, the best way to get the client area drawn in the first instance is to put the code to draw the client
area in the WindowProc() function and get Windows to send the message requesting that the client area
be redrawn to your program. Whenever you know in your program that the window should be redrawn
(when you change something, for example), you need to tell Windows to send a message back to get the
window redrawn.

You can ask Windows to send your program a message to redraw the client area of the window by calling
another Windows API function, UpdateWindow(). The statement to accomplish this is:

UpdateWindow(hWnd);                // Cause window client area to be drawn

This function requires only one argument: the window handle hWnd, which identifies your particular
program window. (In general there can be several windows in an application.) The result of the call is
that Windows sends a message to your program requesting that the client area be redrawn.

Dealing with Windows Messages
The last task that WinMain() needs to address is dealing with the messages that Windows may have
queued for your application. This may seem a bit odd because I said earlier that you needed the function
WindowProc() to deal with messages, but let me explain a little further.

Queued and Non-Queued Messages
I oversimplified Windows messaging when I introduced the idea earlier. There are, in fact, two kinds of
Windows messages: 

There are queued messages that Windows places in a queue, and the WinMain() function must extract
these messages from the queue for processing. The code in WinMain() that does this is called the message
loop. Queued messages include those arising from user input from the keyboard, moving the mouse and
clicking the mouse buttons. Messages from a timer and the Windows message to request that a window
be redrawn are also queued.

There are non-queued messages that result in the WindowProc() function being called directly by
Windows. A lot of the non-queued messages arise as a consequence of processing queued messages.
What you are doing in the message loop in WinMain() is retrieving a message that Windows has
queued for your application and then asking Windows to invoke your WindowProc() function to
process it. Why can’t Windows just call WindowProc() whenever necessary? Well, it could, but it just
doesn’t work this way. The reasons have to do with how Windows manages multiple applications 
executing simultaneously.

The Message Loop
As I said, retrieving messages from the message queue is done using a standard mechanism in Windows
programming called the message pump or message loop. The code for this would be:

MSG msg;                                  // Windows message structure
while(GetMessage(&msg, 0, 0, 0) == TRUE)  // Get any messages
{

758

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 758



TranslateMessage(&msg);                // Translate the message
DispatchMessage(&msg);                 // Dispatch the message

}

This involves three steps in dealing with each message:

❑ GetMessage() — retrieves a message from the queue

❑ TranslateMessage() — performs any conversion necessary on the message retrieved

❑ DispatchMessage() — causes Windows to call the WindowProc() function in your application
to deal with the message

The operation of GetMessage() is important because it has a significant contribution to the way Windows
works with multiple applications so we should explore it in a little more detail.

The GetMessage() function retrieves a message queued for the application window and stores informa-
tion about the message in the variable msg, pointed to by the first argument. The variable msg, which is 
a struct of type MSG, contains a number of different members that you are not accessing here. Still, for
completeness, the definition of the structure looks like this:

struct MSG
{

HWND   hwnd;                // Handle for the relevant window
UINT   message;             // The message ID
WPARAM wParam;              // Message parameter (32-bits)
LPARAM lParam;              // Message parameter (32-bits)
DWORD  time;                // The time when the message was queued
POINT  pt;                  // The mouse position

};

The wParam member is an example of a slightly misleading Hungarian notation prefix that I mentioned
was now possible. You might assume that it was of type WORD (which is int), which used to be true in
earlier Windows versions, but now it is of type WPARAM, which is a 32-bit integer value.

The exact contents of the wParam and lParam members are dependent on what kind of message it is. The
message ID in the member message is an integer value and can be one of a set of values that are predefined
in the header file, windows.h, as symbolic constants. Message IDs for general windows all start with WM_
and typical examples are WM_PAINT to redraw the screen and WM_QUIT to end the program. General win-
dows messages cover a wide variety of events and include messages relating to mouse and menu events,
keyboard input and window creation and management. The function GetMessage() always returns TRUE
unless the message is WM_QUIT to end the program, in which case the value returned is FALSE, or unless
an error occurs, in which case the return value is -1. Thus, the while loop continues until a quit message is
generated to close the application or until an error condition arises. In either case, you need to end the pro-
gram by passing the wParam value back to Windows in a return statement.

Note that there are prefixes other than WM for messages destined for other types of windows than a 
general window. The various types of message prefixes are listed in Appendix C.

759

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 759



The second argument in the call to GetMessage() is the handle of the window for which you want to
get messages. This parameter can be used to retrieve messages for one window separately from another.
If this argument is 0, as it is here, GetMessage() retrieves all messages for an application. This is an easy
way of retrieving all messages for an application regardless of how many windows it has. It is also the
safest way because you are sure of getting all the messages for your application. When the user of your
Windows program closes the application window, for example, the window is closed before the WM_QUIT
message is generated. Consequently, if you only retrieve messages by specifying a window handle to the
GetMessage() function, you cannot retrieve the WM_QUIT message and your program is not able to termi-
nate properly.

The last two arguments to GetMessage() are integers that hold minimum and maximum values for the
message IDs you want to retrieve from the queue. This allows messages to be retrieved selectively. A
range is usually specified by symbolic constants. Using WM_MOUSEFIRST and WM_MOUSELAST as these
two arguments would select just mouse messages, for example. If both arguments are zero, as you have
them here, all messages are retrieved.

Multitasking
If there are no messages queued, the GetMessage() function does not come back to your program.
Windows allows execution to pass to another application and you only get a value returned from call-
ing GetMessage() when a message appears in the queue. This mechanism was fundamental in enabling
multiple applications to run under older versions of Windows and is referred to as cooperative multitask-
ing because it depends on concurrent applications giving up their control of the processor from time to
time. After your program calls GetMessage(), unless there is a message for your program, another appli-
cation is executed and your program gets another opportunity to do something only if the other applica-
tion releases the processor, perhaps by a call to GetMessage() when there are no messages queued for it,
but this is not the only possibility.

With current versions of Windows, the operating system can interrupt an application after a period of
time and transfer control to another application. This mechanism is called pre-emptive multitasking
because an application can be interrupted in any event. With pre-emptive multitasking, however, you
must still program the message loop in WinMain() using GetMessage() as before, and make provision
for relinquishing control of the processor to Windows from time to time in a long running calculation
(this is usually done using the PeekMessage() API function). If you don’t do this, your application
may be unable to respond to messages to repaint the application window when these arise. This can 
be for reasons that are quite independent of your application — when an overlapping window for
another application is closed, for example.

The conceptual operation of the GetMessage() function is illustrated in Figure 12-3.

Within the while loop, the first function call to TranslateMessage() requests Windows to do some con-
version work for keyboard related messages. Then the call to the function DispatchMessage() causes
Windows to dispatch the message, or in other words, to call the WindowProc() function in your program
to process the message. The return from DispatchMessage() does not occur until WindowProc() has fin-
ished processing the message. The WM_QUIT message indicates that the program should end, so this results
in FALSE being returned to the application that stops the message loop.

760

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 760



Figure 12-3

A Complete WinMain() Function
You have looked at all the bits that need to go into the function WinMain(). So now you can assemble
them into a complete function:

// Listing OFWIN_1
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

Message?

GetMessages()

WM_QUIT?

Get the Message

run
another

application
return
TRUE

return
FALSE

Windows

Your Program

WinMain()

while(GetMessages( ) )
{
  ...
}

N 

N 

Y 

Y 

761

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 761



LPSTR lpCmdLine, int nCmdShow)
{
WNDCLASSEX WindowClass;     // Structure to hold our window’s attributes

static LPCTSTR szAppName = L”OFWin”;      // Define window class name
HWND hWnd;                                // Window handle
MSG msg;                                  // Windows message structure

WindowClass.cbSize = sizeof(WNDCLASSEX);  // Set structure size

// Redraw the window if the size changes
WindowClass.style   = CS_HREDRAW | CS_VREDRAW;

// Define the message handling function
WindowClass.lpfnWndProc = WindowProc;

WindowClass.cbClsExtra = 0;     // No extra bytes after the window class
WindowClass.cbWndExtra = 0;     // structure or the window instance

WindowClass.hInstance = hInstance;        // Application instance handle

// Set default application icon
WindowClass.hIcon = LoadIcon(0, IDI_APPLICATION);

// Set window cursor to be the standard arrow
WindowClass.hCursor = LoadCursor(0, IDC_ARROW);

// Set gray brush for background color
WindowClass.hbrBackground = 

static_cast<HBRUSH>(GetStockObject(GRAY_BRUSH));

WindowClass.lpszMenuName = 0;             // No menu
WindowClass.lpszClassName = szAppName;    // Set class name
WindowClass.hIconSm = 0;                  // Default small icon

// Now register our window class
RegisterClassEx(&WindowClass);

// Now we can create the window
hWnd = CreateWindow(

szAppName,                       // the window class name
L”A Basic Window the Hard Way”,  // The window title
WS_OVERLAPPEDWINDOW,             // Window style as overlapped
CW_USEDEFAULT,          // Default screen position of  upper left
CW_USEDEFAULT,          // corner of our window as x,y...
CW_USEDEFAULT,          // Default window size
CW_USEDEFAULT,          // .... 
0,                      // No parent window
0,                      // No menu
hInstance,              // Program Instance handle
0                       // No window creation data

);

ShowWindow(hWnd, nCmdShow);     // Display the window
UpdateWindow(hWnd);             // Cause window client area to be drawn

762

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 762



// The message loop
while(GetMessage(&msg, 0, 0, 0) == TRUE)  // Get any messages
{
TranslateMessage(&msg);                 // Translate the message
DispatchMessage(&msg);                  // Dispatch the message

}

return static_cast<int>(msg.wParam);      // End, so return to Windows
}

How It Works
After declaring the variables you need in the function, all the members of the WindowClass structure are
initialized and the window is registered.

The next step is to call the CreateWindow() function to create the data for the physical appearance of the
window, based on the arguments passed and the data established in the WindowClass structure that was
previously passed to Windows using the RegisterClassEx() function. The call to ShowWindow() causes
the window to be displayed according to the mode specified by nCmdShow, and the UpdateWindow() func-
tion signals that a message to draw the window client area should be generated.

Finally, the message loop continues to retrieve messages for the application until a WM_QUIT message is
obtained, whereupon the GetMessage() function returns FALSE and the loop ends. The value of the
wParam member of the msg structure is passed back to Windows in the return statement.

Message Processing Functions
The function WinMain() contained nothing that was application-specific beyond the general appearance
of the application window. All of the code that makes the application behave in the way that you want
is included in the message processing part of the program. This is the function WindowProc() that you
identify to Windows in the WindowClass structure. Windows calls this function each time a message for
your main application window is dispatched.

This example is simple, so you will be putting all the code to process messages in the one function,
WindowProc(). More generally, though, the WindowProc() function is responsible for analyzing what
a given message was and which window it was destined for and then calling one of a whole range of
functions, each of which would be geared to handling a particular message in the context of the partic-
ular window concerned. However, the overall sequence of operations, and the way in which the func-
tion WindowProc() analyses an incoming message, is much the same in most application contexts.

The WindowProc() Function
The prototype of our WindowProc() function is:

LRESULT CALLBACK WindowProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM lParam);

The return type is LRESULT, which is a type defined by Windows and is normally equivalent to type long.
Because the function is called by Windows through a pointer (you set the pointer up in WinMain() in the
WNDCLASSEX structure), you need to qualify the function as CALLBACK. This is another specifier defined by

763

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 763



Windows that determines how the function arguments are handled. The four arguments that are passed
provide information about the particular message causing the function to be called. The meaning of each
of these arguments is described in the following table:

The window that the incoming message relates to is identified by the first argument, hWnd, which is passed
to the function. In this case, you have only one window, so you can ignore it.

Messages are identified by the value message that is passed to WindowProc(). You can test this value
against predefined symbolic constants, each of which relates to a particular message. They all begin with
WM_, and typical examples are WM_PAINT, which corresponds to a request to redraw part of the client
area of a window, and WM_LBUTTONDOWN, which indicates that the left mouse button was pressed. You
can find the whole set of these by searching for WM_ in the MSDN Library.

Decoding a Windows Message
The process of decoding the message that Windows is sending is usually done using a switch statement in
the WindowProc() function, based on the value of message. Selecting the message types that you want to
process is then just a question of putting a case statement for each case in the switch. The typical struc-
ture of such a switch statement, with arbitrary cases included, is as follows: 

switch(message)
{
case WM_PAINT:
// Code to deal with drawing the client area
break;

case WM_LBUTTONDOWN:
// Code to deal with the left mouse button being pressed
break;

case WM_LBUTTONUP:
// Code to deal with the left mouse button being released
break;

case WM_DESTROY:
// Code to deal with a window being destroyed
break;

Argument Meaning

HWND hWnd A handle to the window in which the event causing the message occurred.

UINT message The message ID, which is a 32-bit value indicating the type of message.

WPARAM wParam A 32-bit value containing additional information depending on what sort of
message it is.

LPARAM lParam A 32-bit value containing additional information depending on what sort of
message it is.

764

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 764



default:
// Code to handle any other messages

}

Every Windows program has something like this somewhere, although it may be hidden from sight in
the Windows programs that you will write later using MFC. Each case corresponds to a particular value
for the message ID and provides suitable processing for that message. Any messages that a program does
not want to deal with individually are handled by the default statement, which should hand the messages
back to Windows by calling DefWindowProc(). This is the Windows API function providing default mes-
sage handling.

In a complex program dealing specifically with a wide range of possible Windows messages, this switch
statement can become large and rather cumbersome. When you get to use the Application Wizard to gener-
ate a Windows application, you won’t have to worry about this because it is all taken care of for you and
you never see the WindowProc() function. All you need to do is to supply the code to process the particu-
lar messages in which you are interested.

Drawing the Window Client Area
Windows sends a WM_PAINT message to the program to signal that the client area of an application
should be redrawn. So in your example, you need to draw the text in the window in response to the
WM_PAINT message.

You can’t go drawing in the window willy-nilly. Before you can write to the application window, you
need to tell Windows that you want to do so, and get Windows’ authority to go ahead. You do this 
by calling the Windows API function BeginPaint(), which should only be called in response to a
WM_PAINT message. It is used as follows:

HDC hDC;                               // A display context handle
PAINTSTRUCT PaintSt;                   // Structure defining area to be redrawn

hDC = BeginPaint(hWnd, &PaintSt);      // Prepare to draw in the window

The type HDC defines what is called a display context, or more generally a device context. A device con-
text provides the link between the device-independent Windows API functions for outputting informa-
tion to the screen or a printer, and the device drivers that support writing to the specific devices attached
to your PC. You can also regard a device context as a token of authority that is handed to you on request
by Windows and grants you permission to output some information. Without a device context, you sim-
ply can’t generate any output.

The BeginPaint() function provides you with a display context as a return value and requires two argu-
ments to be supplied. The window to which you want to write is identified by the window handle, hWnd,
which you pass as the first argument. The second argument is the address of a PAINTSTRUCT variable
PaintSt, in which Windows places information about the area to be redrawn in response to the WM_PAINT
message. I will ignore the details of this because you are not going to use it. You will just redraw the whole
of the client area. You can obtain the coordinates of the client area in a RECT structure with the statements:

RECT aRect;                         // A working rectangle
GetClientRect(hWnd, &aRect);

765

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 765



The GetClientRect() function supplies the coordinates of the upper-left and lower-right corners of 
the client area for the window specified by the first argument. These coordinates are stored in the RECT
structure aRect, which is passed through the second argument as a pointer. You can then use this defini-
tion of the client area for your window when you write the text to the window using the DrawText()
function. Because your window has a gray background, you should alter the background of the text to
be transparent, to allow the gray to show through; otherwise, the text appears against a white back-
ground. You can do this with this API function call:

SetBkMode(hDC, TRANSPARENT);           // Set text background mode

The first argument identifies the device context and the second sets the background mode. The default
option is OPAQUE.

You can now write the text with the statement:

DrawText(hDC,                     // Device context handle
L”But, soft! What light through yonder window breaks?”,
-1,                      // Indicate null terminated string
&aRect,                  // Rectangle in which text is to be drawn
DT_SINGLELINE|           // Text format - single line
DT_CENTER|               //             - centered in the line
DT_VCENTER               //             - line centered in aRect

);

The first argument to the DrawText() function is your certificate of authority to draw on the window,
the display context hDC. The next argument is the text string that you want to output. You could equally
well have defined this in a variable and passed the pointer to the text as the second argument in the func-
tion call. The next argument, with the value -1, signifies that your string is terminated with a null character.
If it weren’t, you would put the count of the number of characters in the string here. The fourth argument 
is a pointer to a RECT structure defining a rectangle in which you want to write the text. In this case it is the
whole client area of the window defined in aRect. The last argument defines the format for the text in the
rectangle. Here you have combined three specifications with a bitwise OR (|). The string is written as a sin-
gle line with the text centered on the line and the line centered vertically within the rectangle. This places it
nicely in the center of the window. There are also a number of other options, which include the possibility
to place text at the top or the bottom of the rectangle, and to left or right justify it.

After you have written all that you want to display, you must tell Windows that you have finished draw-
ing the client area. For every BeginPaint() function call, there must be a corresponding EndPaint()
function call. Thus, to end processing the WM_PAINT message, you need the statement:

EndPaint(hWnd, &PaintSt);           // Terminate window redraw operation

The hWnd argument identifies your program window, and the second argument is the address of the
PAINTSTRUCT structure that was filled in by the BeginPaint() function.

Ending the Program
You might assume that closing the window closes the application, but to get this behavior you actually
have to add some more code. The reason that the application won’t close by default when the window is
closed is that you may need to do some clearing up. It is also possible that the application may have more
than one window. When the user closes the window by double-clicking the title bar icon or clicking the

766

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 766



Close button, this causes a WM_DESTROY message to be generated. Therefore, to close the application, you
need to process the WM_DESTROY message in the WindowProc() function. You do this by generating a
WM_QUIT message with the following statement:

PostQuitMessage(0);

The argument here is an exit code. This Windows API function does exactly what its name suggests — it
posts a WM_QUIT message in the message queue for your application. This results in the GetMessage()
function in WinMain() returning FALSE and ending the message loop, so ending the program.

A Complete WindowProc() Function
You have covered all the elements necessary to make up the complete WindowProc() function for your
example. The code for the function is as follows:

// Listing OFWIN_2
LRESULT WINAPI WindowProc(HWND hWnd, UINT message, 

WPARAM wParam, LPARAM lParam)
{
HDC hDC;                       // Display context handle
PAINTSTRUCT PaintSt;           // Structure defining area to be drawn
RECT aRect;                    // A working rectangle

switch(message)                // Process selected messages
{
case WM_PAINT:                     // Message is to redraw the window
hDC = BeginPaint(hWnd, &PaintSt);// Prepare to draw the window

// Get upper left and lower right of client area
GetClientRect(hWnd, &aRect);

SetBkMode(hDC, TRANSPARENT);     // Set text background mode

// Now draw the text in the window client area
DrawText(

hDC,                 // Device context handle
L”But, soft! What light through yonder window breaks?”,
-1,                  // Indicate null terminated string
&aRect,              // Rectangle in which text is to be drawn
DT_SINGLELINE|       // Text format - single line
DT_CENTER|           //             - centered in the line
DT_VCENTER);         //             - line centered in aRect

EndPaint(hWnd, &PaintSt);   // Terminate window redraw operation
return 0;

case WM_DESTROY:              // Window is being destroyed
PostQuitMessage(0);
return 0;

default:                      // Any other message - we don’t
// want to know, so call
// default message processing

767

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 767



return DefWindowProc(hWnd, message, wParam, lParam);
}

}

How It Works
The entire function body is just a switch statement. A particular case is selected, based on the message
ID that is passed to the function through the message parameter. Because this example is simple, you
need to process only two different messages: WM_PAINT and WM_DESTROY. You hand all other messages
back to Windows by calling the DefWindowProc() function in the default case for the switch. The
arguments to DefWindowProc() are those that were passed to the function, so you are just passing them
back as they are. Note the return statement at the end of processing each message type. For the messages
you handle, a zero value is returned.

A Simple Windows Program
Because you have written WinMain() and WindowProc() to handle messages, you have enough to cre-
ate a complete source file for a Windows program using just the Windows API. The complete source file
simply consists of an #include directive for the windows.h header file, a prototype for the WindowProc
function and the WinMain and WindowProc functions that you have already seen:

// Ex12_01.cpp   Native windows program to display text in a window
#include <windows.h>

LRESULT WINAPI WindowProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM lParam);

// Insert code for WinMain() here (Listing OFWIN_1)

// Insert code for WindowProc() here (Listing OFWIN_2)

Of course, you’ll need to create a project for this program, but instead of choosing Win32 Console Applica -
tion as you’ve done up to now, you should create this project using the Win32 Project template. You should
elect to create it as an empty project and then add the Ex12_01.cpp file to hold the code.

Try It Out A Simple Windows API Program
If you build and execute the example, it produces the window shown in Figure 12-4.

Note that the window has a number of properties provided by the operating system that require no pro-
gramming effort on your part to manage. The boundaries of the window can be dragged to resize it, and
the whole window can be moved about onscreen. The maximize and minimize buttons also work. Of
course, all of these actions do affect the program. Every time you modify the position or size of the win-
dow, a WM_PAINT message is queued and your program has to redraw the client area, but all the work of
drawing and modifying the window itself is done by Windows.

The system menu and Close button are also standard features of your window because of the options
that you specified in the WindowClass structure. Again, Windows takes care of the management. The
only additional effect on your program arising from this is the passing of a WM_DESTROY message if you
close the window, as previously discussed.

768

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 768



Figure 12-4

Windows Program Organization
In the previous example you saw an elementary Windows program that used the Windows API and dis-
played a short quote from the Bard. It’s unlikely to win any awards, being completely free of any useful
functionality, but it does serve to illustrate the two essential components of a Windows program: the
WinMain() function that provides initialization and setup, and the WindowProc() function that services
Windows messages. The relationship between these is illustrated in Figure 12-5.

It may not always be obvious in the code that you will see, but this structure is at the heart of all Windows
programs, including programs written for the CLR. Understanding how Windows applications are organ-
ized can often be helpful when you are trying to determine why things are not working as they should be
in an application. The WinMain() function is called by Windows at the start of execution of the program
and the WindowProc() function, which you’ll sometimes see with the name WndProc(), is called by the
operating system whenever a message is to be passed to your application’s window. In general there typi-
cally is a separate WindowProc() function in an application for each window in an application.

The WinMain() function does any initialization that’s necessary and sets up the window or windows
that are the primary interface to the user. It also contains the message loop for retrieving messages that
are queued for the application.

The WindowProc() function handles all the messages for a given window that aren’t queued, which
includes those initiated in the message loop in WinMain(). WindowProc(), therefore, ends up handling
both kinds of messages. This is because the code in the message loop sorts out what kind of message it
has retrieved from the queue, and then dispatches it for processing by WindowProc(). WindowProc() is
where you code your application-specific response to each Windows message, which should handle all
the communications with the user by processing the Windows messages generated by user actions, such
as moving or clicking the mouse or entering information at the keyboard.

769

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 769



Figure 12-5

The queued messages are largely those caused by user input from either the mouse or the keyboard The
non-queued messages for which Windows calls your WindowProc() function directly, are either mes-
sages that your program created, typically as a result of obtaining a message from the queue and then
dispatching it, or messages that are concerned with window management — such as handling menus
and scrollbars, or resizing the window.

The Microsoft Foundation Classes
The Microsoft Foundation Classes (MFC) are a set of predefined classes upon which Windows program-
ming with Visual C++ is built. These classes represent an object-oriented approach to Windows pro-
gramming that encapsulates the Windows API. MFC does not adhere strictly to the object-oriented

Windows API

API 
Calls

API 
Calls

WINDOWS

Your Program

WinMain()

Initialize variables
Define windows
Create windows

Process messages

WindowProc()

P
rogram

 Start

M
essages

770

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 770



principles of encapsulation and data hiding, principally because much of the MFC code was written
before such principles were well established. 

The process of writing a Windows program involves creating and using MFC objects, or objects of classes
derived from MFC. In the main, you’ll derive your own classes from MFC, with considerable assistance
from the specialized tools in Visual C++ 2008 that make this easy. The objects of these MFC-based class
types incorporate member functions for communicating with Windows, for processing Windows mes-
sages, and for sending messages to each other. These derived classes, of course, inherit all of the members
of their base classes. These inherited functions do practically all of the general grunt work necessary for a
Windows application to work. All you need to do is to add data and function members to customize the
classes to provide the application-specific functionality that you need in your program. In doing this, you’ll
apply most of the techniques that you’ve been grappling with in the preceding chapters, particularly those
involving class inheritance and virtual functions.

MFC Notation
All the classes in MFC have names beginning with C, such as CDocument or CView. If you use the same
convention when defining your own classes, or when deriving them from those in the MFC library, your
programs will be easier to follow. Data members of an MFC class are prefixed with m_. I’ll also follow this
convention in the examples that use MFC.

You’ll find that MFC uses Hungarian notation for many variable names, particularly those that originate in
the Windows API. As you recall, this involves using a prefix of p for a pointer, n for an int, l for long, h
for a handle, and so on. The name m_lpCmdLine, for example, refers to a data member of a class (because
of the m_ prefix) that is of type ‘pointer to long’. This practice of explicitly showing the type of a variable
in its name was important in the C environment because of the lack of type checking; because you could
determine the type from the name, you had a fair chance of not using or interpreting its value incorrectly.
The downside is that the variable names can become quite cumbersome, making the code look more com-
plicated than it really is. Because C++ has strong type checking that picks up the sort of misuse that used
to happen regularly in C, this kind of notation isn’t essential, so I won’t use it generally for variables in
the examples in the book. I will, however, retain the p prefix for pointers and some of the other simple
type denotations because this helps to make the code more readable.

How an MFC Program Is Structured
You know from Chapter 1 that you can produce a Windows program using the Application Wizard with-
out writing a single line of code. Of course, this uses the MFC library, but it’s quite possible to write a
Windows program that uses MFC without using the Application wizard. If you first scratch the surface
by constructing the minimum MFC-based program, you’ll get a clearer idea of the fundamental elements
involved.

The simplest program that you can produce using MFC is slightly less sophisticated than the example
that you wrote earlier in this chapter using the raw Windows API. The example you’ll produce here has
a window, but no text displayed in it. This is sufficient to show the fundamentals, so try it out.

Try It Out A Minimal MFC Application
Create a new project using the File > New > Project menu option, as you’ve done many times before. You
won’t use the Application wizard that creates the basic code here, so select the template for the project as
Win32 Project and choose Windows Application and the Empty project options in the second dialog.

771

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 771



After the project is created, select Project > Ex12_02 properties from the main menu, and on the
General sub-page from Configuration Properties, click the Use of MFC property to set its value to Use
MFC in a Shared DLL.

With the project created you can create a new source file in the project as Ex12_02.cpp. So that you can
see all the code for the program in one place, put the class definitions you need together with their imple-
mentations in this file. To achieve this, just add the code manually in the edit window — there isn’t very
much of it.

To begin with, add a statement to include the header file afxwin.h, as this contains the definitions for
many MFC classes. This allows you to derive your own classes from MFC.

#include <afxwin.h>                 // For the class library

To produce the complete program, you’ll only need to derive two classes from MFC: an application class
and a window class. You won’t even need to write a WinMain() function, as you did in the previous
example in this chapter, because this is automatically provided by the MFC library behind the scenes.
Take a look at how you define the two classes that you need.

The Application Class
The class CWinApp is fundamental to any Windows program written using MFC. An object of this class
includes everything necessary for starting, initializing, running and closing the application. You need to
produce the application to derive your own application class from CWinApp. You will define a special-
ized version of the class to suit your application needs. The code for this is as follows:

class COurApp: public CWinApp
{

public:
virtual BOOL InitInstance();

};

As you might expect for a simple example, there isn’t a great deal of specialization necessary in this case.
You’ve only included one member in the definition of the class: the InitInstance() function. This func-
tion is defined as a virtual function in the base class, so it’s not a new function in your derived class; you
are simply redefining the base class function for your application class. All the other data and function
members that you need in the class you’ll inherit from CWinApp unchanged.

The application class is endowed with quite a number of data members defined in the base, many of
which correspond to variables used as arguments in Windows API functions. For example, the mem-
ber m_pszAppName stores a pointer to a string that defines the name of the application. The member
m_nCmdShow specifies how the application window is to be shown when the application starts up. You
don’t need to go into all the inherited data members now. You’ll see how they are used as the need
arises in developing application-specific code.

In deriving your own application class from CWinApp, you must override the virtual function
InitInstance(). Your version is called by the version of WinMain() that’s provided for you by MFC,
and you’ll include code in the function to create and display your application window. However, before
you write InitInstance(), I should introduce you to a class in the MFC library that defines a window.

772

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 772



The Window Class
Your MFC application needs a window as the interface to the user, referred to as a frame window. You
derive a window class for the application from the MFC class CFrameWnd, which is designed specifi-
cally for this purpose. Because the CFrameWnd class provides everything for creating and managing a
window for your application, all you need to add to the derived window class is a constructor. This
enables you to specify a title bar for the window to suit the application context:

class COurWnd: public CFrameWnd
{
public:
// Constructor
COurWnd()
{
Create(0, L”Our Dumb MFC Application”);

}
};

The Create() function that you call in the constructor is inherited from the base class. It creates the
window and attaches it to the COurWnd object that is being created. Note that the COurWnd object is not
the same thing as the window that displayed by Windows — the class object and the physical window
are distinct entities.

The first argument value for the Create() function, 0, specifies that you want to use the base class
default attributes for the window — you’ll recall that you needed to define window attributes in the
previous example in this chapter that used the Windows API directly. The second argument specifies
the window name that is used in the window title bar. You won’t be surprised to learn that there are
other parameters to the function Create(), but they all have default values which are quite satisfac-
tory, so you can afford to ignore them here.

Completing the Program
Having defined a window class for the application, you can write the InitInstance() function in our
COurApp class:

BOOL COurApp::InitInstance(void)
{

// Construct a window object in the free store
m_pMainWnd = new COurWnd;
m_pMainWnd->ShowWindow(m_nCmdShow);      // ...and display it
return TRUE;

}

This overrides the virtual function defined in the base class CWinApp, and as I said previously, it is called
by the WinMain() function that’s automatically supplied by the MFC library. The InitInstance()
function constructs a main window object for the application in the free store by using the operator new.
You store the address that is returned in the variable m_pMainWnd, which is an inherited member of your
class COurApp. The effect of this is that the window object is owned by the application object. You don’t
even need to worry about freeing the memory for the object you have created — the supplied WinMain()
function takes care of any cleanup necessary.

773

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 773



The only other item you need for a complete, albeit rather limited, program is to define an application
object. An instance of our application class, COurApp, must exist before WinMain() is executed, so you
must declare it at global scope with the statement:

COurApp AnApplication;     // Define an application object

The reason that this object needs to exist at global scope is that it is the application, and the application
needs to exist before it can start executing. The WinMain() function that is provided by MFC calls the
InitInstance() function member of the application object to construct the window object and, thus,
implicitly assumes the application object already exists.

The Finished Product
Now that you’ve seen all the code, you can add it to the Ex12_02.cpp source file in the project. In a
Windows program, the classes are usually defined in .h files, and the member functions that are not
defined within the class definitions are defined in .cpp files. Your application is so short, though, that 
you may as well put it all in a single .cpp file. The merit of this is that you can view the whole lot
together. The program code is structured as follows:

// Ex12_02.cpp
// An elementary MFC program
#include <afxwin.h>                        // For the class library

// Application class definition
class COurApp:public CWinApp
{

public:
virtual BOOL InitInstance();

};

// Window class definition
class COurWnd:public CFrameWnd
{

public:
// Constructor
COurWnd()
{

Create(0, L”Our Dumb MFC Application”);
}

};

// Function to create an instance of the main application window
BOOL COurApp::InitInstance(void)
{

// Construct a window object in the free store
m_pMainWnd = new COurWnd;
m_pMainWnd->ShowWindow(m_nCmdShow);     // ...and display it
return TRUE;

}

// Application object definition at global scope
COurApp AnApplication;                     // Define an application object

774

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 774



That’s all you need. It looks a bit odd because no WinMain() function appears, but as noted previously,
there is a WinMain() function supplied by the MFC library.

How It Works
Now you’re ready to roll, so build and run the application. Select the Build > Build Ex12_02.exe menu item,
click the appropriate toolbar button, or just press Ctrl+Shift+B to build the solution. You should end up
with a clean compile and link, in which case you can press Ctrl+F5 to run it. Your minimum MFC program
appears as shown in Figure 12-6.

Figure 12-6

You can resize the window by dragging the border, move the whole thing around, and minimize or maxi-
mize it in the usual ways. The only other function that the program supports is “close,” for which you can
use the system menu, the Close button at the upper-right of the window, or just key Alt+F4. It doesn’t
look like much, but, considering that there are so few lines of code, it’s quite impressive.

Using Windows Forms
A Windows form is an entity that represents a window of some kind. By a window I mean window 
in its most general sense, being an area on the screen that can be a button a dialog, a regular window,
or any other kind of visible GUI component. A Windows form is encapsulated by the a subclass of 
the System::Windows::Forms::Form class, but you don’t need to worry about this much initially,
because all the code to create a form is created automatically. To see just how easy it’s going to be, 
create a basic window using Windows Forms that has a standard menu.

Try It Out A Windows Forms Application
Choose the CLR project type in the New Project dialog and select the Windows Forms Application as the
template for the project. The New Project dialog window is shown in Figure 12-7.

Enter the project name as Ex12_03. When you click the OK button the Application Wizard generates the
code for the Windows form application and displays the design window containing the form as it is dis-
played by the application. This is shown in Figure 12-8.

775

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 775



Figure 12-7

Figure 12-8

You can now make changes to the form in the design pane graphically, and the changes are automatically
reflected in the code that creates the form. For a start, you can drag the bottom corner of the form with the
mouse cursor to increase the size of the form window. You can also change the text in the title bar — right-
click in the client area of the form and select Properties from the context menu. This displays the Properties

776

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 776



window that allows you to change the properties for the form. From the list of properties to the right of the
design pane, select Text, and then enter the new title bar text in the adjacent column showing the property
value — I entered A Simple Form Window. When you press the key, the new text appears in the title bar of
the form.

Just to see how easy it really is to add to the form window, display the Toolbox pane by selecting the tab
on the right of the window if it is present, or by pressing Ctrl+Alt+X or by selecting Toolbox from the
View menu. Find the MenuStrip option in the Menus and Toolbars list and drag it on to the form window
in the Design tab pane. Right-click the MenuStrip1 that appears below the form window and select Insert
Standard Items from the pop-up. You’ll then have the menu in the form window populated with the stan-
dard File, Edit, Tools, Help menus, each complete with its drop-down list of menu items. The result of this
operation is shown in Figure 12-9.

Figure 12-9

How It Works
If you build the project by pressing the Ctrl+Shift+B and then execute it by pressing Ctrl+F5, you’ll see
the form window displayed complete with its menus. Naturally the menu items don’t do anything because
you haven’t added any code to deal with the events that result from clicking on them, but the icons at the
right end of the title bar work so you can close the application. You’ll look into how to develop a Windows
Form application further, including handling events, later in the book.

777

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 777



Summary
In this chapter you’ve seen three different ways of creating an elementary Windows application with
Visual C++ 2008 and you should now have a feel for the essential differences between these three
approaches. In the remaining chapters of the book, you’ll be exploring in more depth how you
develop applications using the MFC and using Windows Forms. 

The important points arising in the chapter include:

❑ The Windows API provides a standard programming interface by which an application 
communicates with the operating system. 

❑ All Windows applications include a WinMain() function that is called by the operating system 
to begin execution of the application. The WinMain() function also includes code to retrieve
messages from the operating system.

❑ The Windows operating system calls a particular function in an application to handle process-
ing of specific messages. An application identifies the message processing function for each
window in an application by calling a Windows API function.

❑ The MFC consists of a set of classes that encapsulate the Windows API and simplify program-
ming using the Windows API.

❑ A Windows Forms application executes with the CLR. The windows in a Windows Forms 
application can be created graphically with all the required code being generated automatically.

778

Chapter 12: Windows Programming Concepts

25905c12.qxd:WroxPro  2/21/08  9:14 AM  Page 778



13
Windows Programming 

with the Microsoft
Foundation Classes

In this chapter, you start down the road of serious Windows application development using the
MFC. You’ll get an appreciation of what code the Application wizard generates for a Microsoft
Foundation Class (MFC) program and what options you have for the features to be included in
your code. 

In this chapter, you will learn about:

❑ The basic elements of an MFC-based program

❑ How Single Document Interface (SDI) applications and Multiple Document Interface
(MDI) applications differ

❑ How to use the MFC Application Wizard to generate SDI and MDI programs

❑ What files are generated by the MFC Application Wizard and what their contents are

❑ How an MFC Application Wizard-generated program is structured

❑ The key classes in an MFC Application Wizard-generated program, and how they are
interconnected

❑ The general approach to customizing an MFC Application Wizard-generated program

You’ll be expanding the programs that you generate in this chapter by adding features and code
incrementally in subsequent chapters. You will eventually end up with a sizable, working Windows
program that incorporates almost all the basic user interface programming techniques you will have
learned along the way.

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 779



The Document/View Concept in MFC
When you write applications using MFC, it implies acceptance of a specific structure for your program,
with application data being stored and processed in a particular way. This may sound restrictive, but it
really isn’t for the most part, and the benefits in speed and ease of implementation you gain far outweigh
any conceivable disadvantages. The structure of an MFC program incorporates two application-oriented
entities — a document and a view — so let’s look at what they are and how they’re used.

What Is a Document?
A document is the name given to the collection of data in your application with which the user interacts.
Although the word document seems to imply something of a textual nature, a document isn’t limited to
text. It could be the data for a game, a geometric model, a text file, a collection of data on the distribution
of orange trees in California or, indeed, anything you want. The term document is just a convenient label
for the application data in your program, treated as a unit.

You won’t be surprised to hear that a document in your program is defined as an object of a document
class. Your document class is derived from the CDocument class in the MFC library, and you’ll add your
own data members to store items that your application requires, and member functions to support pro-
cessing of that data. Your application is not limited to a single document type; you can define multiple
document classes when there are several different kinds of document involved in your application.

Handling application data in this way enables standard mechanisms to be provided within MFC for man-
aging a collection of application data as a unit and for storing and retrieving data contained in document
objects to and from disk. These mechanisms are inherited by your document class from the base class
defined in the MFC library, so you get a broad range of functionality built in to your application automati-
cally, without having to write any code.

Document Interfaces
You have a choice as to whether your program deals with just one document at a time, or with several.
The Single Document Interface, abbreviated as SDI, is supported by the MFC library for programs that
only require one document to be open at a time. A program using this interface is referred to as an SDI
application.

For programs needing several documents to be open at one time, you can use the Multiple Document
Interface, which is usually referred to as MDI. With the MDI, as well as being able to open multiple
documents of one type, your program can also be organized to handle documents of different types
simultaneously with each document displayed in its own window. Of course, you need to supply the
code to deal with processing whatever different kinds of documents you intend to support. With an
MDI application, each document is displayed in a child window of the application window. You have
an additional application variant called the multiple top-level document architecture where each doc-
ument window is a child of the desktop.

What Is a View?
A view always relates to a particular document object. As you’ve seen, a document contains a set of appli-
cation data in your program, and a view is an object that provides a mechanism for displaying some or all
of the data stored in a document. It defines how the data is to be displayed in a window and how the user

780

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 780



can interact with it. Similar to the way that you define a document, you’ll define your own view class by
deriving it from the MFC class CView. Note that a view object and the window in which it is displayed
are distinct. The window in which a view appears is called a frame window. A view is actually displayed
in its own window that exactly fills the client area of a frame window. Figure 13-1 illustrates a document
with two views.

Figure 13-1

In the example in Figure 13-1, each view displays all the data that the document contains in a different
form, although a view could display just part of the data in a document if that’s what’s required.

A document object can have as many view objects associated with it as you want. Each view object can pro-
vide a different presentation of the document data or a subset of the same data. If you were dealing with
text, for example, different views could be displaying independent blocks of text from the same document.
For a program handling graphical data, you could display all of the document data at different scales in sep-
arate windows, or in different formats, such as a textual representation of the elements that form the image.
Figure 13-1 illustrates a document that contains numerical data — product sales data by month, where one
view provides a bar chart representation of the sales performance and a second view shows the data in the
form of a graph.

Linking a Document and Its Views
MFC incorporates a mechanism for integrating a document with its views, and each frame window
with a currently active view. A document object automatically maintains a list of pointers to its associ-
ated views, and a view object has a data member holding a pointer to the document that it relates to.

View 1 
Document 

View 2 

800 

400 

J 

Sales by Month 

January 300 
February 400 
March 400 
April 500 
May 400 
June 400 
July 500 
August 300 
September 500 
October 600 
November 700 
December 800 

F M A M J J A S O N D 

800 

400 

J F M A M J J A S O N D 

781

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 781



Each frame window stores a pointer to the currently active view object. The coordination among a 
document, a view, and a frame window is established by another MFC class of objects called document
templates.

Document Templates
A document template manages the document objects in your program, as well as the windows and
views associated with each of them. There is one document template for each type of document that
you have in your application. If you have two or more documents of the same type, you need only one
document template to manage them. To be more specific about the role of a document template, a docu-
ment template object creates document objects and frame window objects, and views of a document 
are created by a frame window object. The application object that is fundamental to every MFC applica-
tion creates the document template object itself. Figure 13-2 shows a graphical representation of these
interrelationships.

Figure 13-2

Application Object 

Pointer to: 

Document Template 

Pointer to: 

Frame Window 

Pointer to: 

View Object 

Pointer to: 

Document Object 

Pointer to: 

Creates Creates 

Creates 

Creates 

782

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 782



The diagram uses dashed arrows to show how pointers are used to relate objects. These pointers enable
function members of one class object to access the public data or the function members in the interface
of another object.

Document Template Classes
MFC has two classes for defining document templates. For SDI applications, the MFC library class
CSingleDocTemplate is used. This is relatively straightforward because an SDI application has only
one document and usually just one view. MDI applications are rather more complicated. They have 
multiple documents active at one time, so a different class, CMultiDocTemplate, is needed to define the
document template. You’ll see more of these classes as we progress into developing application code.

Your Application and MFC
Figure 13-3 shows the four basic classes that are going to appear in virtually all your MFC-based
Windows applications:

❑ The application class CMyApp

❑ The frame window class CMyWnd

❑ The view class CMyView, which defines how data contained in CMyDoc is to be displayed in 
the client area of a window created by a CMyWnd object

❑ The document class CMyDoc defining a document to contain the application data

The actual names for these classes are specific to a particular application, but the derivation from MFC
is much the same, although there can be alternative base classes, particularly with the view class. As
you’ll see a bit later, MFC provides several variations of the view class that provide a lot of functional-
ity prepackaged for you, saving you lots of coding. You normally don’t need to extend the class that
defines a document template for your application, so the standard MFC class CSingleDocTemplate
usually suffices in an SDI program. When you’re creating an MDI program, your document template
class is CMultiDocTemplate, which is also derived from CDocTemplate.

The arrows in the diagram point from a base class to a derived class. The MFC library classes shown here
form quite a complex inheritance structure, but in fact these are just a very small part of the complete MFC
structure. You need not be concerned about the details of the complete MFC hierarchy in the main, but it
is important to have a general appreciation of it if you want to understand what the inherited members
of your classes are. You will not see any of the definitions of the base classes in your program, but the
inherited members of a derived class in your program are accumulated from the direct base class, as well
as from each of the indirect base classes in the MFC hierarchy. To determine what members one of your
program’s classes has, you therefore need to know from which classes it inherits. After you know that,
you can look up its members using the Help facility.

Another point you don’t need to worry about is remembering which classes you need to have in your
program and what base classes to use in their definition. As you’ll see next, all of this is taken care of
for you by Visual C++ 2008.

783

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 783



Figure 13-3

Creating MFC Applications
You use four primary tools in the development of your MFC-based Windows programs:

1. You use an Application Wizard for creating the basic application program code when you
start. You use an Application Wizard whenever you create a project that results in code being
automatically generated.

CWinThread CDocument 

CDocTemplate 

CSingleDocTemplate 

CWinApp 

CMyApp CMyWnd 

CFrameWnd CView 

CWnd 

CCmdTarget 

CObject 

Your Application Classes 

Microsoft 
Foundation 
Classes 

CMyView CMyDoc 

784

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 784



2. You use the project context menu in ClassView to add new classes and resources to your proj-
ect. You display this context menu by right-clicking the project name in ClassView and using the
Add/Class menu item to add a new class. Resources are things composed of non-executable
data such as bitmaps, icons, menus, and dialog boxes. The Add/Resource menu item from the
same context menu helps you to add a new resource.

3. You use the class context menu in ClassView for extending and customizing the existing
classes in your programs. You use the Add/Add Function and Add/Add Variable menu
items to do this. 

4. You use a Resource Editor for creating or modifying such objects as menus and toolbars.

There are, in fact, several resource editors; the one used in any particular situation is selected depending
on the kind of resource that you’re editing. We’ll look at editing resources in the next chapter, but for now
let’s jump in and create an MFC application.

The process for creating an MFC application is just as straightforward as that for creating a console
program; there are just a few more choices along the way. As you have already seen, you start by 
creating a new project by selecting the File > New > Project menu item, or you can use the 
shortcut and press Ctrl+Shift+N. The New Project dialog box is displayed where you can then
choose MFC as the project type and MFC Application as the template to be used. You also need to
enter a name for the project that can be anything you want — I’ve used TextEditor, as shown in
Figure 13-4. You won’t be developing this particular example into a serious application so you can 
use any name you like.

Figure 13-4

As you know, the name that you assign to the project — TextEditor, in this case — is used as the name
of the folder that contains all the project files, but it is also used as a basis for creating the names for
classes that the Application Wizard generates for your project. When you click OK in the New Project
dialog window, you’ll see the MFC Application Wizard dialog, where you can choose options for the
application, as shown in Figure 13-5.

785

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 785



Figure 13-5

As you can see, the dialog explains the project settings that are currently in effect, and on the right of the
dialog you have a range of options you can select. You can select any of these to have a look if you want —
you can always get back to the base dialog box for the Application Wizard by selecting the Previous but-
ton. Selecting any of the options on the right presents you with a whole range of further choices, so there
are a lot of options in total. I won’t discuss all of them — I’ll just outline the ones that you are most likely
to be interested in and leave you to investigate the others. Initially, the Application Wizard allows you to
choose an SDI application, an MDI application, or a dialog box-based application. Let’s create an SDI appli-
cation first of all and explore what some of the choices are as we go along. 

Creating an SDI Application
Select the Application Type option from the list to the right of the dialog window.

The default option selected is Multiple documents, which selects the multiple document interface —
MDI, and the appearance of an MDI application is shown top-left in the dialog window so that you’ll
know what to expect. Select the Single document option and the representation for the application
that is shown top-left changes to a single window, as shown in Figure 13-6.

Consider some of the other options you have here for the application type:

Option Description

Dialog based The application window is a dialog window rather than a frame
window.

Multiple top-level documents Documents are displayed in child windows of the desktop rather
than child windows of the application as they are with an MDI
application.

786

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 786



Figure 13-6

You should uncheck the Use Unicode libraries option that is checked by default. If you leave it
checked, the application expects Unicode input and files are stored as Unicode characters. This makes
them unreadable in programs that expect ASCII text.

You also can choose between Windows Explorer and MFC standard for the project style. The former
implements the application window with the client area divided into two panes; the left pane displays
data in the form of a tree and the right pane displays straight text.

You can also choose how MFC library code is used in your program. The default choice of using the
MFC library as a shared DLL (Dynamic Link Library) means that your program links to MFC library
routines at run time. This reduces the size of the executable file that you’ll generate, but requires the
MFC DLL to be on the machine that’s running it. The two modules together (your application’s .exe
module and the MFC .dll) may be bigger than if you had statically linked the MFC library. If you opt

Option Description

Document/View architecture
support

This option is selected by default so you get code built-in to sup-
port the document/view architecture. If you uncheck this option
the support is not provided and it’s up to you to implement
whatever you want.

Resource language The drop-down list box displays the choice of languages avail-
able that applies to resources such as menus and text strings in
your application.

Use Unicode libraries Support for Unicode is provided through Unicode versions of
the MFC libraries; if you want to use them, you must check this
option.

787

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 787



for static linking, the MFC library routine is included in the executable module for your program when
it is built. Statically linked applications run slightly faster than those that dynamically link to the MFC
library so it’s a tradeoff between memory usage and speed of execution. If you keep the default option of
using MFC as a shared DLL, several programs running simultaneously using the dynamic link library
can all share a single copy of the library in memory.

In the Document Template Strings dialog box, you can enter a file extension for files that the program
creates. The extension .txt is a good choice for this example. You can also enter a Filter Name on this
dialog box, which is the name of the filter that will appear in Open and Save As dialog boxes to filter the
list of files so that only files with your file extension are displayed.

If you select User Interface Features from the list in the right pane of the MFC Application Wizard
window you get a further set of options that can be included in your application:

Option Description

Thick Frame This enables you to resize the application window by dragging a
border. It is selected by default.

Minimize box This option is also selected by default and provides a minimize
box at the top right of the application window.

Maximize box This option is also selected by default and provides a maximize
box at the top right of the application window.

Minimized If you select this option the application starts with the window
minimized so it appears as an icon.

Maximized If you select this option the application starts with the window
maximized.

Initial status bar This option adds a status bar at the bottom of the application
window containing indicators for CAPS LOCK, NUM LOCK,
and SCROLL LOCK and a message line that displays help
strings for menus and toolbar buttons. The option also adds
menu commands to hide or show the status bar.

Split window This option provides a splitter bar for each of the applications
main views.

Standard docking toolbar This option adds a toolbar to the application window that pro-
vides a standard range of buttons that are alternatives to using
the standard menu items. A toolbar is provided by default. A
docking toolbar can be dragged to the sides or the bottom of the
application window, so you can put it wherever is most conven-
ient. You’ll see how to add buttons to the toolbar in Chapter 14.

Browser style toolbar This adds an Internet Explorer-style toolbar to the application
windows.

788

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 788



There are a couple of features under the Advanced Features set of options of which you need to be aware.
One is Printing and print preview, which is selected by default, and the other is Context-sensitive
help, which you get if you check the box. Printing and print preview adds the standard Page Setup,
Print Preview, and Print items to the File menu and the Application Wizard also provides code to support
these functions. Enabling the Context-sensitive help option results in a basic set of facilities to sup-
port context-sensitive help. You’ll obviously need to add the specific contents of the help files if you want
to use this feature.

If you select the Generated Classes option in the MFC Application Wizard dialog box, you’ll see a list of
the classes that the Application wizard generates in your program code, as shown in Figure 13-7.

Figure 13-7

You can highlight any class in the list by clicking it and the boxes below show the name given to the class,
the name of the header file in which the definition will be stored, the base class used, and the name of the
file containing the implementation of member functions in the class. The class definition is always con-
tained in a .h file, and the member function source code is always included in a .cpp file.

In the case of the class CTextEditorDoc, you can alter everything except the base class; however, if you
select CTextEditorApp the only thing that you can alter is the class name. Try clicking the other classes
in the list. For CMainFrame you can alter everything except the base class and for the CTextEditorView
class shown in Figure 13-7 you can change the base class as well. Click the down arrow to display the list
of other classes that you can have as a base class; the list appears in Figure 13-7. The capability built into
your view class depends on which base class you select:

Continued

Base Class View Class Capability

CEditView Provides simple multiline text-editing capability, including find and replace
and printing.

789

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 789



Because you’ve called the application TextEditor, with the notion that it is able to edit text, choose
CEditView to get basic editing capability provided automatically.

You can now click Finish to have the program files for a fully working base program generated by
MFC Application wizard, using the options you’ve chosen.

The Output from the MFC Application Wizard
All the program files generated by the Application Wizard are stored in the TextEditor project folder,
which is a subfolder to the solution folder with the same name. There are also resource files in the res
subfolder to the project folder. The IDE provides several ways for you to view the information relating 
to your project:

Tab/Pane Contents

Solution Explorer Shows the files included in your project. The files are categorized in virtual
folders with the names Header Files, Resource Files and Source
Files.

Class View Class View displays the classes you have in your project and their members.
It also shows any global entities you have defined. The classes are shown 
in the upper pane and the lower pane displays the members for the class
selected in the upper pane. By right-clicking entities in the Class View, you
can display a menu that you can use to view the definition of the entity or
where it is referenced.

Base Class View Class Capability

CFormView Provides a view that is a form; a form is a dialog box that can contain con-
trols for displaying data and for user input. This is essentially the same func-
tionality as provided by a form in a Windows Forms application for the CLR
that you will explore in Chapter 22.

CHtmlEditView This class extends CHtmlView class and adds the ability to edit HTML pages.

CHtmlView Provides a view in which Web pages and local HTML documents can be 
displayed.

CListView Enables you to use the document-view architecture with list controls.

CRichEditView Provides the capability to display and edit documents containing rich 
edit text.

CScrollView Provides a view that automatically adds scrollbars when the data that is 
displayed requires them.

CTreeView Provides the capability to use the document-view architecture with tree 
controls.

CView Provides the basic capability for viewing a document.

790

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 790



You can switch to view any of these by selecting from the view menu or clicking on a tab label. If you
right-click TextEditor in the Solution Explorer pane and select Properties from the pop-up, the project
properties window is displayed, as shown in Figure 13-8.

Figure 13-8

The left pane shows the property groups you can select to be displayed in the right pane. Currently the
General group of properties is displayed and you can change the value for a property in the right pane
by clicking it and selecting a new value from the drop-down list box to the right of the property name or
in some cases by entering a new value. 

At the top of the property pages window, you can see the current project configuration and the target
platform when the project is built. You can change these by selecting from the drop-down list for each.

Tab/Pane Contents

Resource View This displays the resources such as menu items and toolbar buttons used 
by your project. Right-clicking a resource displays a menu, enabling you to
edit the resource or add new resources.

Property Manager This displays the versions you can build for your project. The debug version
includes extra facilities to make debugging your code easier. The release ver-
sion results in a smaller executable, and you build this version when your
code is fully tested for production use. By right-clicking a version — either
Debug or Release — you can display a context menu where you can add a
property sheet or display the properties currently set for that version. A
property sheet enables you to set options for the compiler and linker.

791

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 791



Viewing Project Files
If you select the Solution Explorer tab and expand the list by clicking the + for TextEditor files and then
click the + for each of the Source Files, Header Files and Resource Files folders, you’ll see the complete list
of files for the project, as shown in Figure 13-9.

Figure 13-9

Figure 13-9 show the pane as a floating window to make the complete list of files visible at one time; you
can arrange for any of the tabbed panes to be floating by clicking the down arrow at the top of the pane
and selecting from the list of possible positions. As you can see, there are a total of 17 files in the project
excluding ReadMe.txt. You can view the contents of any of the files simply by double-clicking the file-
name. The contents of the file selected are displayed in the Editor window. Try it out with the ReadMe.txt
file. You’ll see that it contains a brief explanation of the contents of each of the files that make up the project.
I won’t repeat the descriptions of the files here, because they are very clearly summarized in ReadMe.txt.

Viewing Classes
The access to your project presented by the Class View tab is often much more convenient than that 
of Solution Explorer because classes are the basis for the organization of the application. When you
want to look at the code, it’s typically the definition of a class or the implementation of a member func-
tion you’ll want to look at, and from Class View you can go directly to either. On occasions, however,
Solution Explorer comes in handy. If you want to check the #include directives in a .cpp file, using
Solution Explorer you can open the file you’re interested in directly.

In the Class View pane, you can expand the TextEditor classes item to show the classes defined for
the application. Clicking the name of any class shows the members of that class in the lower pane. In the
Class View pane shown in Figure 13-10, the CTextEditorDoc class has been selected.

Figure 13-10 shows the Class View pane in its docked state. The icons code the various kinds of things
that you can display and you will find a key to what each icon indicates if you look at the Class View
documentation.

792

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 792



Figure 13-10

You can see that you have the four classes discussed earlier that are fundamental to an MFC application:
CTextEditorApp for the application, CMainFrame for the application frame window, CTextEditorDoc
for the document and CTextEditorView for the view. You also have a class CAboutDlg that defines objects
that support the dialog box that appears when you select the menu item Help > About in the application. If
you highlight Global Functions and Variables, you’ll see that it contains two definitions: the applica-
tion object theApp and indicators that is an array of indicators recording the status of caps lock, num lock
and scroll lock that are displayed in the status bar.

To view the code for a class definition in the Editor pane you just double-click the class name in the tree in
Class View. Similarly to view the code for a member function, double-click the function name. Note that
you can drag the edges of any of the panes in an IDE window to view its contents or your code more easily.
You can hide or show the Solution Explorer set of panes by clicking the Autohide button at the right end of
the pane title bar.

The Class Definitions
I won’t go into the classes in complete detail here — you’ll just get a feel for how they look and I’ll high-
light a few important aspects. If you double-click the name of a class in the Class View, the code defining
the class is displayed. Take a look at the application class, CTextEditorApp first. The definition for this
class is shown here:

// TextEditor.h : main header file for the TextEditor application
//
#pragma once

#ifndef __AFXWIN_H__
#error “include ‘stdafx.h’ before including this file for PCH”

#endif

793

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 793



#include “resource.h”       // main symbols

// CTextEditorApp:
// See TextEditor.cpp for the implementation of this class
//

class CTextEditorApp : public CWinApp
{
public:
CTextEditorApp();

// Overrides
public:
virtual BOOL InitInstance();

// Implementation
afx_msg void OnAppAbout();
DECLARE_MESSAGE_MAP()

};

extern CTextEditorApp theApp; 

The CTextEditorApp class derived from CWinApp and includes a constructor, a virtual function
InitInstance(), a function OnAppAbout(), and a macro DECLARE_MESSAGE_MAP().

A macro is not C++ code. It’s a name defined by a #define pre-processor directive that will be replaced
by some text that will normally be C++ code, but could also be constants or symbols of some kind.

The DECLARE_MESSAGE_MAP() macro is concerned with defining which Windows messages are handled
by which function members of the class. The macro appears in the definition of any class that may process
Windows messages. Of course, our application class inherits a lot of functions and data members from the
base class, and you will be looking further into these as you expand the program examples. If you take a
look at the beginning of the code for the class definition, you will notice that the #pragma once directive
prevents the file being included more than once. Following that is a group of preprocessor directives that
ensure that the stdafx.h file is included before this file.

The application frame window for our SDI program is created by an object of the class CMainFrame,
which is defined by the code shown here:

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
CMainFrame();
DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations

794

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 794



public:

// Overrides
public:
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

// Implementation
public:
virtual ~CMainFrame();

#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:  // control bar embedded members
CStatusBar  m_wndStatusBar;
CToolBar    m_wndToolBar;

// Generated message map functions
protected:
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
DECLARE_MESSAGE_MAP()

};

This class is derived from CFrameWnd, which provides most of the functionality required for our appli-
cation frame window. The derived class includes two protected data members, m_wndStatusBar and
m_wndToolBar, that are instances of the MFC classes CStatusBar and CToolBar respectively. These
objects create and manage the status bar that appears at the bottom of the application window, and the
toolbar that provides buttons to access standard menu functions.

The definition of the CTextEditorDoc class that was supplied by the MFC Application wizard is:

class CTextEditorDoc : public CDocument
{
protected: // create from serialization only
CTextEditorDoc();
DECLARE_DYNCREATE(CTextEditorDoc)

// Attributes
public:

// Operations
public:

// Overrides
public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);

// Implementation
public:
virtual ~CTextEditorDoc();

#ifdef _DEBUG

795

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 795



virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

// Generated message map functions
protected:
DECLARE_MESSAGE_MAP()

};

As in the case of the previous classes, most of the meat comes from the base class and is therefore not
apparent here. The macro DECLARE_DYNCREATE() that appears after the constructor (and was also used
in the CMainFrame class) enables an object of the class to be created dynamically by synthesizing it from
data read from a file. When you save an SDI document object, the frame window that contains the view
is saved along with your data. This allows everything to be restored when you read it back. Reading and
writing a document object to a file is supported by a process called serialization. You will see how to
write your own documents to file using serialization and then reconstruct them from the file data in the
examples we will develop.

The document class also includes the macro DECLARE_MESSAGE_MAP() in its definition to enable
Windows messages to be handled by class member functions if necessary.

The view class in our SDI application is defined as:

class CTextEditorView : public CEditView
{
protected: // create from serialization only
CTextEditorView();
DECLARE_DYNCREATE(CTextEditorView)

// Attributes
public:
CTextEditorDoc* GetDocument() const;

// Operations
public:

// Overrides
public:

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

// Implementation
public:
virtual ~CTextEditorView();

#ifdef _DEBUG
virtual void AssertValid() const;

796

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 796



virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
DECLARE_MESSAGE_MAP()

};

#ifndef _DEBUG  // debug version in TextEditorView.cpp
inline CTextEditorDoc* CTextEditorView::GetDocument() const

{ return reinterpret_cast<CTextEditorDoc*>(m_pDocument); }
#endif

As you specified in the Application Wizard dialog box, the view class is derived from the class CEditView,
which already includes basic text handling facilities. The GetDocument() function returns a pointer to
the document object corresponding to the view, and you will be using this to access data in the document
object when you add your own extensions to the view class.

Creating an Executable Module
To compile and link the program, click Build > Build Solution, press Ctrl+Shift+B, or click the Build
icon in the toolbar. 

There are two implementations of the CTextEditorView class member function GetDocument() in the
code generated by Application wizard. The one in the .cpp file for the CEditView class is used for the
debug version of the program. You will normally use this during program development because it pro-
vides validation of the pointer value stored for the document. (This is stored in the inherited data mem-
ber m_pDocument in the view class.) The version that applies to the release version of your program you
can find after the class definition in the TextEditorView.h file. This version is declared as inline and
it does not validate the document pointer. The GetDocument() function just provides a link to the docu-
ment object. You can call any of the functions in the interface to the document class using the pointer to
the document that the function returns.

By default, you have debug capability included in your program. As well as the special version of
GetDocument(), there are lots of checks in the MFC code that are included in this case. If you want to
change this, you can use the drop-down list box in the Build toolbar to choose the release configuration,
which doesn’t contain all the debug code.

When compiling your program with debug switched on, the compiler doesn’t detect uninitialized 
variables, so it can be helpful to do the occasional release build even while you are still testing your 
program.

Precompiled Header Files
The first time you compile and link a program, it will take some time. The second and subsequent times it
should be quite a bit faster because of a feature of Visual C++ 2008 called precompiled headers. During
the initial compilation, the compiler saves the output from compiling header files in a special file with the
extension .pch. On subsequent builds, this file is reused if the source in the headers has not changed, thus
saving the compilation time for the headers.

797

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 797



You can determine whether or not precompiled headers are used and control how they are handled
through the Properties tab. Right-click TextEditor and select Properties from the menu that is dis-
played. If you expand the C/C++ node in the dialog box displayed, you can select Precompiled
Headers to set this property. 

Running the Program
To execute the program, press Ctrl+F5. Because you chose CEditView as the base class for the
CTextEditorView class, the program is a fully functioning, simple text editor. You can enter text 
in the window, as shown in Figure 13-11.

Figure 13-11

Note that the application has scroll bars for viewing text outside the visible area within the window, and
of course you can resize the window by dragging the boundaries. All the items under all menus are fully
operational so you can save and retrieve files, you can cut and paste text, and you can print the text in the
window — and all that without writing a single line of code! As you move the cursor over the toolbar but-
tons or the menu options, prompts appear in the status bar describing the function that are invoked, and
if you let the cursor linger on a toolbar button, a tooltip is displayed showing its purpose. (You’ll learn
about tooltips in more detail in Chapter 14.)

How the Program Works
As in the trivial MFC example you looked at earlier in this chapter, the application object is created at
global scope in our SDI program. You can see this if you expand the Global Functions and Variables
item in the Class View, and then double-click theApp. In the Editor window you’ll see this statement:

CTextEditorApp theApp;

This declares the object theApp as an instance of our application class CTextEditorApp. The statement
is in the file TextEditor.cpp, which also contains member function declarations for the application class,
and the definition of the CAboutDlg class.

After the object theApp has been created, the MFC-supplied WinMain() function is called. This in turn
calls two member functions of the theApp object. First it calls InitInstance(), which provides for
any initialization of the application that is necessary, and then Run(), which provides initial handling
for Windows messages. The WinMain() function does not appear explicitly in the project source code
because it is supplied by the MFC class library and is called automatically when the application starts.

798

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 798



The InitInstance() Function 
You can access the code for the InitInstance() function by double-clicking its entry in the Class View
after highlighting the CTextEditorApp class — or if you’re in a hurry, you can just look at the code imme-
diately following the line defining the theApp object. The version created by the MFC Application wizard
is as follows:

BOOL CTextEditorApp::InitInstance()
{

// InitCommonControlsEx() is required on Windows XP if an application
// manifest specifies use of ComCtl32.dll version 6 or later to enable
// visual styles.  Otherwise, any window creation will fail.
INITCOMMONCONTROLSEX InitCtrls;
InitCtrls.dwSize = sizeof(InitCtrls);
// Set this to include all the common control classes you want to use
// in your application.
InitCtrls.dwICC = ICC_WIN95_CLASSES;
InitCommonControlsEx(&InitCtrls);

CWinApp::InitInstance();

// Initialize OLE libraries
if (!AfxOleInit())
{

AfxMessageBox(IDP_OLE_INIT_FAILED);
return FALSE;

}
AfxEnableControlContainer();
// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need
// Change the registry key under which our settings are stored
// TODO: You should modify this string to be something appropriate
// such as the name of your company or organization
SetRegistryKey(_T(“Local AppWizard-Generated Applications”));
LoadStdProfileSettings(4);  // Load standard INI file options (including MRU)
// Register the application’s document templates.  Document templates
//  serve as the connection between documents, frame windows and views
CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
IDR_MAINFRAME,
RUNTIME_CLASS(CTextEditorDoc),
RUNTIME_CLASS(CMainFrame),       // main SDI frame window
RUNTIME_CLASS(CTextEditorView));

if (!pDocTemplate)
return FALSE;

AddDocTemplate(pDocTemplate);

// Parse command line for standard shell commands, DDE, file open
CCommandLineInfo cmdInfo;
ParseCommandLine(cmdInfo);

// Dispatch commands specified on the command line.  Will return FALSE if

799

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 799



// app was launched with /RegServer, /Register, /Unregserver or /Unregister.
if (!ProcessShellCommand(cmdInfo))

return FALSE;

// The one and only window has been initialized, so show and update it
m_pMainWnd->ShowWindow(SW_SHOW);
m_pMainWnd->UpdateWindow();
// call DragAcceptFiles only if there’s a suffix
//  In an SDI app, this should occur after ProcessShellCommand
return TRUE;

}

The bits of the code that I want to mention at this point are shaded. The string passed to the
SetRegistryKey() function is used to define a registry key under which program information 
is stored. You can change this to whatever you want. If I changed the argument to “Horton”, 
information about our program would be stored under the registry key

HKEY_CURRENT_USER\Software\Horton\TextEditor\

All the application settings are stored under this key, including the list of files most recently used by the
program. The call to the function LoadStdProfileSettings() loads the application settings that were
saved last time around. Of course, the first time you run the program, there aren’t any.

A document template object is created dynamically within InitInstance() by the statement:

pDocTemplate = new CSingleDocTemplate(
IDR_MAINFRAME,
RUNTIME_CLASS(CTextEditorDoc),
RUNTIME_CLASS(CMainFrame),       // main SDI frame window
RUNTIME_CLASS(CTextEditorView));

The first parameter to the CSingleDocTemplate constructor is a symbol, IDR_MAINFRAME, which defines
the menu and toolbar to be used with the document type. The following three parameters define the doc-
ument, main frame window, and View Class objects that are to be bound together within the document
template. Because you have an SDI application here, there is only one of each in the program, managed
through one document template object. RUNTIME_CLASS() is a macro that enables the type of a class
object to be determined at run time.

There’s a lot of other stuff here for setting up the application instance that you need not worry about.
You can add any initialization of your own that you need for the application to the InitInstance()
function.

The Run() Function 
The CTextEditorApp class inherits the Run() function in from the application base class CWinApp.
Because the function is declared as virtual, you can replace the base class version of the function Run()
with one of your own, but this is not usually necessary so you don’t need to worry about it.

Run() acquires all the messages from Windows destined for the application and ensures that each mes-
sage is passed to the function in the program designated to service it, if one exists. Therefore, this function
continues executing as long as the application is running. It terminates when you close the application.

800

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 800



Thus, you can boil the operation of the application down to four steps:

1. Creating an application object, theApp

2. Executing WinMain(), which is supplied by MFC

3. WinMain() calling InitInstance(), which creates the document template, the main frame
window, the document, and the view

4. WinMain() calling Run(), which executes the main message loop to acquire and dispatch
Windows messages

Creating an MDI Application
Now let’s create an MDI application using the MFC Application Wizard. Give it the project name
Sketcher — and plan on keeping it, as you will be expanding it into a sketching program during sub-
sequent chapters. You should have no trouble with this procedure because there are only three things
that you need to do differently from the process that you have just gone through for the SDI applica-
tion. You should leave the default option, MDI, rather than changing to the SDI option but still opt out 
of using Unicode libraries. Under the Document Template Strings set of options in the Application
Wizard dialog box you should specify the file extension as ske. You should also leave the base class
for the CSketcherView class as CView under the Generated Classes set of options.

You can see in the dialog box with Generated Classes selected that you get an extra class for your
application compared to the TextEditor example, as Figure 13-12 shows.

Figure 13-12

The extra class is CChildFrame, which is derived from the MFC class CMDIChildWnd. This class pro-
vides a frame window for a view of the document that appears inside the application window created by
a CMainFrame object. With an SDI application there is a single document with a single view, so the view
is displayed in the client area of the main frame window. In an MDI application, you can have multiple

801

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 801



documents open, and each document can have multiple views. To accomplish this, each view of a docu-
ment in the program has its own child frame window created by an object of the class CChildFrame. As
you saw earlier, a view is displayed in what is actually a separate window, but one which exactly fills the
client area of a frame window.

Running the Program
You can build the program in exactly the same way as the previous example. Then, if you execute it, you
get the application window shown in Figure 13-13.

Figure 13-13

In addition to the main application window, you have a separate document window with the caption
Sketch1. Sketch1 is the default name for the initial document, and it has the extension .ske if you save
it. You can create additional views for the document by selecting the Window > New Window menu
option. You can also create a new document by selecting File > New, so that there will be two active
documents in the application. The situation with two documents active, each with two views open, is
shown in Figure 13-14.

Figure 13-14

You can’t yet actually create any data in the application because we haven’t added any code to do that,
but all the code for creating documents and views has already been included by the Application wizard.

802

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 802



Summary
In this chapter, you’ve been concerned mainly with the mechanics of using the MFC Application wizard.
You have seen the basic components of the MFC programs the Application wizard generates for both SDI
and MDI applications. All our MFC examples are created by the MFC Application wizard, so it’s a good
idea to keep the general structure and broad class relationships in mind. You probably won’t feel too
comfortable with the detail at this point, but don’t worry about that now. You’ll find that it becomes
much clearer after you begin developing applications in the succeeding chapters. 

The key points covered in this chapter are:

❑ The MFC Application wizard generates a complete, working, framework Windows application
for you to customize to your requirements.

❑ The Application wizard can generate single document interface (SDI) applications that work
with a single document and a single view, or multiple document interface (MDI) programs 
that can handle multiple documents with multiple views simultaneously.

❑ The four essential classes in an SDI application that are derived from the foundation classes are:

❑ The application class

❑ The frame window class

❑ The document class

❑ The view class

❑ A program can have only one application object. This is defined automatically by the
Application wizard at global scope.

❑ A document class object stores application-specific data and a view class object displays the 
contents of a document object.

❑ A document template class object is used to tie together a document, a view, and a window.
For an SDI application, a CSingleDocTemplate class does this, and for an MDI application,
the CDocTemplate class is used. These are both foundation classes and application-specific
versions do not normally need to be derived.

Exercises
It isn’t possible to give programming examples for this chapter, because it really just introduced the
basic mechanics of creating MFC applications. There aren’t solutions to all the exercises because you
will either see the answer for yourself on the screen, or be able to check your answer back with the text.

However, you can download the source code for the examples in the book and the solutions to other
exercises from www.wrox.com.

1. What is the relationship between a document and a view?

2. What is the purpose of the document template in an MFC Windows program?

3. Why do you need to be careful, and plan your program structure in advance, when using the
Application Wizard?

803

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 803



4. Code up the simple text editor program. Build both debug and release versions, and examine
the types and sizes of the files produced in each case.

5. Generate the text editor application several times, trying different window styles from the
Advanced Options in Application Wizard.

804

Chapter 13: Programming with the Microsoft Foundation Classes

25905c13.qxd:WroxPro  2/21/08  9:15 AM  Page 804



14
Working with Menus 

and Toolbars

In the last chapter, you saw how a simple framework application generated by the MFC Application
Wizard is made up and how the parts interrelate. In this chapter, you’ll start customizing a Multiple
Document Interface (MDI) framework application called Sketcher with a view to making it into a
useful program. The first step in this process is to understand how menus are defined in Visual C++
2008, and how functions are created to service the application-specific menu items that you add to
your program. You’ll also see how to add toolbar buttons to the application. By the end of this chap-
ter, you’ll have learned about:

❑ How an MFC-based program handles messages

❑ Menu resources, and how you can create and modify them

❑ Menu properties, and how you can create and modify them

❑ How to create a function to service the message generated when a menu item is selected

❑ How to add handlers to update menu properties

❑ How to add toolbar buttons and associate them with existing menu items

Communicating with Windows
As you saw in Chapter 12, Windows communicates with your program by sending messages to
it. Most of the drudgery of message handling is taken care of by MFC, so you don’t have to worry
about providing a WndProc() function at all. MFC enables you to provide functions to handle the
individual messages that you’re interested in and to ignore the rest. These functions are referred to
as message handlers or just handlers. Because your application is MFC-based, a message handler
is always a member function of one of your application’s classes.

The association between a particular message and the function in your program that is to service it 
is established by a message map — each class in your program that can handle Windows messages 
will have one. A message map for a class is simply a table of member functions that handle Windows

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 805



messages. Each entry in the message map associates a function with a particular message; when a given
message occurs, the corresponding function is called. Only the messages relevant to a class appear in 
the message map for the class.

A message map for a class is created automatically by the MFC Application Wizard when you create a
project or by ClassWizard when you add a class that handles messages to your program. Additions to,
and deletions from, a message map are mainly managed by ClassWizard, but there are circumstances
where you need to modify the message map manually. The start of a message map in your code is indi-
cated by a BEGIN_MESSAGE_MAP() macro, and the end is marked by an END_MESSAGE_MAP() macro.
Let’s look into how a message map operates using our Sketcher example.

Understanding Message Maps
A message map is established by the MFC Application Wizard for each of the main classes in your 
program. In the instance of an MDI program such as Sketcher, a message map is defined for each of
CSketcherApp, CSketcherDoc, CSketcherView, CMainFrame, and CChildFrame. You can see the
message map for a class in the .cpp file containing the implementation of the class. Of course, the func-
tions that are included in the message map also need to be declared in the class definition, but they are
identified here in a special way. Look at the definition for the CSketcherApp class shown here:

class CSketcherApp : public CWinApp
{
public:
CSketcherApp();

// Overrides
public:
virtual BOOL InitInstance();

// Implementation
afx_msg void OnAppAbout();
DECLARE_MESSAGE_MAP()

};

Only one message handler, OnAppAbout(), is declared in the CSketcherApp class. The word afx_msg at
the beginning of the line declaring the OnAppAbout() function is just to distinguish a message handler
from other member functions in the class. It is converted to white space by the preprocessor, so it has no
effect when the program is compiled.

The macro DECLARE_MESSAGE_MAP() indicates that the class can contain function members that are mes-
sage handlers. In fact, any class that you derive from the MFC class CCmdTarget can potentially have
message handlers, so such classes will have this macro included as part of the class definition by the MFC
Application Wizard or by the Add Class Wizard that you’ll use to add a new class for a project, depending
on which was responsible for creating it. Figure 14-1 shows the MFC classes derived from CCmdTarget
that have been used in our examples so far.

The classes that have been used directly, or as a direct base for our own application classes, are shown
shaded. Thus, the CSketcherApp class has CCmdTarget as an indirect base class and, therefore, are
always included the DECLARE_MESSAGE_MAP() macro. All of the view (and other) classes derived from
CWnd also have it.

806

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 806



Figure 14-1

If you are adding your own members to a class directly, it’s best to leave the DECLARE_MESSAGE_MAP()
macro as the last line in the class definition. If you do add members after DECLARE_MESSAGE_MAP(),
you’ll also need to include an access specifier for them: public, protected, or private.

Message Handler Definitions
If a class definition includes the macro DECLARE_MESSAGE_MAP(), the class implementation must include
the macros BEGIN_MESSAGE_MAP() and END_MESSAGE_MAP(). If you look in Sketcher.cpp, you’ll see the
following code as part of the implementation of CSketcherApp:

BEGIN_MESSAGE_MAP(CSketcherApp, CWinApp)
ON_COMMAND(ID_APP_ABOUT, &CSketcherApp::OnAppAbout)
// Standard file based document commands
ON_COMMAND(ID_FILE_NEW, &CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN, &CWinApp::OnFileOpen)
// Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, &CWinApp::OnFilePrintSetup)

END_MESSAGE_MAP()

This is a message map. The BEGIN_MESSAGE_MAP() and END_MESSAGE_MAP() macros define the bound-
aries of the message map, and each of the message handlers in the class appears between these macros. In
the preceding case, the code is only handling one category of message, the type of WM_COMMAND message
called a command message, which is generated when the user selects a menu option or enters an accel-
erator key. (If that seems clumsy, it’s because there’s another kind of WM_COMMAND message called a con-
trol notifications message, as you’ll see later in this chapter.)

CWinThread CDocument 

CWinApp 

CMDIChildWnd CMDIFrameWnd CCtrlView 

CEditView 

CFrameWnd CView 

CWnd 

CCmdTarget 

807

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 807



The message map knows which menu or key is pressed by the identifier (ID) that’s included in the
message. There are four ON_COMMAND macros in the preceding code, one for each of the command 
messages to be handled. The first argument to this macro is an ID that is associated with one particu-
lar command, and the ON_COMMAND macro ties the function name to the command specified by the 
ID. Thus, when a message corresponding to the identifier ID_APP_ABOUT is received, the function
OnAppAbout() is called. Similarly, for a message corresponding to the ID_FILE_NEW identifier, the
function OnFileNew() is called. This handler is actually defined in the base class, CWinApp, as are 
the two remaining handlers.

The BEGIN_MESSAGE_MAP() macro has two arguments. The first argument identifies the current class
name for which the message map is defined and the second provides a connection to the base class for
finding a message handler. If a handler isn’t found in the class defining the message map, the message
map for the base class is then searched.

Note that command IDs such as ID_APP_ABOUT are standard IDs defined in MFC. These correspond to
messages from standard menu items and toolbar buttons. The ID_ prefix is used to identify a command
associated with a menu item or a toolbar button, as you’ll see when I discuss resources later. For example,
ID_FILE_NEW is the ID that corresponds to the File > New menu item being selected, and ID_APP_ABOUT
corresponds to the Help > About menu option.

There are more symbols besides WM_COMMAND that Windows uses to identify standard messages. Each 
of them is prefixed with WM_ for Windows Message. These symbols are defined in Winuser.h, which is
included in Windows.h. If you want to look at them, you’ll find Winuser.h in the include sub-folder to
the VC folder containing your Visual C++ 2008 system.

There’s a nice shortcut for viewing a .h file. If the name of the file appears in the Editor window, you can
just right-click it, and select the menu item Open Document “Filename.h” from the pop-up menu. This
works with standard library headers, too.

Windows messages often have additional data values that are used to refine the identification of a particu-
lar message specified by a given ID. The WM_COMMAND message, for instance, is sent for a whole range of
commands, including those originating from selecting a menu item or a toolbar button.

Note that when you are adding message handlers manually you should not map a message (or in the
case of command messages, a command ID) to more than one message handler in a class. If you do, it
won’t break anything, but the second message handler is never called. Normally you add message han-
dlers through the properties window and, in this case, you will not be able to map a message to more
than one message handler. If you want to see the properties window for a class, right-click a class name
in Class View and select Properties from the pop-up menu. You add a message handler by selecting
the Messages button at the top of the Properties window that is displayed (Figure 14-2). You can figure
out which button is the Messages button by hovering the mouse cursor over each button until the
tooltip displays.

Clicking the Messages button brings up a list of message IDs; however, before I go into what you do
next, I need to explain a little more about the types of messages you may be handling.

808

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 808



Figure 14-2

Message Categories
There are three categories of messages that your program may be dealing with, and the category to
which it belongs determines how a message is handled. The message categories are:

Message Category Description

Windows messages These are standard Windows messages that begin with the WM_ prefix,
with the exception of WM_COMMAND messages that we shall come to in a
moment. Examples of Windows messages are WM_PAINT, which indicates
that you need to redraw the client area of a window, and WM_LBUTTONUP,
which signals that the left mouse button has been released.

Control notification
messages

These are WM_COMMAND messages sent from controls (such as a list box)
to the window that created the control or from a child window to a par-
ent window. Parameters associated with a WM_COMMAND message enable
messages from the controls in your application to be differentiated.

Command messages These are also WM_COMMAND messages that originate from the user
interface elements, such as menu items and toolbar buttons. MFC
defines unique identifiers for standard menu and toolbar command
messages.

809

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 809



The standard Windows messages in the first category are identified by the WM_-prefixed IDs that Windows
defines. You’ll be writing handlers for some of these messages in the next chapter. The messages in the sec-
ond category are a particular group of WM_COMMAND messages that you’ll see in Chapter 17 when you
work with dialog boxes. You’ll deal with the last category, messages originating from menus and tool-
bars, in this chapter. In addition to the message IDs defined by MFC for the standard menus and toolbars,
you can define your own message IDs for the menus and toolbar buttons that you add to your pro-
gram. If you don’t supply IDs for these items, MFC automatically generates IDs for you, based on 
the menu text.

Handling Messages in Your Program
You can’t put a handler for a message anywhere you like. The permitted sites for a handler depend on
what kind of message is to be processed. The first two categories of message that you saw above, that is,
standard Windows messages and control notification messages, are always handled by objects of classes
derived from CWnd. Frame window classes and view classes, for example, are derived from CWnd, so they
can have member functions to handle Windows messages and control notification messages. Application
classes, document classes, and document template classes are not derived from CWnd, so they can’t handle
these messages.

Using the properties window for a class to add a handler solves the headache of remembering where to
place handlers, as it only offers you the IDs allowed for the class. For example, if you select CSketcherDoc
as the class, you won’t be offered any of the WM_ messages in the properties window for the class.

For standard Windows messages, the CWnd class provides default message handling. Thus, if your derived
class doesn’t include a handler for a standard Windows message, it is processed by the default handler
defined in the base class. If you do provide a handler in your class, you’ll sometimes still need to call the
base class handler as well, so that the message is processed properly. When you’re creating your own han-
dler, a skeleton implementation of it is provided when you select the handler in the properties window for
a class, and this includes a call to the base handler where necessary.

Handling command messages is much more flexible. You can put handlers for these in the application
class, the document and document template classes, and of course in the window and view classes in
your program. So, what happens when a command message is sent to your application, bearing in mind
there are a lot of options as to where it is handled?

How Command Messages Are Processed
All command messages are sent to the main frame window for the application. The main frame window
then tries to get the message handled by routing it in a specific sequence to the classes in your program.
If one class can’t process the message, it passes it on to the next.

For an SDI program, the sequence in which classes are offered an opportunity to handle a command
message is:

1. The view object

2. The document object

3. The document template object

4. The main frame window object

5. The application object

810

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 810



The view object is given the opportunity to handle a command message first and, if no handler has been
defined, the next class object has a chance to process it. If none of the classes has a handler defined, default
Windows processing takes care of it, essentially throwing the message away.

For an MDI program, things are only a little more complicated. Although you have the possibility of
multiple documents, each with multiple views, only the active view and its associated document are
involved in the routing of a command message. The sequence for routing a command message in an
MDI program is:

1. The active view object

2. The document object associated with the active view

3. The document template object for the active document

4. The frame window object for the active view

5. The main frame window object

6. The application object

It’s possible to alter the sequence for routing messages, but this is so rarely necessary that I won’t go into
it in this book.

Extending the Sketcher Program
You’re going to add code to the Sketcher program you created in the previous chapter to implement the
functionality you need to create sketches. You’ll provide code for drawing lines, circles, rectangles, and
curves with various colors and line thicknesses, and for adding annotations to a sketch. The data for a
sketch is stored in a document, and you’ll also allow multiple views of the same document at different
scales.

It will take several chapters to learn how to add everything that you need, but a good starting point
would be to add menu items to deal with the types of elements that you want to be able to draw, and 
to select a color for drawing. You’ll make both the element type and color selection persistent in the 
program, which means that having selected a color and an element type, both of these remain in effect
until you change one or the other of them.

The steps that you’ll work through to add menus to Sketcher are:

❑ Define the menu items to appear on the main menu bar and in each of the menus.

❑ Decide which of the classes in our application should handle the message for each 
menu item.

❑ Add message handling functions to the classes for the menu messages.

❑ Add functions to the classes to update the appearance of the menus to show the current 
selection in effect.

❑ Add a toolbar button complete with tooltips for each of the menu items.

811

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 811



Elements of a Menu
You’ll be looking at two aspects of dealing with menus with the MFC: the creation and modification of
the menu as it appears in your application and the processing necessary when a particular menu item is
selected — the definition of a message handler for it. Let’s look first at how you create new menu items.

Creating and Editing Menu Resources
Menus are defined external to the program code in a resource file and the specification of the menu is
referred to as a resource. There are several other kinds of resources that you can include in your applica-
tion; typical examples are dialogs, toolbars, and toolbar buttons. You’ll be seeing more on these as you
extend the Sketcher application.

Having a menu defined in a resource allows the physical appearance of the menu to be changed without
affecting the code that processes menu events. For example, you could change your menu items from
English to French or Norwegian or whatever without having to modify or recompile the program code.
The code to handle the message created when the user selects a menu item doesn’t need to be concerned
with how the menu looks, only with the fact that it was selected. Of course, if you do add items to the menu,
you’ll need to add some code for each of them to ensure that they actually do something!

The Sketcher program already has a menu, which means that it already has a resource file. We can access
the resource file contents for the Sketcher program by selecting the Resource View pane, or if you have the
Solution Explorer pane displayed, you can double-click Sketcher.rc. This switches you to the Resource
View, which displays the resources. If you expand the menu resource by clicking on the + symbol, you’ll see
that there are two menus defined, indicated by the identifiers IDR_MAINFRAME and IDR_SketcherTYPE.
The first of these applies when there are no documents open in the application, and the second when you
have one or more documents open. MFC uses the IDR_ prefix to identify a resource that defines a complete
menu for a window.

You’re only going to be modifying the menu that has the identifier IDR_SketcherTYPE. You don’t need
to look at IDR_MAINFRAME, as your new menu items will only be relevant when a document is open. You
can invoke a resource editor for the menu by double-clicking its menu ID in Resource View. If you do
this for IDR_SketcherTYPE, the Editor pane appears as shown in Figure 14-3. 

Figure 14-3

812

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 812



Adding a Menu Item to the Menu Bar
To add a new menu item, you can just click the menu box on the menu bar with the text “Type Here” 
to select it and then type in your menu name. If you insert the ampersand (&) in front of a letter in the
menu item, the letter is identified as a shortcut key to invoke the menu from the keyboard. Type the
first menu item as E&lement. This selects l as the shortcut letter, so you will be able invoke the menu
item by typing Alt+l. You can’t use E because it’s already used by Edit. When you finish typing the
name, you can double-click the new menu item to display its properties, as shown in Figure 14-4. 

Figure 14-4

Properties are simply parameters that determine how the menu item will appear and behave. Figure 14-4
displays the properties for the menu item grouped by category. If you would rather have them displayed
in alphabetical sequence, just click the second button from the left. Note that the Popup property is set as
True by default; this is because the new menu item is at the top level on the menu bar so it would nor-
mally present a pop-up menu when it is selected. Clicking any property in the left column enables you 
to modify it in the right column. In this case you want to leave everything as it is so you can just close the
Properties window. No ID is necessary for a pop-up menu item because selecting it just displays the
menu beneath and there’s no event for your code to handle. Note that you get a new blank menu box for
the first item in the pop-up menu, as well as one on the main menu bar.

It would be better if the Element menu appeared between the View and Window menus, so place the cur-
sor on the Element menu item and, keeping the left mouse button pressed, drag it to a position between
the View and Window menu items, and release the left mouse button. After positioning the new Element
menu item, the next step is to add items on the pop-up menu that corresponds to it.

813

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 813



Adding Items to the Element Menu
Select the first item (currently labeled “Type Here”) in the Element pop-up menu by clicking it; then
type &Line as the caption and press the Enter key. You can see the properties for this menu item by 
double-clicking it; the properties for this first item in the pop-up menu are shown in Figure 14-5.

Figure 14-5

The properties modify the appearance of the menu item and also specify the ID of the message 
passed to your program when the menu item is selected. Here we have the ID already specified as
ID_ELEMENT_LINE, but you could change it to something else if you want. Sometimes it’s convenient 
to specify the ID yourself, such as when the generated ID is too long or its meaning is unclear. If you
choose to define your own ID, you should use the MFC convention of prefixing it with ID_ to indicate
that it’s a command ID for a menu item.

Because this item is part of a pop-up menu, the Popup property is False by default. You could make it
another pop-up menu with a further list of items by setting the Popup property as True. As you see in
Figure 14-5, you can display the possible values for the Popup property by selecting the down arrow.
Don’t you love the way pop-ups pop up all over the place?

You can enter a text string for the value of the Prompt property that appears in the status bar of your
application when the menu item is highlighted. If you leave it blank, nothing is displayed in the status
bar. I suggest you enter Line as the value for the Prompt property. Note how you get a brief indication
of the purpose of the selected property at the bottom of the properties window. You want the default 
element selected in the application at start up to be a line, so you can set the Checked property value 
as True to get a check mark against the menu item to indicate when Line has been selected. We must

814

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 814



remember to add code to update check marks for the menu items when a different selection is made.
The Break property can alter the appearance of the pop-up by shifting the item into a new column.
You don’t need that here, so leave it as it is. Close the Properties window to save the values that 
you have set.

Modifying Existing Menu Items
If you think you may have made a mistake and want to change an existing menu item, or even if you
just want to verify that you set the properties correctly, it’s very easy to go back to an item. Just double-
click the item you’re interested in and the properties window for that item is displayed. You can then
change the properties in any way that you want and close the window when you’re done. If the item
you want to access is in a pop-up menu that isn’t displayed, just click the item on the menu bar to dis-
play the pop-up.

Completing the Menu
Now you can go through and create the remaining Element pop-up menu items that you need:
&Rectangle, &Circle, and Cur&ve. Of course, all of these should have the Checked property left as
False. You can’t use C as the hotkey for the last item, as hotkeys must be unique and you’ve already
assigned C to the menu item for a circle. You can accept the default IDs ID_ELEMENT_RECTANGLE,
ID_ELEMENT_CIRCLE, and ID_ELEMENT_CURVE for these. You could also set the values for the 
Prompt property value as Rectangle, Circle, and Curve respectively.

You also need a Color menu on the menu bar, with pop-up menu items for Black, Red, Green, and
Blue. You can create these, starting at the empty menu entry on the menu bar, using the same procedure
that you just went through. Set Black as checked so that is the default color. You can use the default IDs
(ID_COLOR_BLACK, etc.) as the IDs for the menu items. You can also add the status bar prompt for each
as the value of the Prompt property. After you’ve finished, if you drag Color so that it’s just to the right
of Element, the menu should appear as shown in Figure 14-6.

Figure 14-6

Note that you need to take care not to use the same letter more than once as a shortcut in the pop-up, 
or in the main menu, for that matter. There’s no check made as you create new menu items, but if you
right-click with the cursor on the menu bar when you’ve finished editing it, you’ll get a pop-up that 
contains an item Check Mnemonics. Selecting this checks your menu for duplicate shortcut keys. It’s 
a good idea to do this every time you edit a menu because it’s easy to create duplicates by accident.

That completes extending the menu for elements and colors. Don’t forget to save the file to make sure
that the additions are safely stored away. Next, you need to decide in which classes you want to deal
with messages from your menu items, and add member functions to handle each of the messages. For
that you’ll be using the Event Handler Wizard.

815

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 815



Adding Handlers for Menu Messages
To create an event handler for a menu item, right-click the item and select Add Event Handler from
the pop-up that is displayed. If you try this with the Black menu item in the Color menu pop-up, 
you’ll see the dialog shown in Figure 14-7.

Figure 14-7

As you can see, the wizard has already chosen a name for the handler function. You could change it but
OnColorBlack seems like a good name to me. 

You obviously need to specify the message type as one of the choices shown in the dialog box. The Message
type: box in the window in Figure 14-7 shows the two kinds of message that can arise for a particular menu
ID. Each type of message serves a distinct purpose in dealing with a menu item.

Message Type Description

COMMAND This type of message is issued when a particular menu item has been
selected. The handler should provide the action appropriate to the menu
item being selected, for example, setting the current color in the docu-
ment object or setting the element type.

UPDATE_COMMAND_UI This is issued when the menu should be updated — checked or unchecked,
for example — depending on its status. This message occurs before a
pop-up menu is displayed so you can set the appearance of the menu
item before the user sees it.

816

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 816



The way these work is quite simple. When you click a menu item in the Menu bar, an UPDATE_COMMAND_UI
message is sent for each item in that menu before the menu is displayed. This provides the opportunity to
do any necessary updating of the menu items’ properties before the user sees it. When these messages are
handled and any changes to the items’ properties are completed, the menu is drawn. When you then click
one of the items in the menu, a COMMAND message for that menu item is sent. I’ll deal with the COMMAND
messages now, and come back to the UPDATE_COMMAND_UI messages a little later in this chapter.

Because events for menu items result in command messages, you can choose to handle them in any of the
classes that are currently defined in the Sketcher application. So how do you decide where you should
process a message for a menu item?

Choosing a Class to Handle Menu Messages
Before you can decide which class should handle the messages for the menu items you’ve added, you need
to decide what you want to do with the messages.

You want the element type and the element color to be modal — that is, whatever is set for the element
type and element color should remain in effect until one or the other is changed. This allows you to create
as many blue circles as you want, and when you want red circles, you just change the color. You have two
basic possibilities for handling the setting of a color and the selection of an element type: setting them by
view or by document. You could set them by view, in which case, if there’s more than one view of a docu-
ment, each view has its own color and element set. This means that you might draw a red circle in one
view, switch to another view, and find that you’re drawing a blue rectangle. This would be confusing and
in conflict with how you would probably want them to work.

It would be better, therefore, to have the current color and element selection apply to a document. You
can then switch from one view to another and continue drawing the same elements in the same color.
There might be other differences between the views that you implement, such as the scale at which the
document is displayed perhaps, but the drawing operation is consistent across multiple views.

This suggests that you should store the current color and element in the document object. These could
then be accessed by any view object associated with the document object. Of course, if you had more than
one document active, each document would have its own color and element type settings. It would there-
fore be sensible to handle the messages for your new menu items in the CSketcherDoc class and to store
information about the current selections in an object of this class. I think you’re ready to dive in and create
a handler for the Black menu item.

Creating Menu Message Functions
Highlight the CSketchDoc class name in the Event Handler Wizard dialog box by clicking it. You’ll also
need to click the COMMAND message type. You can then click the Add and Edit button. This closes the
dialog box and the code for the handler you have created in the CSketcherDoc class is displayed in the
edit window. The function looks like this:

void CSketcherDoc::OnColorBlack()
{
// TODO: Add your command handler code here

}

817

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 817



The highlighted line is where you’ll put your code that handles the event that results from the user
selecting the Black menu item. The wizard also has updated the CSketcherDoc class definition:

class CSketcherDoc : public CDocument
{
protected: // create from serialization only
CSketcherDoc();
DECLARE_DYNCREATE(CSketcherDoc)

// Attributes
public:

// Operations
public:

// Overrides
public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);

// Implementation
public:
virtual ~CSketcherDoc();

#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

// Generated message map functions
protected:
DECLARE_MESSAGE_MAP()

public:
afx_msg void OnColorBlack();

};

The OnColorBlack() method has been added as a public member of the class and the afx_msg prefix
marks it as a message handler.

You can now add COMMAND message handlers for the other color menu IDs and all the Element menu
IDs in exactly the same way as this one. You can create each of the handler functions for the menu items
with just four mouse clicks. Right-click the menu item, click the Add Event Handler menu item, click
the CSketcherDoc class name in the dialog box for the Event Handler Wizard, and click the Add and
Edit button for the dialog box.

The Event Handler Wizard should now have added the handlers to the CSketcherDoc class definition,
which now looks like this:

class CSketcherDoc: public CDocument
{
...

818

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 818



protected:

// Generated message map functions
protected:
DECLARE_MESSAGE_MAP()

public:
afx_msg void OnColorBlack();
afx_msg void OnColorRed();
afx_msg void OnColorGreen();
afx_msg void OnColorBlue();
afx_msg void OnElementLine();
afx_msg void OnElementRectangle();
afx_msg void OnElementCircle();
afx_msg void OnElementCurve();
};

A declaration has been added for each of the handlers that you’ve specified in the Event Handler Wizard
dialog box. Each of the function declarations has been prefixed with afx_msg to indicate that it is a mes-
sage handler.

The Event Handler Wizard also automatically updates the message map in your CSketcherDoc class
implementation with the new message handlers. If you take a look in the file SketcherDoc.cpp, you’ll
see the message map as shown here:

BEGIN_MESSAGE_MAP(CSketcherDoc, CDocument)
ON_COMMAND(ID_COLOR_BLACK, OnColorBlack)
ON_COMMAND(ID_COLOR_RED, OnColorRed)
ON_COMMAND(ID_COLOR_GREEN, OnColorGreen)
ON_COMMAND(ID_COLOR_BLUE, OnColorBlue)
ON_COMMAND(ID_ELEMENT_LINE, OnElementLine)
ON_COMMAND(ID_ELEMENT_RECTANGLE, OnElementRectangle)
ON_COMMAND(ID_ELEMENT_CIRCLE, OnElementCircle)
ON_COMMAND(ID_ELEMENT_CURVE, OnElementCurve)

END_MESSAGE_MAP()

The Event Handler Wizard has added an ON_COMMAND() macro for each of the handlers that you have
identified. This associates the handler name with the message ID, so, for example, the member function
OnColorBlack() is called to service a COMMAND message for the menu item with the ID ID_COLOR_BLACK.

Each of the handlers generated by the Event Handler Wizard is just a skeleton. For example, take a look
at the code provided for OnColorBlue(). This is also defined in the file SketcherDoc.cpp, so you can
scroll down to find it, or go directly to it by switching to the Class View and double-clicking the function
name after expanding the tree for the class CSketcherDoc (make sure that the file is saved first):

void CSketcherDoc::OnColorBlue()
{

// TODO: Add your command handler code here
}

As you can see, the handler takes no arguments and returns nothing. It also does nothing at the moment,
but this is hardly surprising, because the Event Handler Wizard has no way of knowing what you want
to do with these messages! 

819

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 819



Coding Menu Message Functions
Now consider what you should do with the COMMAND messages for our new menu items. I said earlier
that you want to record the current element and color in the document, so you need to add a data mem-
ber to the CSketcherDoc class for each of these.

Adding Members to Store Color and Element Mode
You could add the data members that you need to the CSketcherDoc class definition just by editing the
class definition directly, but let’s use the Add Member Variable Wizard to do it. Display the dialog box for
the wizard by right-clicking the CSketcherDoc class name in the Class View and then selecting Add >
Add Variable from the pop-up menu that appears. You then see the dialog box for the wizard, as shown
in Figure 14-8.

Figure 14-8

I’ve already entered the information in the dialog box for the m_Element variable that stores the current
element type to be drawn. I have selected protected as the access because it should not be accessible
directly from outside the class. I have also selected the type as unsigned int because you use a positive
integer to identify each type of element. When you click the Finish button, the variable is added to the
class definition in the CSketcherDoc.h file.

Add the CSketcherDoc class member to store the element color manually just to show that you can. Its
name is m_Color and its type is COLORREF, which is a type defined by the Windows API for representing a
color as a 32-bit integer. You can add the declaration for the m_Color member to the CSketcherDoc class
like this:

class CSketcherDoc : public CDocument
{
...
// Generated message map functions
protected:

820

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 820



DECLARE_MESSAGE_MAP()
public:

afx_msg void OnColorBlack();
afx_msg void OnColorRed();
afx_msg void OnColorGreen();
afx_msg void OnColorBlue();
afx_msg void OnElementLine();
afx_msg void OnElementRectangle();
afx_msg void OnElementCircle();
afx_msg void OnElementCurve();

protected:
// Current element type
unsigned int m_Element;
COLORREF m_Color;          // Current drawing color

};

The m_Color member is also protected, as there’s no reason to allow public access. You can always add
functions to access or change the values of protected or private class members with the advantage that you
then have complete control over what values can be set. Of course you could have used the Add Member
Variable Wizard dialog as you did for m_Element; the difference is that you would type COLORREF in the
Variable type box rather than select from the drop-down list.

Initializing the New Class Data Members
You need to decide how to represent an element type. You could just set m_Element to a unique numeric
value, but this would introduce “magic numbers” into the program, the significance of which would be
less than obvious to anyone else looking at the code. A better way would be to define a set of constants
that you can use to set values for the member variable, m_Element. In this way, you can use a standard
mnemonic to refer to a given type of element. You could define the element types with the following
statements:

// Element type definitions
// Each type value must be unique
const unsigned int LINE = 101U;
const unsigned int RECTANGLE = 102U;
const unsigned int CIRCLE = 103U;
const unsigned int CURVE = 104U;

The constants initializing the element types are arbitrary unsigned integers. You can choose different
values, if you like, as long as they are all distinct. If you want to add further types in the future, it will
obviously be very easy to add definitions here.

For the color values, it would be a good idea if we used constant variables that are initialized with the
values that Windows uses to define the color in question. You could do this with the following lines 
of code:

// Color values for drawing
const COLORREF BLACK = RGB(0,0,0);
const COLORREF RED = RGB(255,0,0);
const COLORREF GREEN = RGB(0,255,0);
const COLORREF BLUE = RGB(0,0,255);

821

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 821



Each constant is initialized by RGB(), which is a standard macro defined in the Wingdi.h, header file
that is included as part of Windows.h. The three arguments to the macro define the red, green, and blue
components of the color value respectively. Each argument must be an integer between 0 and 255, where
these limits correspond to no color component and the maximum color component. RGB(0,0,0) corre-
sponds to black because there are no components of red, green, or blue. RGB(255,0,0) creates a color
value with a maximum red component, and no green or blue contribution. You can create other colors
by combining red, green, and blue components.

You need somewhere to put these constants, so let’s create a new header file and call it OurConstants.h.
You can create a new file by right-clicking the Header Files folder in the Solution Explorer tab and select-
ing the Add > Add New Item menu option from the pop-up. Enter the header file name OurConstants
in the dialog box that displays and then click the Open button. You’ll then be able to enter the constant
definitions in the Editor window as shown here.

//Definitions of constants

#pragma once

// Element type definitions
// Each type value must be unique
const unsigned int LINE = 101U;
const unsigned int RECTANGLE = 102U;
const unsigned int CIRCLE = 103U;
const unsigned int CURVE = 104U;
///////////////////////////////////

// Color values for drawing
const COLORREF BLACK = RGB(0,0,0);
const COLORREF RED = RGB(255,0,0);
const COLORREF GREEN = RGB(0,255,0);
const COLORREF BLUE = RGB(0,0,255);
///////////////////////////////////

As you’ll recall, the pre-processor directive #pragma once is there to ensure that the definitions cannot
be included more than once in a file. The statements in the header file are included into a source file only
by an #include directive if it hasn’t been included previously. After the header has been included in a
file, the statements will not be included again.

After saving the header file, you can add the following #include statement to the beginning of the file
Sketcher.h:

#include “OurConstants.h”

Any .cpp file that has an #include directive for Sketcher.h has the constants available. 

You can verify that the new constants are now part of the project by expanding Global Functions
and Variables in the Class View. You’ll see the names of the color and element types that have been
added now appear along with the global variable theApp.

822

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 822



Modifying the Class Constructor
It’s important to make sure that the data members you have added to the CSketcherDoc class are initial-
ized appropriately when a document is created. You can add the code to do this to the class constructor as
shown here:

CSketcherDoc::CSketcherDoc() : m_Element(LINE), m_Color(BLACK)
{

// TODO: add one-time construction code here
}

The wizard already has arranged that the m_Element member will be initialized to 0 so change the initial
value to LINE. You then need to add the initializer for the m_Color member with BLACK as the value so
that everything is consistent with the initial check marks that you specified for the menus.

Now you’re ready to add the code for the handler functions that you created for the Element and 
Color menu items. You can do this from the Class View. Click the name of the first handler function,
OnColorBlack(). You just need to add one line to the function, so the code for it becomes:

void CSketcherDoc::OnColorBlack()
{

m_Color = BLACK;          // Set the drawing color to black
}

The only job that the handler has to do is to set the appropriate color. In the interests of conciseness, the
new line replaces the comment provided originally. You can go through and add one line to each of the
Color menu handlers setting the appropriate color value.

The element menu handlers are much the same. The handler for the Element > Line menu item is:

void CSketcherDoc::OnElementLine()
{

m_Element = LINE;         // Set element type as a line
}

With this model, it’s not too difficult to write the other handlers for the Element menu. That’s eight 
message handlers completed. You can now rebuild the example and see how it works.

Running the Extended Example
Assuming that there are no typos, the compiled and linked program should run without error. When
you run the program, you should see the window shown in Figure 14-9.

The new menus are in place on the menu bar, and you can see that the items you have added to the menu
are all there, and you should see the Prompt message in the status bar that you provided in the properties
box when the mouse cursor is over a menu item. You could also verify that Alt+C and Alt+l work as
well. The things that don’t work are the check marks for the currently selected color and element, which
remain firmly stuck to their initial defaults. Let’s look at how you can fix that.

823

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 823



Figure 14-9

Adding Message Handlers to Update the User Interface
To set the check mark correctly for the new menus, you need to add the second kind of message han-
dler, UPDATE_COMMAND_UI (signifying update command user interface), for each of the new menu
items. This sort of message handler is specifically aimed at updating the menu item properties before
the item is displayed.

Go back to viewing the Sketcher.rc file in the Editor window. Right-click the Black item in the Color
menu and select Add Event Handler from the pop-up menu. You can then select UPDATE_COMMAND_UI
as the message type and CSketcherDoc as the class as shown in Figure 14-10.

Figure 14-10

824

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 824



The name for the update function has been generated as OnUpdateColorBlack(). Because this seems a
reasonable name for the function you want, click the Add and Edit button and have the Event Handler
Wizard generate it. As well as generating the skeleton function definition in SketcherDoc.cpp, its decla-
ration is added to the class definition. An entry for it is also made in the message map that looks like this:

ON_UPDATE_COMMAND_UI(ID_COLOR_BLACK, OnUpdateColorBlack)

This uses the ON_UPDATE_COMMAND_UI() macro that identifies the function you have just generated as
the handler to deal with update messages corresponding to the ID shown. You could now enter the code
for the new handler but I’ll let you add command update handlers for each of the menu items for both
the Color and Element menus first.

Coding a Command Update Handler
You can access the code for the OnUpdateColorBlack() handler in the CSketcherDoc class by selecting
the function in Class View. This is the skeleton code for the function:

void CSketcherDoc::OnUpdateColorBlack(CCmdUI* pCmdUI)
{

// TODO: Add your command update UI handler code here

}

The argument passed to the handler is a pointer to an object of the CCmdUI class type. This is an MFC
class that is only used with update handlers, but it applies to toolbar buttons as well as menu items. The
pointer points to an object that identifies the item that originated the update message so you use this to
operate on the item to update how it appears before it is displayed. The CCmdUI class has five member
functions that act on user interface items. The operations that each of these provides are as follows:

We’ll use the third function, SetCheck(), as that seems to do what we want. The function is declared in
the CCmdUI class as:

virtual void SetCheck(int nCheck = 1);

Function Description

ContinueRouting() Passes the message on to the next priority handler.

Enable() Enables or disables the relevant interface item.

SetCheck() Sets a check mark for the relevant interface item.

SetRadio() Sets a button in a radio group on or off.

SetText() Sets the text for the relevant interface item.

825

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 825



This function sets a menu item as checked if you pass 1 as the argument and set it unchecked if you pass 0
as the argument. The parameter has a default value of 1, so if you just want to set a check mark for a menu
item regardless, you can call this function without specifying an argument.

In our case, you want to set a menu item as checked if it corresponds with the current color. You can,
therefore, write the update handler for OnUpdateColorBlack() as:

void CSketcherDoc::OnUpdateColorBlack(CCmdUI* pCmdUI)
{

// Set menu item Checked if the current color is black
pCmdUI->SetCheck(m_Color==BLACK);

}

The statement you have added calls the SetCheck() function for the Color > Black menu item, and
the argument expression m_Color==BLACK results in true if m_Color is BLACK, or false otherwise. The
effect, therefore, is to check the menu item only if the current color stored in m_Color is BLACK, which 
is precisely what you want.

The update handlers for all the menu items in a menu are always called before the menu is displayed so
you can code the other handlers in the same way to ensure that only the item corresponding to the current
color (or the current element) is checked:

void CSketcherDoc::OnUpdateColorBlue(CCmdUI* pCmdUI)
{

// Set menu item Checked if the current color is blue
pCmdUI->SetCheck(m_Color==BLUE);

}

void CSketcherDoc::OnUpdateColorGreen(CCmdUI* pCmdUI)
{

// Set menu item Checked if the current color is green
pCmdUI->SetCheck(m_Color==GREEN);

}

void CSketcherDoc::OnUpdateColorRed(CCmdUI* pCmdUI)
{

// Set menu item Checked if the current color is red
pCmdUI->SetCheck(m_Color==RED);

}

A typical Element menu item update handler is coded as:

void CSketcherDoc::OnUpdateElementLine(CCmdUI* pCmdUI)
{

// Set Checked if the current element is a line
pCmdUI->SetCheck(m_Element==LINE);

}

You can now code all the other update handlers in a similar manner:

void CSketcherDoc::OnUpdateElementCurve(CCmdUI* pCmdUI)
{

826

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 826



// Set Checked if the current element is a curve
pCmdUI->SetCheck(m_Element==CURVE);

}

void CSketcherDoc::OnUpdateElementCircle(CCmdUI *pCmdUI)
{

// Set Checked if the current element is a circle
pCmdUI->SetCheck(m_Element==CIRCLE);

}

void CSketcherDoc::OnUpdateElementRectangle(CCmdUI* pCmdUI)
{

// Set Checked if the current element is a rectangle
pCmdUI->SetCheck(m_Element==RECTANGLE);

}

After you get the idea, it’s easy, isn’t it?

Exercising the Update Handlers
When you’ve added the code for all the update handlers, you can build and execute the Sketcher appli-
cation again. Now, when you change a color or an element type selection, this is reflected in the menu, 
as shown in Figure 14-11.

Figure 14-11

You have completed all the code that you need for the menu items. Make sure that you have saved
everything before embarking onto the next stage. These days, toolbars are a must in any Windows pro-
gram of consequence, so the next step is to take a look at how you can add toolbar buttons to support
our new menus.

Adding Toolbar Buttons
Select the Resource View and extend the toolbar resource. You’ll see that it has the same ID as the main
menu, IDR_MAINFRAME. If you double-click this ID, the Editor window appears as shown in Figure 14-12.

827

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 827



Figure 14-12

A toolbar button is a 16×15 array of pixels that contains a pictorial representation of the function it oper-
ates. You can see in Figure 14-12 that the resource editor provides an enlarged view of a toolbar button
so that you can see and manipulate individual pixels. If you click the new button at the right end of
the row as indicated, you’ll be able to draw this button. Before starting the editing, drag the new button
about half a button width to the right. It separates from its neighbor on the left to start a new block.

You should keep the toolbar button blocks in the same sequence as the items on the menu bar, so you’ll
create the element type selection buttons first. You’ll be using the following editing buttons provided by
the resource editor that appear in the toolbar for the Visual C++ 2008 application window.

❑ Pencil for drawing individual pixels

❑ Eraser for erasing individual pixels

❑ Fill an area with the current color

❑ Zoom the view of the button

❑ Draw a rectangle

❑ Draw an ellipse

❑ Draw a curve

If it is not already visible, you can display the window for selecting a color by right-clicking a toolbar
button and selecting Show Colors Window from the pop-up. Make sure that the black color is selected
and use the pencil tool to draw a diagonal line in the enlarged image of the new toolbar button. In fact, if
you want it a bit bigger, you can use the Magnification Tool editing button to enlarge it up to eight times
its actual size. If you make a mistake, you can change to the Erase Tool editing button, but you need to
make sure that the color selected corresponds to the background color for the button you are editing.
You can also erase individual pixels by clicking them using the right mouse button, but again you need
to be sure that the background color is set correctly when you do this. To set the background color, just
click the appropriate color using the right mouse button. After you’re happy with what you’ve drawn,
the next step is to edit the toolbar button properties.

828

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 828



Editing Toolbar Button Properties
Double-click your new button in the toolbar to bring up its properties window, as shown in Figure 14-13. 

Figure 14-13

The properties box shows a default ID for the button, but you want to associate the button with the
menu item Element > Line that we’ve already defined, so click ID and then click the down arrow 
to display alternative values. You can then select ID_ELEMENT_LINE from the drop-down box. If you
click on Prompt you’ll find that this also causes the same prompt to appear in the status bar because 
the prompt is recorded along with the ID. You can close the Properties window to complete the 
button definition.

You can now move on to designing the other three element buttons. You can use the rectangle editing
button to draw a rectangle and the ellipse button to draw a circle. You can draw a curve using the pen-
cil to set individual pixels, or use the curve button. You need to associate each button with the ID corre-
sponding to the equivalent menu item that you defined earlier.

Now add the buttons for the colors. You should also drag the first button for selecting a color to the right
so that it starts a new group of buttons. You could keep the color buttons very simple and just color the
whole button with the color it selects. You can do this by selecting the appropriate foreground color, then
selecting the “fill” editing button and clicking on the enlarged button image. Again you need to use
ID_COLOR_BLACK, ID_COLOR_RED, and so on, as IDs for the buttons. The toolbar editing window should
look like the one shown in Figure 14-14.

That’s all you need for the moment, so save the resource file and give Sketcher another spin.

829

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 829



Figure 14-14

Exercising the Toolbar Buttons
Build the application once again and execute it. You should see the application window shown in
Figure 14-15.

Figure 14-15

There are some amazing things happening here. The toolbar buttons that you added already reflect the
default settings that you defined for the new menu items. If you let the cursor linger over one of the new
buttons, the prompt for the button appears in the status bar. The new buttons work as a complete substi-
tute for the menu items and any new selection made, using either the menu or the toolbar, is reflected by
showing the toolbar button depressed, as well as the check against the menu item.

If you close the document view window, Sketcher1, you’ll see that our toolbar buttons are automatically
grayed and disabled. If you open a new document window, they are automatically enabled once again.
You can also try dragging the toolbar with the cursor. You can move it to either side of the application
window, or have it free-floating. You can also enable or disable it through the View > Toolbar menu
option. You got all this without writing a single additional line of code!

830

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 830



Adding Tooltips
There’s one further tweak that you can add to your toolbar buttons that is remarkably easy: adding
tooltips. A tooltip is a small box that appears adjacent to the toolbar button when you let the cursor
linger on the button. The tooltip contains a text string that is an additional clue as to the purpose of
the toolbar button.

To add tooltips, select the Resource View tab and, after expanding the resource list, click the String Table
folder and double-click the resource. This contains the IDs and prompt strings associated with menu items
and toolbar buttons. You should see the IDs for the menus that you added earlier together with the prompt
text for each under the caption heading. To add a tooltip, you just need to add \n (the newline character),
followed by the tooltip text to the end of the caption text. For the prompt text you have already entered you
can double-click text to enable editing of it and then add \n to the end of the prompt text in the caption col-
umn, so you could change the existing caption for the ID_ELEMENT_LINE ID from Line to Line\nSets
line drawing mode, for example. Thus the caption text has two parts separated by \n, the first part being
the prompt that appears in the status bar and the second is the tooltip text.

Add \n followed by a tooltip to the caption text for each of the IDs for the menu items in the Element
and Color menus — not forgetting to start each tooltip text with \n. That’s all you have to do. After sav-
ing the String Table resource, you can now rebuild the application and execute it. Placing the cursor
over one of the new toolbar buttons causes the tooltip to be displayed after a second or two.

Menu and Toolbars in a C++/CLI Program
Of course, your C++/CLI programs can also have menus and toolbars. A good starting point for a
windows-based C++/CLI program is to create a Windows Forms application. The Windows Forms
technology is oriented toward the development of applications that use the vast array of standard con-
trols that are provided, but there’s no reason why you can’t do drawing with a form-based application.
There is much less programming for you to do with a Windows Forms application because you add
the standard components for the GUI using the Windows Forms Designer capability and the code to
generate and service the GUI components will be added automatically. Your programming activity
will involve adding application-specific classes and customizing the behavior of the application by
implementing event handlers. 

Understanding Windows Forms
Windows Forms is a facility for creating Windows applications that execute with the CLR. A form is a
window that is the basis for an application window or a dialog window to which you can add other con-
trols that the user can interact with. Visual C++ 2008 comes with a standard set of more than 60 controls
that you can use with a form. Because there is a very large number of controls, you’ll get to grips only
with a representative sample in this book, but that should give you enough of an idea of how they are
used to explore the others for yourself. Many of the standard controls provide a straightforward interactive
function, such as Button controls that represent buttons to be clicked or TextBox controls that allow text to
be entered. Some of the standard controls are containers, which means that they are controls that can con-
tain other controls. For example, a GroupBox control can contain other controls such as Button controls or
TextBox controls, and the function of a GroupBox control is simply to group the controls together for some
purpose and optionally provide a label for the group in the GUI. There are also a lot of third-party controls

831

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 831



available. If you can’t find the control you want in Visual C++, it is very likely that you can find a third
party that produces it.

A form and the controls that you use with a form are represented by a C++/CLI class. Each class has a set
of properties that determines the behavior and appearance of the control or form. For example, whether
or not a control is visible in the application window and whether or not a control is enabled to allow user
interaction are determined by the property values that are set. You can set a control’s properties interac-
tively when you assemble the GUI using the IDE. You can also set property values at run time using func-
tions that you add to the program or via code that you add to existing functions through the code Editor
pane. The classes also define functions that you call to perform operations on the control.

When you create a project for a Windows Forms application, an application window based on the Form
class is created along with all the code to display the application window. After you create a Windows
Forms project, there are four distinct operations involved in developing a Windows Forms application:

❑ You create the GUI interactively in the Form Design tab that is displayed in the Editor pane by
selecting controls in the Toolbox window and placing them on the form. You can also create
additional form windows. 

❑ You modify the properties for the controls and the forms to suit your application needs in the
Properties window.

❑ You can create click event handlers for a control by double-clicking the control on the Form
Design tab. You can also set an existing function as the handler for an event for a control from
its Properties window.

❑ You can modify and extend the classes that are created automatically from your interaction 
with the Form Design tab to meet the needs of your application.

You’ll get a chance to see how it works in practice.

Understanding Windows Forms Applications
You first need to get an idea of how the default code for a Windows Forms application works. Create a new
CLR project using the Windows Forms Application template and assign the name CLRSketcher to the
project. The procedure is exactly the same as you used back in Chapter 12 when you created Ex12_03 so I
won’t repeat it here. The Design window for CLRSketcher will show the form as it is defined initially and
you’ll customize it to suit the development of a version of Sketcher for the CLR. It won’t have the full capa-
bility of the MFC version but it will demonstrate how you implement the major features in a C++/CLI con-
text. You’ll continue to add functionality to this application over the next four chapters.

The Editor pane displays a graphical representation of the application window because with a Windows
Forms application you build the GUI graphically. Even double-clicking Form1.h in the Solution Explorer
pane does not display the code, but you can see it by right-clicking in the Editor window and selecting
View Code from the context menu.

The code defines the Form1 class that represents the application window, and the first thing to note is
that the code is defined in its own namespace:

namespace CLRSketcher
{
using namespace System;
using namespace System::ComponentModel;

832

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 832



using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;
using namespace System::Drawing;

// rest of the code
}

When you compile the project, it creates a new assembly, and the code for this assembly is within the
namespace CLRSketcher, which is the same as the project name. The namespace ensures that a type in
another assembly that has the same name as a type in this assembly is differentiated because each type
name is qualified by its own namespace name.

There are also six using directives for .NET library namespaces, and these cover the library functionality
you are most likely to need in your application. These namespaces are:

The Form1 class is derived from the Form class that is defined in the System::Windows::Forms name-
space. The Form class represents either an application window or a dialog window, and the Form1 class
that defines the window for CLRSketcher inherits all the members of the Form class. 

The section at the end of the Form1 class contains the definition of the InitializeComponent() func-
tion. This function is called by the constructor to set up the application window and any components that
you add to the form. The comments indicate that you must not modify this section of code using the code
editor, and this code is updated automatically as you alter the application window interactively. It’s impor-
tant when you do use Form Design that you do not ignore these comments and modify the automatically
generated code yourself; if you do, things are certain to go wrong at some point. Of course, you can write

Namespace Contents

System This namespace contains classes that define data types that are
used in all CLR applications. It also contains classes for events
and event handling, exceptions, and classes that support com-
monly used functions. 

System::ComponentModel This namespace contains classes that support the operation of
GUI components in a CLR application.

System::Collections This namespace contains collection classes for organizing data in
various ways, and includes classes to define lists, queues, diction-
aries (maps), and stacks.

System::Windows::Forms This namespace contains the classes that support the use of
Windows Forms in an application.

System::Data This namespace contains classes that support ADO.NET, which is
used for accessing and updating data sources. You’ll learn more
about accessing data sources in a CLR application in the next
chapter.

System::Drawing Defines classes that support basic graphical operations such as
drawing on a form or a component.

833

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 833



all the code for a Windows Forms application from the ground up, but it is much quicker and less error-
prone to use the Form Design capability to set up the GUI for your application interactively. This doesn’t
mean you shouldn’t know how it works. 

The code for the InitializeComponent() function initially looks like this:

void InitializeComponent(void)
{
this->components = gcnew System::ComponentModel::Container();
this->Size = System::Drawing::Size(300,300);
this->Text = L”Form1”;
this->Padding = System::Windows::Forms::Padding(0);
this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;

}

The components member of the Form1 class is inherited from the base class, and its role is to keep track 
of components that you subsequently add to the form. The first statement stores a handle to a Container
object in components and this object represents a collection that stores GUI components in a list. Each new
component that you add to the form using the Form Design capability is added to this Container object.

Modifying the Properties of a Form
The remaining statements in the InitializeComponent() function set properties for Form1. You must
not modify any of these directly in the code, but you can choose your own values for these through the
Properties window for the form, so return to the Form1.h [Design] tab for the form in the Editor win-
dow and right-click it to display the Properties window shown in Figure 14-16.

Figure 14-16

834

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 834



Figure 14-16 shows the properties for the form in alphabetical sequence. You can also display the proper-
ties categorized by function by clicking the first button at the top of the window. It’s worth browsing
through the list of properties for the form to get an idea of the possibilities. Clicking any of the properties
displays a description at the bottom of the window. Figure 14-16 shows the Properties window with the
width increased to make the descriptions visible. You can select the cell in the right column to modify the
property value. The properties that have a + to the left have multiple values and clicking the + displays
the values so you can change them individually. You can also display the properties in alphabetical order
by clicking a button. This is helpful when you know the name of the property you want to change, as it
makes it easier to find it.

You can make the form a little larger by changing the value for the Size property in the Layout group 
to 500,350. You don’t want to make it too large at this point because it will make it difficult to work with
when you have several windows open in the IDE, so just size the form so it’s easy to work with on your
display. You could also change the Text property (which is in the Appearance category if you are look-
ing at that organization for the properties) to CLR Sketcher. This changes the text in the title bar for the
application window. If you go back to the Form1.h tab in the Editor window, you’ll see that the code in
the InitializeComponent() function has been altered to reflect the property changes you have made.
As you’ll see, the Properties window is a fundamental tool for implementing support for GUI compo-
nents in a Forms-based application

Note that you can also arrange for the application window to be maximized when the program starts by
setting the value for the WindowState property. With the default Normal setting, the window is the size
you have specified, but you can set the property to Maximized or Minimized by selecting from the list
of values for this property.

How the Application Starts
Execution of the application begins, as always, in the main() function, and this is defined in the
CLRSketcher.cpp file as:

int main(array<System::String ^> ^args)
{

// Enabling Windows XP visual effects before any controls are created
Application::EnableVisualStyles();

// Create the main window and run it
Application::Run(gcnew Form1());
return 0;

}

The main() function calls two static functions that are defined in the Application class that is defined
in the System::Windows::Forms namespace. The static functions in the Application class are at the
heart of every Windows Forms application. The EnableVisualStyles() function that is called first in
main() enables visual styles for the application. The Run() function starts a Windows message loop for
the application and makes the Form object that is passed as the argument visible. An application running
with the CLR is still ultimately a Windows application, so it works with a message loop in the same way
as all other Windows applications.

835

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 835



Adding a Menu to CLR Sketcher
The IDE provides you with a standard set of controls that you can add to your application interactively
through the Design window. Press Ctrl+Alt+X or select from the View menu to display the Toolbox
window. The window containing the list of available controls is displayed, as shown in Figure 14-17.

Figure 14-17

The first block in the Toolbox window is labelled All Windows Forms and lists all the controls available
for use with a form. You can click the plus sign for the All Windows Forms tab if it is not already expanded.
You can collapse this block by clicking the minus sign to the left of the block heading, and you’ll see that
the controls are also grouped by type in the list starting with the Common Controls block. You’ll proba-
bly find it most convenient initially to use the group containing all the controls at the beginning of the list,
but after you are familiar with what controls are available, you may find it easier to collapse the groups
and just have one group expanded at one time. 

A Menu Strip is a container for menu items, so add one to the form by dragging a MenuStrip from the
Menus & Toolbars group in the Toolbox window to the form; the menu strip attaches itself to the top 
of the form below the title bar. You’ll see a small arrow at the top left of the control. If you click this, a
pop-up window appears, as shown in Figure 14-18.

Figure 14-18

836

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 836



The first item in the Menu Strip Tasks pop-up embeds the menu strip in a ToolStripContainer control
that provides panels on all four sides of the form plus a central area in which you can place another con-
trol. The second item generates four standard menu items: File Edit, Tools, and Help, complete with
menu item lists and as you’ll see in a moment you can also do this without displaying this pop-up. The
RenderMode allows you to choose the painting style for the menu strip, and you can leave this at the
default selection. The Dock option enables you to choose which side of the form the menu strip is to be
docked or you can elect to have it undocked. The GripStyle option determines whether the grip for
dragging the menu around is visible or not. The Visual C++ 2008 menu strips have visible grips that
allow you to move them around. Selecting the final Edit Items option displays a dialog box in which
you can edit the properties for the menu strip or for any of its menu items.

If you right-click the menu strip and select Insert Standard Items from the pop-up, the standard menu
items will be added; you’ll only be implementing the File menu items but you can leave the others there
if you want. Alternatively you can delete any of them by right-clicking the item and selecting Delete from
the pop-up. I’ll leave them in so they will appear in the subsequent figures.

To add the Element menu, click the box displaying  “Type Here” and type &Element. You can then click
the box that displays below Element and type &Line for the first submenu item. Continue to add the
remaining submenu items by entering &Rectangle, &Circle, and Cur&ve in successive boxes in the drop-
down menu. To shift the Elements menu to the left of the Help menu, select Elements on the menu strip
and drag it to the left of Help. Next you can add the Color menu by typing &Color in the “Type Here” on
the menu strip. You can then enter Blac&k, &Red, &Green, and &Blue successively in the menu slots below
Color to create the drop-down menu. After dragging Color to the left of Help, your application window
should look like Figure 14-19. 

To check the default Color/Black menu item, right-click the menu item and select Checked from the
pop-up. Do the same for the Element/Line menu item. All the code to create the menus is already in the
application. You can see this if you select the Class View tab, select the + by CLRSketcher to extend the
tree, and then click on the Form1 class name. The code for the Form1 class displays in a new tabbed win-
dow. Around line 44 you’ll see the class members that reference the menu items and you’ll see the code
creating the objects that encapsulate the menu items in the body of the InitializeComponent() mem-
ber of the Form1 class. It’s worth browsing the code in this function from time to time as you develop
CLRSketcher because it will show you the code for creating GUI components as well as how delegates
for events are created and registered. The code in the Form1 class definition will grow considerably and
look pretty daunting as you increase the capabilities of the application but you always can navigate
through it relatively easily by using Class View. 

Figure 14-19

837

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 837



You can add shortcut key combinations for menu items by setting the value of the ShortcutKeys prop-
erty. Figure 14-20 shows this property for the Line menu item.

Select the modifier of modifiers by clicking the checkboxes and select the key from the drop-down list.
Figure 14-20 shows Ctrl+Shift+L specified as the shortcut key combination. You can control whether or
not the shortcut key combination is displayed in the menu by setting the value of the ShowShortcutKeys
property appropriately.

Figure 14-20

The next step is to add event handlers for the menu items.

Adding Event Handlers for Menu Items
Event handlers are delegates in a C++/CLI program, but you hardly need be aware of this in practice
because all the functions that are delegates will be created automatically. Return to the Design tab by
clicking on it. You can start by adding handlers for the items in the Element menu.

If it is not already visible, extend the Element drop-down menu on the form by clicking it, then right-
click on the Line menu item and select Properties from the pop-up. Click on the events button in the
Properties window (the one that looks like a lightning flash) and double-click the Click event at the 
top of the list. The IDE will switch to the code tab showing the delegate function for the menu item,
which looks like this:

private: System::Void lineToolStripMenuItem_Click(System::Object^  sender,
System::EventArgs^  e) 

{

}

838

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 838



I have rearranged the code slightly to make it easier to read. This function will be called automatically
when you click the Line menu item in the application. The first parameter identifies the source of the
event, the menu item object in this case, and the second parameter provides information relating to the
event. You’ll learn more about EventArgs objects a little later in this chapter. This function has already
been identified as the event handler for the menu item with the code:

this->lineToolStripMenuItem->Click += gcnew System::EventHandler(
this, &Form1::lineToolStripMenuItem_Click);

This is in the InitializeComponent() function and is located at about line 369 in the Form1.h listing
on my system, but if you deleted the surplus standard menu items it will be a different line; you’ll find 
it in the section labeled in comments as // lineToolStripMenuItem.

You can add event handlers for all the menu items in the Element and Color menus in the same way. 
If you switch back to the Design tab and you have not closed the Properties window, clicking on a new
menu item will display the properties for that in the window. You can then double-click the Click prop-
erty to generate the handler function. Note that the names of the handler functions are created by default,
but if you want to change the name you can edit it in the value field to the right of the event name in the
Properties window. The default names are quite satisfactory in this instance though. 

Implementing Event Handlers
Following the model of the MFC version of Sketcher, you need a way to identify different element types
in the CLR version. An enum class will do nicely for this. Add the following line of code in the Form1.h
file following the using directives at the beginning of the file, and immediately before the comments
preceding the Form1 class definition:

enum class ElementType {LINE, RECTANGLE, CIRCLE, CURVE};

This defines the four constants you need to specify the four types of element in Sketcher. As soon as you
have entered this code, you see the new class appears in the Class View window as part of CLR Sketcher.

To identify the colors you can use objects of type System::Drawing::Color that represent colors. The
System::Drawing namespace defines a wide range of types for use in drawing operations and you’ll
be using quite a number of them before CLRSketcher is finished. The Color structure defines a lot of
standard colors, including Color::Black, Color::Red, Color::Green, and Color::Blue so you
have everything you need.

The element type and the drawing color are modal, so you should add variables to the Form1 class to
store the current element type and color. You can do this manually or use a code wizard to do it; let’s 
try the latter. Right-click on Form1 in Class View and select Add /Add Variable... from the pop-up.
Select the Access as private, double-click the default variable type and enter ElementType and type
the variable name as elementType. You can also add a comment if you want, Current element 
type, and click Finish to add the variable to the class. Repeat the process for a private variable of
type Color with the name color. 

The new variables need to be initialized when the Form1 constructor is called so double-click on the
constructor name, Form1(void), in the lower part of the Class View window (for the members of

839

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 839



Form1 to be displayed, Form1 must be selected in Class View). Modify the code for the constructor to
the following:

Form1(void) : elementType(ElementType::LINE), color(Color::Black)
{

InitializeComponent();
//
//TODO: Add the constructor code here
//

}

The new variables are initialized in the first line. You should see IntelliSense prompts for possible values
for the ElementType, and Color types as you type the initialization list. You now have enough in place
to implement the menu event handlers. You can find the Line menu item handler toward the end of the
code in Form1.h or double-click the Line menu item in the Design window to go directly to it. Modify
the handler code to the following:

private: System::Void lineToolStripMenuItem_Click(
System::Object^  sender, System::EventArgs^  e) 

{
elementType = ElementType::LINE;

}

This just sets the current element type appropriately. You can do the same for the other three Element
menu handlers. Simple, isn’t it?

The first Color menu handler should be modified as follows:

private: System::Void blackToolStripMenuItem_Click(
System::Object^  sender, System::EventArgs^  e) 
{

color = Color::Black;
}

The other Color menu handlers should set the value of color appropriately to Color::Red,
Color::Green, or Color::Blue.

Setting Menu Item Checks
At present, selecting element and color menu items sets the mode in the program but the checks
shown on the menus remain stuck at the default. You don’t have the COMMAND and COMMAND_UI mes-
sage types with a CLR program that you have with the MFC, so you need a different approach to set
the check mark against the element and color menu items that are in effect. You can handle messages
for the Element and Color menu items on the menu strip when one or the other is selected and con-
veniently the handler for one of the messages is called before the corresponding drop-down menu is
displayed. Right-click on the Element menu item in the Design window and select Properties from 
the pop-up. When you select the Messages button in the Properties window, the window should look
like Figure 14-21.

840

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 840



Figure 14-21

The Action group shows the events relating to when the menu item is clicked. Double-click the
DropDownOpening event in the Action group to create a handler for it. This handler will be executed
before the drop-down Element menu is displayed, so you can set the check mark in the function by
modifying it like this:

private: System::Void elementToolStripMenuItem_DropDownOpening(
System::Object^  sender, System::EventArgs^  e)

{
lineToolStripMenuItem->Checked = elementType == ElementType::LINE;
rectangleToolStripMenuItem->Checked = elementType == ElementType::RECTANGLE;
circleToolStripMenuItem->Checked = elementType == ElementType::CIRCLE;
curveToolStripMenuItem->Checked = elementType == ElementType::CURVE;

}

The four lines of code you add set the Checked property for each of the menu items in the drop-down
list. The Checked property will be set to true for the case where the value stored in elementType
matches the element type set by the menu item and all the others will be false. The drop-down will
then be displayed with the appropriate menu item checked.

You can create a DropDownOpening event handler for the Color menu item and implement it like this:

private: System::Void colorToolStripMenuItem_DropDownOpening(
System::Object^  sender, System::EventArgs^  e)

{

841

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 841



blackToolStripMenuItem->Checked = color == Color::Black;
redToolStripMenuItem->Checked = color == Color::Red;
greenToolStripMenuItem->Checked = color == Color::Green;
blueToolStripMenuItem->Checked = color == Color::Blue;

}

If you recompile CLRSketcher and execute it you should see the menu item checks working as they
should.

Adding a Toolbar
You can add a toolbar with buttons corresponding to the Element and Color menu items. To add a tool-
bar to the application it’s back to the Design window and the Toolbox. Toolbar buttons sit on a tool strip
so drag a ToolStrip control from the Menus & Toolbars group in the Toolbox window on to the form;
the tool strip will attach itself to the top of the form below the menu strip. You can add a set of standard
toolbar buttons by right-clicking the tool strip and selecting Insert Standard Items from the pop-up. You
get more than you need and because you will be adding eight more buttons, remove all but the four on
the left that provide for a new document, open file, save file and print.

You will need bitmap images to display on the new toolbar buttons so it’s a good idea to create these first.
Select the Resource View tab and expand the tree in the window so the app.rc file name is visible. The
app.rc file contains the icons and bitmaps that are used by the application so you will add the bitmaps 
to this file. Right-click on app.rc in the Resource View window and select Add Resource... from the
pop-up. Select Bitmap in the dialog that displays and click on the New button. You will then see a window
with a default 48×48 pixel image that you can edit and the Image Editor toolbar will be displayed for edit-
ing bitmap and icon images. You can undock this toolbar by dragging it off the tool strip if you want, in
which case it looks like Figure 14-22.

Figure 14-22

The bitmap will be identified in the Resource View window with a default ID, IDB_BITMAP1. It will be
convenient to change the ID and file name for the bitmap to something more meaningful, so right-click
in the window displaying the bitmap image and select Properties from the pop-up. In the Properties
window you can change the Filename property value to line.bmp, the ID property value to IDB_LINE,
and the Height and Width values to 16 instead of 48. The new ID will enable you to identify the bitmap
in Resource View in the event that you want to edit it. The new file name will make it easy to choose the
correct bitmap for a given toolbar button.

If the Colors window is not visible, right-click in the window displaying the bitmap and select Show
Colors Window from the pop-up. Right-clicking a color in the Colors window sets the background color
and left-clicking a color sets the foreground color. When using the Image Editor tools, holding the left
mouse button down when drawing in the bitmap uses the foreground color and holding the right button
down draws in the background color. Use the Image Editor toolbar buttons to draw your own image to
represent the Line menu item action. You can then save the file before adding the next bitmap. You can
add three more bitmaps corresponding to the Rectangle, Circle, and Curve menu item actions to

842

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 842



complete the element set. To add each of these you can right-click on the Bitmap folder name in the
Resource View window and select Insert Bitmap from the pop-up. You should end up with four items
in the Bitmap folder in Resource View, as shown in Figure 14-23.

Figure 14-23

Create four more bitmaps in app.rc for the color toolbar buttons. You can use the same principle for 
file names and IDs as you used for the element type bitmaps so the files will be black.bmp, red.bmp,
green.bmp and blue.bmp, and the IDs will be IDB_BLACK, IDB_RED, IDB_GREEN and IDB_BLUE.

You can now return to the Design window to add the toolbar buttons. Click on the down arrow adjacent
to the Add ToolStripButton icon on the tool strip to display the list shown in Figure 14-24.

Figure 14-24

Select the Button item at the top of the list to add a button to the tool strip. You can then right-click the
new button, select Set Image from the pop-up and select line.bmp from the dialog that displays; select
the Open button in the dialog to set this image for the toolbar button.

Right-click on the new line button and display its properties. In the Properties window change the value of
the (Name) property in the Design group to toolStripLineButton. You can also change the ToolTipText
property to something helpful such as Draw lines.

Select the Events button to display the events for the button. You don’t want to create a new handler for
this button as the handler for the Line menu item will work perfectly well. Click on the down arrow in
the value column for the Click event for the button to display the available handler functions, as shown
in Figure 14-25.

843

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 843



Figure 14-25

Select the lineToolStripMenuItem_Click handler from the list to register this function as the delegate
for the Click event for the button. Repeat this process to create buttons to create the element toolbar but-
tons for drawing rectangles, circles, and curves and in each case set the Click event handler to be the cor-
responding menu item Click event handler.

Before you add the buttons for element colors, click on the down arrow at the side of the Add
ToolStripButton icon on the toolbar and select Separator from the list; this inserts a separator 
to divide the element type button group from the colors group. You can now add the four buttons for
colors with the Click event handler being the same as the handler for the corresponding menu item.

If you now recompile CLRSketcher and execute it, you should see your version of the application similar
to the window shown in Figure 14-26.

Figure 14-26

Figure 14-26 shows the tooltip text for the red button and you should find that the menu items checks
are all working regardless of whether you use the toolbar or the menus to select the element type and
drawing color. You now have a CLR version of Sketcher that is essentially the same as the MFC version
you developed earlier in this chapter. You won’t retain exact correspondence between MFC and CLR
versions of Sketcher in subsequent chapters but the main features will be in both.

844

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 844



Summary
In this chapter, you learned how MFC connects a message with a class member function to process it,
and you wrote your first message handlers. Much of the work in writing a Windows program is writing
message handlers, so it’s important to have a good grasp of what happens in the process. When we get
to consider other message handlers, you’ll see that the process for adding them is just the same.

You have also extended the standard menu and the toolbar in the MFC Application Wizard-generated
program, which provides a good base for the application code that you add in the next chapter. Although
there’s no functionality under the covers yet, the menu and toolbar operation looks very professional,
courtesy of the Application Wizard-generated framework and the Event Handler Wizard.

You learned about creating menus and toolbars in a CLR version of the Sketcher program and how you
handle events to provide equivalent function to the MFC version.

The important points that you’ve seen in this chapter are:

❑ MFC defines the message handlers for a class in a message map that appears in the .cpp file 
for the class.

❑ Command messages that arise from menus and toolbars can be handled in any class that’s
derived from CCmdTarget. These include the application class, the frame and child frame 
window classes, the document class, and the view class.

❑ Messages other than command messages can only be handled in a class derived from CWnd. 
This includes frame window and view classes, but not application or document classes.

❑ MFC has a predefined sequence for searching the classes in your program to find a message
handler for a command message.

❑ You should always use the Event Handler Wizard to add message handlers to your program.

❑ The physical appearances of menus and toolbars are defined in resource files, which are edited
by the built-in resource editor.

❑ Items in a menu that can result in command messages are identified by a symbolic constant with
the prefix ID. These IDs are used to associate a handler with the message from the menu item.

❑ To associate a toolbar button with a particular menu item, you give it the same ID as that of the
menu item.

❑ To add a tooltip for a toolbar button corresponding to a menu item, you add the tooltip text to
the entry for the ID for the menu item in the caption column in the String Table resource. The
tooltip text is separated from the menu prompt text by \n.

❑ You create menus and toolbars interactively in a CLR program through the Design window.
Code is generated automatically to create menu items and toolbar buttons and display them 
on a form.

❑ You can create a delegate to handle a specific event for a control by double-clicking the event
type in the Property window for the control. You can optionally select an existing delegate to
handle the event. This is particularly relevant to handling toolbar button events that are equiva-
lent to existing menu items events.

845

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 845



In the next chapter, you’ll add the code necessary to both versions of Sketcher to draw elements in a view,
and use the menus and toolbar buttons that you created here to select what to draw and in which color.
This is where the Sketcher program begins to live up to its name.

Exercises
You can download the source code for the examples in the book and the solutions to the following exer-
cises from www.wrox.com. You’ll be developing both versions of Sketcher in subsequent chapters so you
need to retain the state of the program at the end of each chapter. The exercises involve modifying the
existing Sketcher versions but you can retain the original state quite easily by copying the entire contents
of the project folder to another folder, Save Sketcher say. When you have finished the exercises on the
original project, you can delete the contents of the project file (or save it somewhere else if you want to
keep it) and copy the contents of the Save Sketcher folder back to the original project directory.

1. Add a menu item Ellipse to the Element pop-up.

2. Implement the command and command update handlers for it in the document class.

3. Add a toolbar button corresponding to the Ellipse menu item and add a tooltip for the button.

4. Modify the command update handlers for the color menu items so that the currently selected
item is displayed in uppercase, and the others are displayed in lowercase.

5. Add an Ellipse menu item and toolbar button with a tooltip to CLR Sketcher.

846

Chapter 14: Working with Menus and Toolbars

25905c14.qxd:WroxPro  2/21/08  9:16 AM  Page 846



15
Drawing in a Window

In this chapter, you will add some meat to the Sketcher application. You’ll focus on understanding
how you get graphical output displayed in the application window. By the end of this chapter, you’ll
be able to draw all but one of the elements for which you have added menu items. I’ll leave the prob-
lem of how to store them in a document until the next chapter. In this chapter, you will learn about:

❑ What coordinate systems Windows provides for drawing in a window

❑ Device context and why it is necessary

❑ How and when your program draws in a window

❑ How to define handlers for mouse messages

❑ How to define your own shape classes

❑ How to program the mouse to draw your shapes in a window

❑ How to get your program to capture the mouse

Basics of Drawing in a Window
Before I go into drawing using MFC, it will be useful to get a better idea of what is happening under
the covers of the Windows operating system when you are drawing in a window. Similar to any
other operation under Windows, you write to a window on your display screen using Windows API
functions. There’s slightly more to it than that though; the way Windows works complicates the situ-
ation somewhat.

For a start, you can’t just write to a window and forget it. There are many events that require that
your application redraws the window — such as if the user resizes the window that you’re draw-
ing in, for instance, or if part of your window that was previously hidden is exposed by the user
moving another window.

Fortunately, you don’t need to worry about the details of such occurrences, because Windows actu-
ally manages all these events for you; however, it does mean that you can only write permanent data
to a window when your application receives a specific Windows message requesting that you do so.
It also means that you need to be able to reconstruct everything that you’ve drawn in the window at
any time.

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 847



When all, or part, of a window needs to be redrawn, Windows sends a WM_PAINT message to your appli-
cation. This is intercepted by MFC, which passes the message to a function member of one of your classes.
I’ll explain how you handle this a little later in this chapter.

The Window Client Area
A window doesn’t have a fixed position onscreen, or even a fixed visible area, because a window can be
dragged around using the mouse and resized by dragging its borders. How, then, do you know where to
draw onscreen?

Fortunately, you don’t. Because Windows provides you with a consistent way of drawing in a window,
you don’t have to worry about where it is onscreen; otherwise, drawing in a window would be inordi-
nately complicated. Windows does this by maintaining a coordinate system for the client area of a win-
dow that is local to the window. It always uses the upper-left corner of the client area as its reference
point. All points within the client area are defined relative to this point, as shown in Figure 15-1.

Figure 15-1

The horizontal and vertical distances of a point from the upper-left corner of the client area will always
be the same, regardless of where the window is onscreen or how big it is. Of course, Windows needs to
keep track of where the window is, and when you draw something at a point in the client area, it needs
to figure out where that actually is onscreen.

The Windows Graphical Device Interface
The final constraint Windows imposes is that you don’t actually write data to the screen in any direct sense.
All output to your display screen is graphical, regardless of whether it is lines and circles, or text. Windows
insists that you define this output using the Graphical Device Interface (GDI). The GDI enables you to pro-
gram graphical output independently of the hardware on which it is displayed, meaning that your program
works on different machines with different display hardware. In addition to display screens, the Windows
GDI also supports printers and plotters, so outputting data to a printer or a plotter involves essentially the
same mechanisms as displaying information onscreen.

This location of point is defined 
by the distances x and y.

x 

y

This is the reference point for this window's client areas.

848

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 848



What Is a Device Context?
When you want to draw something on a graphical output device such as the display screen, you must use
a device context. A device context is a data structure that’s defined by Windows and contains information
that allows Windows to translate your output requests, which are in the form of device-independent GDI
function calls, into actions on the particular physical output device being used. A pointer to a device con-
text is obtained by calling a Windows API function.

A device context provides you with a choice of coordinate systems called mapping modes, which are auto-
matically converted to client coordinates. You can also alter many of the parameters that affect the output
to a device context by calling GDI functions; such parameters are called attributes. Examples of attributes
that you can change are the drawing color, the background color, the line thickness to be used when draw-
ing, and the font for text output. There are also GDI functions that provide information about the physical
device with which you’re working such as the resolution and aspect ratio of a display. 

Mapping Modes
Each mapping mode in a device context is identified by an ID, in a manner similar to what you saw with
Windows messages. Each symbol has the prefix MM_ to indicate that it defines a mapping mode. The
mapping modes provided by Windows are:

You will not use all of these mapping modes with this book; however, the ones you will use form a good
cross-section of those available, so you won’t have any problem using the others when you need to.

Mapping Mode Description

MM_TEXT A logical unit is one device pixel with positive x from left to right, and posi-
tive y from top to bottom of the window client area.

MM_LOENGLISH A logical unit is 0.01 inches with positive x from left to right, and positive y
from the top of the client area upward.

MM_HIENGLISH A logical unit is 0.001 inches with the x and y directions as in MM_LOENGLISH. 

MM_LOMETRIC A logical unit is 0.1 millimeters with the x and y directions as in MM_LOENGLISH.

MM_HIMETRIC A logical unit is 0.01 millimeters with the x and y directions as in
MM_LOENGLISH.

MM_ISOTROPIC A logical unit is of arbitrary length, but the same along both the x and y
axes. The x and y directions are as in MM_LOENGLISH.

MM_ANISOTROPIC This mode is similar to MM_ISOTROPIC, but allows the length of a logical
unit on the x-axis to be different from that of a logical unit on the y-axis.

MM_TWIPS A logical unit is a TWIP where a TWIP is 0.05 of a point and a point is 1⁄72 of
an inch. Thus a TWIP corresponds to 1⁄1440 of an inch, which is 6.9*10-4 of an
inch. (A point is a unit of measurement for fonts.) The x and y directions are
as in MM_LOENGLISH.

849

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 849



MM_TEXT is the default mapping mode for a device context. If you need to use a different mapping mode,
you have to take steps to change it. Note that the direction of the positive y-axis in the MM_TEXT mode is
opposite to what you saw in high school coordinate geometry, as shown in Figure 15-2.

Figure 15-2

By default, the point at the upper-left corner of the client area has the coordinates (0, 0) in every mapping
mode, although it’s possible to move the origin away from the upper-left corner of the client area if you
want to. For example, some applications that present data in graphical form move the origin to the center
of the client area to make plotting of the data easier. With the origin at the upper-left corner in MM_TEXT
mode, a point 50 pixels from the left border and 100 pixels down from the top of the client area will have
the coordinates (50,100). Of course, because the units are pixels, the point will be nearer the upper-left cor-
ner of the client area if your monitor is set to use a resolution of 1280×1024 than if it’s working with the
resolution set as 1024×768. An object drawn in this mapping mode will be smaller at the 1280×1024 resolu-
tion than it would be at the 1024×768 resolution. Note that the DPI setting for your display affects presen-
tation in all mapping modes. The default settings assume 96 DPI, so if the DPI for your display is set to a
different value, this affects how things look. Coordinates are always 32-bit signed integers unless you are
programming for the old Windows 95/98 operating systems, in which case they are limited to 16 bits. The
maximum physical size of the total drawing varies with the physical length of a coordinate unit, which is
determined by the mapping mode.

The directions of the x and y coordinate axes in MM_LOENGLISH and all the remaining mapping modes are
the same as each other, but different from MM_TEXT. The coordinate axes for MM_LOENGLISH are shown in
Figure 15-3. Although positive y is consistent with what you learned in high school (y values increase as
you move up the screen), MM_LOENGLISH is still slightly odd because the origin is at the upper-left corner
of the client area, so for points within the visible client area, y is always negative.

Figure 15-3

Negative y
direction

MM_LOENGLISH mapping mode

Positive x
direction

Positive y
direction

MM_TEXT mapping mode

Positive x
direction

850

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 850



In the MM_LOENGLISH mapping mode, the units along the axes are 0.01 inches apiece, so a point at the
position (50, -100) is half an inch from the left border and one inch down from the top of the client area.
An object is the same size in the client area, regardless of the resolution of the monitor on which it is dis-
played. If you draw anything in the MM_LOENGLISH mode with negative x or positive y coordinates, it is
outside the client area and therefore not visible because the reference point (0,0) is the upper-left corner
by default. It’s possible to move the position of the reference point though, by calling the Windows API
function SetViewportOrg() (or the SetViewportOrg() member of the CDC MFC class encapsulating a
device context that I’ll discuss shortly).

The Drawing Mechanism in Visual C++
MFC encapsulates the Windows interface to your screen and printer and relieves you of the need to worry
about much of the detail involved in programming graphical output. As you saw in the last chapter, the
Application Wizard-generated program already contains a class derived from the MFC class CView that’s
specifically designed to display document data onscreen.

The View Class in Your Application
The MFC Application Wizard generated the class CSketcherView to display information from a docu-
ment in the client area of a document window. The class definition includes overrides for several virtual
functions, but the one of particular interest here is the function OnDraw(). This is called whenever the
client area of the document window needs to be redrawn. It’s the function that’s called by the applica-
tion framework when a WM_PAINT message is received in your program.

The OnDraw() Member Function
The implementation of the OnDraw() member function that’s created by the MFC Application Wizard
looks like this:

void CSketcherView::OnDraw(CDC* /*pDC*/)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(!pDoc)
return;

// TODO: add draw code for native data here
}

A pointer to an object of the CDC class type is passed to the OnDraw() member of the view class. This object
has member functions that call the Windows API functions and these allow you to draw in a device con-
text. Note that the parameter name is commented out so you must uncomment the name or replace it with
your own name before you can use the pointer.

Because you’ll put all the code to draw the document in this function, the Application Wizard has included
a declaration for the pointer pDoc and initialized it using the function GetDocument(), which returns the
address of the document object related to the current view:

CSketcherDoc* pDoc = GetDocument();

851

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 851



The GetDocument() function actually retrieves the pointer to the document from m_pDocument, an inher-
ited data member of the view object. The function performs the important task of casting the pointer stored
in this data member to the type corresponding to the document class in the application, CSketcherDoc.
This is so that the compiler has access to the members of the document class that you’ve defined; other-
wise, the compiler is able to access only the members of the base class. Thus, pDoc points to the document
object in your application associated with the current view, and you will be using it to access the data that
you’ve stored in the document object when you want to draw it.

The following line:

ASSERT_VALID(pDoc);

just makes sure that the pointer pDoc contains a valid address and the if statement that follows ensures
that pDoc is not null.

The name of the parameter pDC for the OnDraw() function stands for “pointer to Device Context.” The
object of the CDC class pointed to by the pDC argument that’s passed to the OnDraw() function is the key
to drawing in a window. It provides a device context, plus the tools you need to write graphics and text to
it, so you clearly need to look at it in more detail.

The CDC Class
You should do all the drawing in your program using members of the CDC class. All objects of this class and
classes derived from it contain a device context and the member functions you need for sending graphics
and text to your display and your printer. There are also member functions for retrieving information about
the physical output device that you are using.

Because CDC class objects can provide almost everything you’re likely to need by way of graphical output,
there are a lot of member functions of this class — in fact, well over a hundred. Therefore, you’ll only look
at the ones you’re going to use in the Sketcher program here in this chapter and go into others as you need
them later on.

Note that MFC includes some more specialized classes for graphics output that are derived from CDC.
For example, you be using objects of CClientDC because it is derived from CDC and contains all the
members we will discuss at this point. The advantage that CClientDC has over CDC is that it always
contains a device context that represents only the client area of a window, and this is precisely what
you want in most circumstances.

Displaying Graphics
In a device context, you draw entities such as lines, circles, and text relative to a current position. A cur-
rent position is a point in the client area that was set either by the previous entity that was drawn, or by
calling a function to set it. For example, you could extend the OnDraw() function to set the current posi-
tion as follows:

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

852

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 852



if(!pDoc)
return;

pDC->MoveTo(50, 50);    // Set the current position as 50,50
}

The shaded line calls the MoveTo() function for the CDC object pointed to by pDC. This member function
simply sets the current position to the x and y coordinates you specify as arguments. As you saw earlier,
the default mapping mode is MM_TEXT, so the coordinates are in pixels and the current position will be
set to a point 50 pixels from the inside left border of the window, and 50 pixels down from the top of the
client area.

The CDC class overloads the MoveTo() function to provide flexibility over how you specify the position
that you want to set as the current position. There are two versions of the function, declared in the CDC
class as:

CPoint MoveTo(int x, int y);     // Move to position x,y
CPoint MoveTo(POINT aPoint);     // Move to position defined by aPoint

The first version accepts the x and y coordinates as separate arguments. The second accepts one argument
of type POINT, which is a structure defined as:

typedef struct tagPOINT
{

LONG x;
LONG y;

} POINT;

The coordinates are members of the struct and are of type LONG (which is type defined in the Windows
API corresponding to a 32-bit signed integer). You may prefer to use a class instead of a structure, in
which case you can use objects of the class CPoint anywhere that a POINT object can be used. The class
CPoint has data members x and y of type LONG, and using CPoint objects has the advantage that the
class also defines member functions that operate on CPoint and POINT objects. This may seem weird
because CPoint would seem to make POINT objects obsolete, but remember that the Windows API was
built before MFC was around, and POINT objects are used in the Windows API and have to be dealt
with sooner or later. CPoint objects are used in examples, so you’ll have an opportunity to see some 
of the member functions in action.

The return value from the MoveTo() function is a CPoint object that specifies the current position as it
was before the move. You might think this a little odd, but consider the situation where you want to move
to a new position, draw something, and then move back. You may not know the current position before
the move, and after the move occurs it would be lost so returning the position before the move makes
sure it’s available to you if you need it.

Drawing Lines
You can follow the call to MoveTo() in the OnDraw() function with a call to the function LineTo(),
which draws a line in the client area from the current position to the point specified by the arguments 
to the LineTo() function, as illustrated in Figure 15-4.

853

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 853



Figure 15-4

The CDC class also defines two versions of the LineTo() function that have the following prototypes:

BOOL LineTo(int x, int y);   // Draw a line to position x,y
BOOL LineTo(POINT aPoint);   // Draw a line to position defined by aPoint

This offers you the same flexibility in specifying the argument to the function as MoveTo(). You can use
a CPoint object as an argument to the second version of the function. The function returns TRUE if the
line was drawn and FALSE otherwise.

When the LineTo() function is executed, the current position is changed to the point specifying the end
of the line. This allows you to draw a series of connected lines by just calling the LineTo() function for
each line. Look at the following version of the OnDraw() function:

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(!pDoc)
return;

pDC->MoveTo(50,50);        // Set the current position
pDC->LineTo(50,200);       // Draw a vertical line down 150 units
pDC->LineTo(150,200);      // Draw a horizontal line right 100 units
pDC->LineTo(150,50);       // Draw a vertical line up 150 units
pDC->LineTo(50,50);        // Draw a horizontal line left 100 units

}

If you plug this into the Sketcher program and execute it, it displays the document window shown in
Figure 15-5.

The four calls to the LineTo() function draw the rectangle shown counterclockwise, starting with the
upper-left corner. The first call uses the current position set by the MoveTo() function; the succeeding
calls use the current position set by the previous LineTo() function call. You can use this to draw any
figure consisting of a sequence of lines, each connected to the previous line. Of course, you are also free
to use MoveTo() to change the current position at any time.

Units are pixels

Set the current position to here pDC->MoveTo(50,50);
pDC->LineTo(150,100);Draw a line to here

X-Axis

Y-Axis

50,50

150,100

854

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 854



Figure 15-5

Drawing Circles
You have a choice of several function members in the CDC class for drawing circles, but they’re all designed
to draw ellipses. As you know from high school geometry, a circle is a special case of an ellipse, with the
major and minor axes equal. You can, therefore, use the member function Ellipse() to draw a circle. Like
other closed shapes supported by the CDC class, the Ellipse() function fills the interior of the shape with
a color that you set. The interior color is determined by a brush that is selected into the device context. The
current brush in the device context determines how any closed shape is filled.

MFC provides the CBrush class that you can use to define a brush. You can set the color of a CBrush object
and also define a pattern to be produced when filling a closed shape. If you want to draw a closed shape that
isn’t filled, you can use a null brush, which leaves the interior of the shape empty. I’ll come back to brushes a
little later in this chapter.

Another way to draw circles that aren’t filled is to use the Arc() function, which doesn’t involve brushes.
This has the advantage that you can draw any arc of an ellipse, rather than the complete curve. There are
two versions of this function in the CDC class, declared as:

BOOL Arc(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);
BOOL Arc(LPCRECT lpRect, POINT StartPt, POINT EndPt);

In the first version, (x1,y1) and (x2,y2) define the upper-left and lower-right corners of a rectangle enclosing
the complete curve. If you make these coordinates into the corners of a square, the curve drawn is a segment
of a circle. The points (x3,y3) and (x4,y4) define the start and end points of the segment to be drawn. The
segment is drawn counterclockwise. If you make (x4,y4) identical to (x3,y3), you’ll generate a complete,
apparently closed curve.

In the second version of Arc(), the enclosing rectangle is defined by a RECT object, and a pointer to this
object is passed as the first argument. The function also accepts a pointer to an object of the class CRect,
which has four public data members: left, top, right, and bottom. These correspond to the x and y
coordinates of the upper-left and lower-right points of the rectangle respectively. The class also provides
a range of function members that operate on CRect objects, and we shall be using some of these later.

855

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 855



The POINT objects StartPt and EndPt in the second version of Arc() define the start and end of the arc
to be drawn.

Here’s some code that exercises both versions of the Arc() function:

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(!pDoc)
return;

pDC->Arc(50,50,150,150,100,50,150,100);  // Draw the 1st (large) circle

// Define the bounding rectangle for the 2nd (smaller) circle
CRect* pRect = new CRect(250,50,300,100);
CPoint Start(275,100);                   // Arc start point
CPoint End(250,75);                      // Arc end point
pDC->Arc(pRect,Start, End);              // Draw the second circle
delete pRect;

}

Note that you used a CRect class object instead of a RECT structure to define the bounding rectangle, and
that you used CPoint class objects instead of POINT structures. You’ll also be using CRect objects later,
but they have some limitations, as you’ll see. The Arc() function doesn’t require a current position to be
set, as the position and size of the arc are completely defined by the arguments you supply. The current
position is unaffected by drawing an arc — it remains exactly wherever it was before the arc was drawn.
Now try running Sketcher with this code in the OnDraw() function. You should get the results shown in
Figure 15-6.

Figure 15-6

Try re-sizing the borders. The client area is automatically redrawn as you cover or uncover the arcs in the
picture. Remember that screen resolution affects the scale of what is displayed. The lower the screen reso-
lution you’re using, the larger and further from the upper-left corner of the client area the arcs will be.

856

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 856



Drawing in Color
Everything that you’ve drawn so far has appeared on the screen in black. Drawing implies using a pen
object that has a color and a thickness, and you’ve been using the default pen object that is provided in a
device context. You’re not obliged to do this, of course — you can create your own pen with a given thick-
ness and color. MFC defines the class CPen to help you do this.

All closed curves that you draw are filled with the current brush in the device context. As mentioned
earlier, you can define a brush as an instance of the class CBrush. Take a look at some of the features of
CPen and CBrush objects.

Creating a Pen
The simplest way to create a pen object is first to declare an object of the CPen class:

CPen aPen;                   // Declare a pen object

This object now needs to be initialized with the properties you want. You do this using the class member
function CreatePen(), which is declared in the CPen class as:

BOOL CreatePen (int aPenStyle, int aWidth, COLORREF aColor);

The function returns TRUE as long as the pen is successfully initialized and FALSE otherwise. The first
argument defines the line style that you want to use when drawing. You must specify it with one of the
following symbolic values:

The second argument to the CreatePen() function defines the line width. If aWidth has the value 0, the
line drawn is 1 pixel wide, regardless of the mapping mode in effect. For values of 1 or more, the pen width

Pen Style Description

PS_SOLID The pen draws a solid line.

PS_DASH The pen draws a dashed line. This line style is valid only when the pen
width is specified as 1.

PS_DOT The pen draws a dotted line. This line style is valid only when the pen
width is specified as 1.

PS_DASHDOT The pen draws a line with alternating dashes and dots. This line style is
valid only when the pen width is specified as 1.

PS_DASHDOTDOT The pen draws a line with alternating dashes and double dots. This line
style is valid only when the pen width is specified as 1.

PS_NULL The pen doesn’t draw anything.

PS_INSIDEFRAME The pen draws a solid line, but unlike PS_SOLID, the points that specify the
line occur on the edge of the pen rather than in the center, so that the drawn
object never extends beyond the enclosing rectangle.

857

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 857



is in the units determined by the mapping mode. For example, a value of 2 for aWidth in MM_TEXT
mode is 2 pixels; in MM_LOENGLISH mode the pen width is 0.02 inches.

The last argument specifies the color to be used when drawing with the pen, so you could initialize a pen
with the statement:

aPen.CreatePen(PS_SOLID, 2, RGB(255,0,0));  // Create a red solid pen

Assuming that the mapping mode is MM_TEXT, this pen draws a solid red line that is 2 pixels wide.

Using a Pen
To use a pen, you must select it into the device context in which you are drawing. To do this, you use the
CDC class member function SelectObject(). To select the pen you want to use, you call this function
with a pointer to the pen object as an argument. The function returns a pointer to the previous pen object
being used, so that you can save it and restore the old pen when you have finished drawing. A typical
statement selecting a pen is:

CPen* pOldPen = pDC->SelectObject(&aPen);   // Select aPen as the pen

To restore the old pen when you’re done, you simply call the function again, passing the pointer
returned from the original call:

pDC->SelectObject(pOldPen);                 // Restore the old pen

You can see this in action if you amend the previous version of the OnDraw() function in the
CSketcherView class to:

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(!pDoc)

return;

// Declare a pen object and initialize it as
// a red solid pen drawing a line 2 pixels wide
CPen aPen;
aPen.CreatePen(PS_SOLID, 2, RGB(255, 0, 0));

CPen* pOldPen = pDC->SelectObject(&aPen); // Select aPen as the pen

pDC->Arc(50,50,150,150,100,50,150,100);   // Draw the 1st circle

// Define the bounding rectangle for the 2nd circle
CRect* pRect = new CRect(250,50,300,100);
CPoint Start(275,100);                   // Arc start point
CPoint End(250,75);                      // Arc end point
pDC->Arc(pRect,Start, End);              // Draw the second circle
delete pRect;

pDC->SelectObject(pOldPen);              // Restore the old pen
}

858

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 858



If you build and execute the Sketcher application with this version of the OnDraw() function, you get
the same arcs drawn as before, but this time the lines will be thicker and they’ll be red. You could use-
fully experiment with this example by trying different combinations of arguments to the CreatePen()
function and seeing their effects. Note that we have ignored the value returned from the CreatePen()
function, so you run the risk of the function failing and not detecting it in the program. It doesn’t matter
here, as the program is still trivial, but as you develop the program it becomes important to check for
failures of this kind.

Creating a Brush
An object of the CBrush class encapsulates a Windows brush. You can define a brush to be solid, hatched,
or patterned. A brush is actually an 8x8 block of pixels that’s repeated over the region to be filled.

To define a brush with a solid color, you can specify the color when you create the brush object. For example,

CBrush aBrush(RGB(255,0,0));           // Define a red brush

This statement defines a red brush. The value passed to the constructor must be of type COLORREF, which
is the type returned by the RGB() macro, so this is a good way to specify the color.

Another constructor is available to define a hatched brush. It requires two arguments to be specified, the
first defining the type of hatching, and the second specifying the color, as before. The hatching argument
can be any of the following symbolic constants:

So, to obtain a red, 45-degree crosshatched brush, you could define the CBrush object with the statement:

CBrush aBrush(HS_DIAGCROSS, RGB(255,0,0));

You can also initialize a CBrush object in a similar manner to that for a CPen object, by using the
CreateSolidBrush() member function of the class for a solid brush, and the CreateHatchBrush()
member for a hatched brush. They require the same arguments as the equivalent constructors. For exam-
ple, you could create the same hatched brush as before, with the statements:

CBrush aBrush;                         // Define a brush object
aBrush.CreateHatchBrush(HS_DIAGCROSS, RGB(255,0,0));

Hatching Style Description

HS_HORIZONTAL Horizontal hatching

HS_VERTICAL Vertical hatching

HS_BDIAGONAL Downward hatching from left to right at 45 degrees

HS_FDIAGONAL Upward hatching from left to right at 45 degrees

HS_CROSS Horizontal and vertical crosshatching

HS_DIAGCROSS Crosshatching at 45 degrees

859

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 859



Using a Brush
To use a brush, you select the brush into the device context by calling the SelectObject() member of
the CDC class in a parallel fashion to that used for a pen. This member function is overloaded to support
selecting brush objects into a device context. To select the brush defined previously, you would simply
write:

pDC->SelectObject(aBrush);     // Select the brush into the device context

There are a number of standard brushes available. Each of the standard brushes is identified by a prede-
fined symbolic constant, and there are seven that you can use. They are the following:

The names of these brushes are quite self-explanatory. To use one, you call the SelectStockObject()
member of the CDC class, passing the symbolic name for the brush that you want to use as an argument.
To select the null brush, which leaves the interior of a closed shape unfilled, you could write:

pDC->SelectStockObject(NULL_BRUSH);

Here, pDC is a pointer to a CDC object, as before. You can also use one of a range of standard pens through
this function. The symbols for standard pens are BLACK_PEN, NULL_PEN (which doesn’t draw anything),
and WHITE_PEN. The SelectStockObject() function returns a pointer to the object being replaced in the
device context. This enables you to save it for restoring later when you have finished drawing.

Because the function works with a variety of objects — you’ve seen pens and brushes in this chapter, but it
also works with fonts — the type of the pointer returned is CGdiObject*. The CGdiObject class is a base
class for all the graphic device interface object classes and thus a pointer to this class can be used to store a
pointer to any object of these types. However, you need to cast the pointer value returned to the appropri-
ate type so that you can select the old object back to restore it. This is because the SelectObject() func-
tion you use to do this is overloaded for each of the kinds of object that can be selected. There’s no version
of SelectObject() that accepts a pointer to a CGdiObject as an argument, but there are versions that
accept an argument of type CBrush*, CPen*, and pointers to other GDI objects.

The typical pattern of coding for using a stock brush and later restoring the old brush when you’re done is:

CBrush* pOldBrush = (CBrush*)pDC->SelectStockObject(NULL_BRUSH);

// draw something...

pDC->SelectObject(pOldBrush);                // Restore the old brush

You’ll be using this in your example later in the chapter.

GRAY_BRUSH LTGRAY_BRUSH DKGRAY_BRUSH

BLACK_BRUSH WHITE_BRUSH

HOLLOW_BRUSH NULL_BRUSH

860

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 860



Drawing Graphics in Practice
You now know how to draw lines and arcs, so it’s about time to consider how the user is going to
define what they want drawn in Sketcher. In other words, you need to decide how the user interface 
is going to work.

Because the Sketcher program is to be a sketching tool, you don’t want the user to worry about coordi-
nates. The easiest mechanism for drawing is using just the mouse. To draw a line, for instance, the user
could position the cursor and press the left mouse button where they wanted the line to start, and then
define the end of the line by moving the cursor with the left button held down. It would be ideal if you
could arrange that the line was continuously drawn as the cursor was moved with the left button down
(this is known as “rubber-banding” to graphic designers). The line would be fixed when the left mouse
button was released. This process is illustrated in Figure 15-7.

Figure 15-7

You could allow circles to be drawn in a similar fashion. The first press of the left mouse button would
define the center and, as the cursor was moved with the button down, the program would track it. The
circle would be continuously redrawn, with the current cursor position defining a point on the circum-
ference of the circle. As with drawing a line, the circle would be fixed when the left mouse button was
released. You can see this process illustrated in Figure 15-8.

You can draw a rectangle as easily as you draw a line, as illustrated in Figure 15-9.

Line is fixed when the
mouse button is released

Line is continuously updated as the
cursor moves

Left mouse button
up

Cursor movement

Left mouse button
down

861

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 861



Figure 15-8

Figure 15-9

Rectangle is fixed when the
mouse button is released

Rectangle is continuously updated as the
cursor moves

Left mouse button
up

Cursor movement

Left mouse button
down

Circle is continuously updated as the
cursor moves

Circle is fixed when the
mouse button is released

Left mouse button
up

Cursor movement

Left mouse button
down

862

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 862



The first point is defined by the position of the cursor when the left mouse button is pressed. This is one
corner of the rectangle. The position of the cursor when the mouse is moved with the left button held
down defines the diagonal opposite corner of the rectangle. The rectangle actually stored is the last one
defined when the left mouse button is released.

A curve is somewhat different. An arbitrary number of points may define a curve. The mechanism you’ll
use is illustrated in Figure 15-10.

Figure 15-10

As with the other shapes, the first point is defined by the cursor position when the left mouse button is
pressed. Successive positions recorded when the mouse is moved are connected by straight line segments
to form the curve, so the mouse track defines the curve to be drawn.

Now that you know how the user is going to define an element, clearly the next step in understanding
how to implement this is to get a grip on how the mouse is programmed.

Programming the Mouse
To be able to program the drawing of shapes in the way I have discussed, you need to know various
things about the mouse:

❑ Pressing a mouse button signals the start of a drawing operation.

❑ The location of the cursor when the mouse button is pressed defines a reference point for 
the shape.

Curve is defined by straight line
segments joining successive cursor
positions

Left mouse button up
stops tracking of the

cursor and ends
curve.

Cursor path

Left mouse 
button
down

863

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 863



❑ A mouse movement after detecting that a mouse button has been pressed is a cue to draw a
shape, and the cursor position provides a defining point for the shape.

❑ The cursor position at the time the mouse button is released signals that the final version of the
shape should be drawn.

As you may have guessed, all this information is provided by Windows in the form of messages sent to
your program. The implementation of the process for drawing lines and circles consists almost entirely
of writing message handlers.

Messages from the Mouse
When the user of our program is drawing a shape, they will interact with a particular document view.
The view class is, therefore, the obvious place to put the message handlers for the mouse. Right-click the
CSketcherView class name in Class View and then display its properties window by selecting Properties
from the context menu. If you then click the messages button (wait for the button tool tips to display if you
don’t know which it is), you’ll see the list of message IDs. You will then see the list of message IDs for the
standard Windows messages sent to the class, which have IDs prefixed with WM_. 

You need to know about three mouse messages at the moment, so I scrolled down to bring them into
view in Figure 15-11.

Figure 15-11

They are the following:

Message Description

WM_LBUTTONDOWN Message occurs when the left mouse button is pressed.

WM_LBUTTONUP Message occurs when the left mouse button is released.

WM_MOUSEMOVE Message occurs when the button is moved.

864

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 864



These messages are quite independent of one another and are being sent to the document views in your
program even if you haven’t supplied handlers for them. It’s quite possible for a window to receive a
WM_LBUTTONUP message without having previously received a WM_LBUTTONDOWN message. This can hap-
pen if the button is pressed with the cursor over another window and then moved to your view window
before being released.

If you look at the list in the properties window you’ll see there are other mouse messages that can occur.
You can choose to process any or all of the messages, depending on your application requirements. Define
in general terms what you want to do with the three messages that you’re currently interested in, based
on the process for drawing shapes that you saw earlier:

WM_LBUTTONDOWN
This starts the process of drawing an element. So you will:

1. Note that the element drawing process has started.

2. Record the current cursor position as the first point for defining an element.

WM_MOUSEMOVE
This is an intermediate stage where you want to create and draw a temporary version of the current 
element but only if the left mouse button is down, so:

1. Check that the left button is down.

2. If it is, delete any previous version of the current element that was drawn.

3. If it isn’t, then exit.

4. Record the current cursor position as the second defining point for the current element.

5. Cause the current element to be drawn using the two defining points.

WM_LBUTTONUP
This indicates that the process for drawing an element is finished, so all you need to do is:

1. Store the final version of the element defined by the first point recorded, together with the 
position of the cursor when the button is released for the second point.

2. Record the end of the process of drawing an element.

Now generate handlers for these three mouse messages.

Mouse Message Handlers
You can create a handler for one of the mouse messages by clicking on the ID to select it and then selecting
the down arrow in the adjacent column position; try selecting <add> OnLButtonUp for the ID_LBUTTONUP
message, for example. Repeat the process for each of the messages WM_LBUTTONDOWN and WM_MOUSEMOVE.
The functions generated in the CSketcherView class are OnLButtonDown(), OnLButtonUp() and
OnMouseMove(). You don’t get the option of changing the names of these functions because you’re adding
overrides for versions that are already defined in the base class for the CSketcherView class. Take a look at
how you implement these handlers.

865

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 865



You can start by looking at the WM_LBUTTONDOWN message handler. This is the skeleton code that’s 
generated:

void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)
{
// TODO: Add your message handler code here and/or call default

CView::OnLButtonDown(nFlags, point);
}

You can see that there is a call to the base class handler in the skeleton version. This ensures that the base
handler is called if you don’t add any code here. In this case you don’t need to call the base class handler
when you handle the message yourself, although you can if you want to. Whether you need to call the
base class handler for a message depends on the circumstances.

Generally, the comment indicating where you should add your own code is a good guide. Where it sug-
gests, as in the present instance, that calling the base class handler is optional, you can omit it when you
add your own message handling code. Note that the position of the comment in relation to the call of the
base class handler is also important, as sometimes you must call the base class message handler before your
code, and other times afterwards. The comment indicates where your code should appear in relation to the
base class message handler call.

The handler in your class is passed two arguments: nFlags, which is of type UINT and contains a number
of status flags indicating whether various keys are down, and the CPoint object point, which defines the
cursor position when the left mouse button was pressed. The UINT type is defined in the Windows API
and corresponds to a 32-bit unsigned integer.

The value of nFlags that is passed to the function can be any combination of the following symbolic values:

Being able to detect if a key is down in the message handler enables you to support different actions for
the message depending on what else you find. The value of nFlags may contain more than one of these
indicators, each of which corresponds to a particular bit in the word, so you can test for a particular key
using the bitwise AND operator. For example, to test for the Ctrl key being pressed, you could write:

if(nFlags & MK_CONTROL)
// Do something...

Flag Description

MK_CONTROL Corresponds to the Ctrl key being pressed.

MK_LBUTTON Corresponds to the left mouse button being down.

MK_MBUTTON Corresponds to the middle mouse button being down.

MK_RBUTTON Corresponds to the right mouse button being down.

MK_SHIFT Corresponds to the Shift key being pressed.

866

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 866



The expression nFlags & MK_CONTROL will only have the value true if the nFlags variable has the bit
defined by MK_CONTROL set. In this way, you can have different actions when the left mouse button is
pressed, depending on whether or not the Ctrl key is also pressed. You use the bitwise AND operator
here, so corresponding bits are ANDed together. Don’t confuse this with the logical AND, &&, which
would not do what you want here.

The arguments passed to the other two message handlers are the same as those for the OnLButtonDown()
function; the code generated for them is:

void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)
{
// TODO: Add your message handler code here and/or call default

CView::OnLButtonUp(nFlags, point);
}

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{
// TODO: Add your message handler code here and/or call default

CView::OnMouseMove(nFlags, point);
}

Apart from the function names, the skeleton code is the same for each. 

If you take a look at the end of the code for the CSketcherView class definition, you’ll see that three
function declarations have been added:

// Generated message map functions
protected:

DECLARE_MESSAGE_MAP()
public:
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
afx_msg void OnMouseMove(UINT nFlags, CPoint point);

};

These identify the functions that you added as message handlers.

Now that you have an understanding of the information passed to the message handlers you have created,
you can start adding your own code to make them do what you want.

Drawing Using the Mouse
For the WM_LBUTTONDOWN message, you want to record the cursor position as the first point defining an
element. You also want to record the position of the cursor after a mouse move. The obvious place to store
these is in the CSketcherView class, so you can add data members to the class for these. Right-click the
CSketcherView class name in Class View and select Add > Add Variable from the pop-up. You’ll then
be able to add details of the variable to be added to the class, as Figure 15-12 shows.

867

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 867



Figure 15-12

The drop-down list of types only includes fundamental types so to enter the type as CPoint you just high-
light the type displayed by double-clicking it and then key in the type name you want. The new data mem-
ber should be protected to prevent direct modification of it from outside the class. When you click the
Finish button the variable will be created and an initial value will be set arbitrarily as 0 in the initialization
list for the constructor. You’ll need to amend the initial value to CPoint(0,0) so the code is:

// CSketcherView construction/destruction

CSketcherView::CSketcherView():
m_FirstPoint(CPoint(0,0))

{
// TODO: add construction code here

}

This initializes the member to a CPoint object at position (0,0). You can now add m_SecondPoint as a
protected member of type CPoint to the CSketcherView class that stores the next point for an element.
You should also amend the initialization list for the constructor to initialize it to CPoint(0,0).

You can now implement the handler for the WM_LBUTTONDOWN message as:

void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)
{

// TODO: Add your message handler code here and/or call default
m_FirstPoint = point;               // Record the cursor position

}

868

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 868



All it does is note the coordinates passed by the second argument. You can ignore the first argument in
this situation altogether.

You can’t complete WM_MOUSEMOVE message handler yet, but you can have a stab at writing the code for
it in outline:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{

// TODO: Add your message handler code here and/or call default
if(nFlags & MK_LBUTTON)             // Verify the left button is down
{

m_SecondPoint = point;           // Save the current cursor position

// Test for a previous temporary element
{

// We get to here if there was a previous mouse move
// so add code to delete the old element

}

// Add code to create new element
// and cause it to be drawn

}
}

It’s important to check that the left mouse button is down because you only want to handle the mouse
move when this is the case. Without the check, you would be processing the event when the right button
was down or when the mouse was moved with no buttons pressed. 

The first thing that the handler does after verifying the left mouse button is down is to save the current
cursor position. This is used as the second defining point for an element. The rest of the logic is clear in
general terms, but you need to establish a few more things before you can complete the function. You
have no means of defining an element — you’ll want to define an element as an object of a class so some
classes must be defined. You also need to devise a way to delete an element and get one drawn when you
create a new one. A brief digression is called for.

Getting the Client Area Redrawn
Drawing or erasing elements involves redrawing all or part of the client area of a window. As you’ve
already discovered, the client area gets drawn by the OnDraw() member function of the CSketcherView
class, and this function is called when a WM_PAINT message is received by the Sketcher application. Along
with the basic message to repaint the client area, Windows supplies information about the part of the client
area that needs to be redrawn. This can save a lot of time when you’re displaying complicated images
because only the area specified actually needs to be redrawn, which may be a very small proportion of the
total area.

You can tell Windows that a particular area should be redrawn by calling the InvalidateRect() function
that is an inherited member of your view class. The function accepts two arguments, the first of which is a
pointer to a RECT or CRect object that defines the rectangle in the client area to be redrawn. Passing null for
this parameter causes the whole client area to be redrawn. The second parameter is a BOOL value, which is
TRUE if the background to the rectangle is to be erased and FALSE otherwise. This argument has a default

869

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 869



value of TRUE because you normally want the background erased before the rectangle is redrawn, so you can
ignore it most of the time. BOOL is a Windows API type representing Boolean values and can be assigned
the values TRUE or FALSE.

A typical situation in which you’d want to cause an area to be redrawn would be where something has
changed that necessitates the contents of the area being recreated — moving a displayed entity might be
an example. In this case, you want to erase the background to remove the old representation of what was
displayed before you draw the new version. When you want to draw on top of an existing background,
you just pass FALSE as the second argument to InvalidateRect().

Calling the InvalidateRect() function doesn’t directly cause any part of the window to be redrawn; it 
just communicates to Windows the rectangle that you would like to have it redraw at some time. Windows
maintains an update region — actually a rectangle — that identifies the area in a window that needs to be
redrawn. The area specified in your call to InvalidateRect() is added to the current update region, so the
new update region encloses the old region plus the new rectangle you have indicated as invalid. Eventually
a WM_PAINT message is sent to the window, and the update region is passed to the window along with it.
When processing of the WM_PAINT message is complete, the update region is reset to the empty state.

Thus, all you have to do to get a newly created shape drawn is:

1. Make sure that the OnDraw() function in your view includes the newly created item when it
redraws the window.

2. Call InvalidateRect() with a pointer to the rectangle bounding the shape to be redrawn
passed as the first argument.

Similarly, if you want a shape removed from the client area of a window, you need to do the following:

1. Remove the shape from the items that the OnDraw() function will draw.

2. Call InvalidateRect() with the first argument pointing to the rectangle bounding the shape
that is to be removed.

Because the background to the rectangle specified is automatically erased, as long as the OnDraw() func-
tion doesn’t draw the shape again, the shape disappears. Of course, this means that you need to be able
to obtain the rectangle bounding any shape that you create, so you’ll include a function to provide this
as a member of the classes that define the elements that can be drawn by Sketcher.

Defining Classes for Elements
Thinking ahead a bit, you will need to store elements in a document in some way. You must also to be able
to store the document in a file for retrieval subsequently if a sketch is to have any permanence. I’ll deal
with the details of file operations later on, but for now it’s enough to know that the MFC class CObject
includes the tools for us to do this, so you’ll use CObject as a base class for the element classes.

You also have the problem that you don’t know in advance what sequence of element types the user will
create. The Sketcher program must be able to handle any sequence of elements. This suggests that using a
base class pointer for selecting a particular element class function might simplify things a bit. For example,
you don’t need to know what an element is to draw it. As long as you are accessing the element through a
base class pointer, you can always get an element to draw itself by using a virtual function. This is another
example of the polymorphism I talked about when I discussed virtual functions. All you need to do to
achieve this is to make sure that the classes defining specific elements share a common base class and that

870

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 870



in this class you declare all the functions you want to be selected automatically at run time as virtual. This
indicates that the element classes could be organized as shown in Figure 15-13.

The arrows in the diagram point toward the base class in each case. If you need to add another element
type, all you need to do is derive another class from CElement. Because these classes are closely related,
you’ll be putting the definitions for all these classes in a single new .h file that you can call Elements.h.
You can create the new CElement class by right-clicking Sketcher in Class View and selecting Add > Class
from the pop-up. Select the class category as MFC and the template as MFC Class. When you click the
Add button in the dialog, another dialog displays in which you can specify the class name, as shown in
Figure 15-14.

Figure 15-13

Figure 15-14

CObject

CElement

CCircle CCurveCLine CRectangle

871

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 871



I have already filled in the class name as CElement and selected the base class to be CObject from the
drop-down list. I have also adjusted the names of the source files to be Elements.h and Elements.cpp
because eventually these files will contain definitions for the other element classes I need. When you click
the Finish button, the code for the class definition is generated:

#pragma once

// CElement command target

class CElement : public CObject
{
public:
CElement();  virtual ~CElement();

};

The only members that have been declared for you are a constructor and a virtual destructor and skeleton
definitions for these appear in the Elements.cpp file. You can see that the Class Wizard has included a
#pragma once directive to ensure that the contents of the header file cannot be included into a .cpp file
more than once. Save all files to get the Class View tab updated.

You can add the other elements classes using essentially the same process. Because the other element
classes have CElement as the base class rather than an MFC class, you should choose the class category
to be C++ and the template as C++ class. For the CLine class the Class Wizard window should look as
shown in Figure 15-15.

Figure 15-15

872

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 872



The Class Wizard supplies the name of the header files and .cpp file as Line.h and Line.cpp by
default but you can change these to use different names for the files or use existing files. To have the
CLine class code inserted in the files for the CElement class, just click the button alongside the file
name and select the appropriate file to be used. I have already done this in Figure 15-14. You may need 
to erase the default file name that is supplied in the dialog and reselect the Sketcher directory to get the
list of files displayed. You’ll see a dialog displayed when you click the Finish button that asks you to
confirm that you want to merge the new class into the existing header file. Just click the Yes button 
to confirm this and do the same for the dialog that appears relating to the Elements.cpp file. When 
you have created the CLine class definition, do the same for CRectangle, CCircle and CCurve. 
When you are done, you should see the definitions of all four subclasses of CElement in the Elements.h
file, each with a constructor and a virtual destructor declared.

Storing a Temporary Element in the View
When I discussed how shapes would be drawn, it was evident that as the mouse was dragged after
pressing the left mouse button, a series of temporary element objects would be created and drawn. Now
that you know that the base class for all the shapes is CElement, you can add a pointer to the view class
that you’ll use to store the address of the temporary element. Right-click the CSketcherView class once
more and select the Add > Add Variable option once again. The m_pTempElement should be of type
CElement* and be protected like the previous two data members that you added earlier, as illustrated 
in Figure 15-16.

Figure 15-16

873

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 873



The Add Member Variable Wizard ensures that the new variable is initialized when the view object is
constructed and the default value of NULL that is set will do nicely.

CSketcherView::CSketcherView()
:m_FirstPoint(CPoint(0,0))
, m_SecondPoint(CPoint(0,0))
, m_pTempElement(NULL)
{
// TODO: add construction code here

}

You’ll be able to use the m_pTempElement pointer in the WM_MOUSEMOVE message handler as a test for
previous temporary elements because you’ll arrange for it to be null when there are none.

If you check what has been added to the SketcherView.h header file, you’ll see at the beginning there
is the line:

#include “atltypes.h”

This has been inserted because the wizard has assumed the CElement type is an ATL type. You can delete
this line as it is not required. For the CSketcherView class to compile correctly, you must add the follow-
ing statement immediately following the #pragma once directive:

class CElement;                        // Forward class declaration

This just identifies the CElement identifier as the name of a class that is defined elsewhere so the compiler
will process it as such.

Because you are creating CElement class objects in the view class member functions, and you refer to
the CElement class in defining the data member that points to a temporary element, you should ensure
that the definition of the CElement class is included before the CSketcherView class definition wher-
ever SketcherView.h is included into a .cpp file. You can do this for CSketcherView by adding an
#include directive for Elements.h to the SketcherView.cpp file before the #include directive for
SketcherView.h:

#include “Elements.h”
#include “SketcherView.h”

Sketcher.cpp also has an #include directive for SketcherView.h, so you should add an #include
for Elements.h to this file too.

The CElement Class
You can now start to fill out the element class definitions. You’ll be doing this incrementally as you add
more and more functionality to the Sketcher application — but what do you need right now? Some data
items, such as color, are clearly common to all types of element so you can put those in the CElement
class so that they are inherited in each of the derived classes; however, the other data members in the
classes that define specific element properties will be quite disparate, so you’ll declare these members
in the particular derived class to which they belong. 

874

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 874



Thus the CElement class contains only virtual functions that are replaced in the derived classes, plus data
and function members that are the same in all the derived classes. The virtual functions are those that are
selected automatically for a particular object through a pointer. You could use the Add Member Wizard
you’ve used previously to do this, but modify the class manually for a change. For now, you can modify
the CElement class to the following:

class CElement: public CObject
{

protected:
COLORREF m_Color;                // Color of an element

public:
virtual ~CElement();  
virtual void Draw(CDC* pDC) {}   // Virtual draw operation

CRect GetBoundRect();            // Get the bounding rectangle for an element

protected:
CElement();                  // Here to prevent it being called

};

I have changed the access for the constructor from public to protected to prevent it from being called
from outside the class. At the moment, the members to be inherited by the derived classes are a data mem-
ber storing the color, m_Color, and a member function that calculates the rectangle bounding an element,
GetBoundRect(). This function returns a value of type CRect that is the rectangle bounding the shape.

You also have a virtual Draw() function that is implemented in the derived classes to draw the particu-
lar object in question. The Draw() function needs a pointer to a CDC object passed to it to provide access
to the drawing functions that you saw earlier that allow drawing in a device context.

You might be tempted to declare the Draw() member as a pure virtual function in the CElement class —
after all, it can have no meaningful content in this class. This would also force its definition in any derived
class. Normally you would do this, but the CElement class inherits a facility from CObject called seriali-
zation that you’ll use later for storing objects in a file, and this requires that an instance of the CElement
class can be created. A class with a pure virtual function member is an abstract class, and instances of an
abstract class can’t be created. If you want to use MFC’s serialization capability for storing objects, your
classes mustn’t be abstract. You must also supply a no-arg constructor for a class to be serializable.

Note that serialization is a general term for writing objects to a file. Serialization in a C++/CLI applica-
tion will work differently to serialization in the MFC.

You might also be tempted to declare the GetBoundRect() function as returning a pointer to a CRect
object — after all, you’re going to pass a pointer to the InvalidateRect() member function in the view
class; however, this could lead to problems. You’ll be creating the CRect object as local to the function, so
the pointer would be pointing to a nonexistent object on return from the GetBoundRect() function. You
could get around this by creating the CRect object on the heap, but then you’d need to take care that it’s
deleted after use; otherwise, you’d be filling the heap with CRect objects — a new one for every call of
GetBoundRect(). A further possibility is that you could store the bounding rectangle for an element as
a class member and generate it when the element is created. This is a reasonable alternative, but if you
changed an element subsequently, by moving it say, you would need to ensure the bounding rectangle
was recalculated.

875

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 875



The CLine Class
You can amend the definition of the CLine class to:

class CLine: public CElement
{

public:
~CLine(void);
virtual void Draw(CDC* pDC);     // Function to display a line

// Constructor for a line object
CLine(CPoint Start, CPoint End, COLORREF aColor);

protected:
CPoint m_StartPoint;             // Start point of line
CPoint m_EndPoint;               // End point of line

CLine(void);                     // Default constructoræshould not be used
};

The data members that define a line are m_StartPoint and m_EndPoint, and these are both declared to
be protected. The class has a public constructor that has parameters for the values that define a line,
and the no-arg default constructor has been moved to the protected section of the class to prevent its
use externally.

Implementing the CLine Class
You add the implementation of the member functions in the Elements.cpp that was created by the Class
Wizard when you created the CElement class. The stdafx.h file was included in this file to make the defi-
nitions of the standard system header files available in the file. You may need to add #include directives
for the files containing definitions for Application Wizard-generated classes if you use any in the code.

Of course, you’ll have to add each of the member function definitions to this file manually because Class
Wizard wasn’t involved in defining the classes. You’re now ready to add the constructor for the CLine
class to the Elements.cpp file.

The CLine Class Constructor
The code for this is:

// CLine class constructor
CLine::CLine(CPoint Start, CPoint End, COLORREF aColor)
{

m_StartPoint = Start;               // Set line start point
m_EndPoint = End;                   // Set line start point
m_Color = aColor;                   // Set line color

}

You first store the start point in the m_StartPoint member that is inherited from the CElement class.
Later you’ll add code to allow an element to be moved and to enable a line to be moved by just changing
the start point and the end point must be defined relative to the start point. You do this by subtracting the
x and y coordinate values for Start from those for End. Both x and y are public members of the CPoint
class so you can refer to them directly. Finally, you store the color in the m_Color member that is inherited
from the CElement class.

876

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 876



Drawing a Line
The Draw() function for the CLine class isn’t too difficult either, although you do need to take account
of the color to be used when the line is drawn:

// Draw a CLine object
void CLine::Draw(CDC* pDC)
{

// Create a pen for this object and
// initialize it to the object color and line width of 1 pixel
CPen aPen;
if(!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))
{

// Pen creation failed. Abort the program
AfxMessageBox(_T(“Pen creation failed drawing a line”), MB_OK);
AfxAbort();

}

CPen* pOldPen = pDC->SelectObject(&aPen);  // Select the pen

// Now draw the line
pDC->MoveTo(m_StartPoint);
pDC->LineTo(m_EndPoint);

pDC->SelectObject(pOldPen);                // Restore the old pen
}

You create a pen in the way you saw earlier, only this time you make sure that the creation works. In
the unlikely event that it doesn’t, the most likely cause is that you’re running out of memory, which is 
a serious problem. This is almost invariably caused by an error in the program, so you have written the
function to call AfxMessageBox(), which is a global function to display a message box, and then call
AfxAbort() to terminate the program. The first argument to AfxMessageBox() specifies the message
that is to appear, and the second specifies that it should have an OK button. You can get more informa-
tion on either of these functions by placing the cursor within the function name in the editor window
and then pressing F1.

After selecting the pen, you move the current position to the start of the line, defined in the inherited
m_StartPoint data member, and then draw the line from this point to the end point. Finally, you
restore the old pen in the device context and you are done. The m_Pen variable that is the second argu-
ment to the CreatePen() function does not exist yet; you’ll add this to the CElement class a little
later in this chapter.

Creating Bounding Rectangles
At first sight, obtaining the bounding rectangle for a shape looks trivial. For example, a line is always a
diagonal of its enclosing rectangle, and a circle is defined by its enclosing rectangle, but there are a couple
of slight complications. The shape must lie completely inside the rectangle; otherwise, part of the shape
may not be drawn, so you must allow for the thickness of the line used to draw the shape when you
create the bounding rectangle. Also, how you work out adjustments to the coordinates that define the
bounding rectangle depends on the mapping mode, so you must take that into account, too.

Look at Figure 15-17, which relates to the method for obtaining the bounding rectangle for a line and a
circle.

877

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 877



Figure 15-17

I have called the rectangle that is used to draw a shape the ‘enclosing rectangle,’ while the rectangle that
takes into account the width of the pen I’ve called the ‘bounding rectangle’ to differentiate it. Figure 15-17
shows the shapes with their enclosing rectangles, and their bounding rectangles offset by the line thickness.
This is obviously exaggerated here so you can see what’s happening.

The differences in how you calculate the coordinates for the bounding rectangle in different mapping modes
only concerns the y coordinate; calculation of the x coordinate is the same for all mapping modes. To get
the corners of the bounding rectangle in the MM_TEXT mapping mode, subtract the line thickness from the y
coordinate of the upper-left corner of the defining rectangle, and add it to the y coordinate of the lower-right
corner. However, in MM_LOENGLISH (and all the other mapping modes), the y-axis increases in the opposite
direction, so you need to add the line thickness to the y coordinate of the upper-left corner of the defining rec-
tangle, and subtract it from the y coordinate of the lower-right corner. For all the mapping modes, you sub-
tract the line thickness from the x coordinate of the upper-left corner of the defining rectangle, and add it to
the x coordinate of the lower-right corner.

To implement the element types as consistently as possible in Sketcher, you could store an enclosing rec-
tangle for each shape in a member in the base class. The enclosing rectangle needs to be calculated when
a shape is constructed. The job of the GetBoundRect() function in the base class will then be to calcu-
late the bounding rectangle by offsetting the enclosing rectangle by the pen width. You can amend the
CElement class definition by adding two data members, as follows:

class CElement: public CObject
{

Positive Y-Axis 

Negative X-Axis 

MM_TEXT 

Negative Y-Axis 

Positive X-Axis 

MM_LOENGLISH 

Enclosing rectangle for the line Enclosing rectangle for the circle 

Positive 

Negative 

Positive 

Negative 

Negative Positive 

Bounding 
rectangles 

Enclosing rectangle for the line Enclosing rectangle for the circle 

Negative 

Positive 

Negative 

Positive 

Negative Positive 

Bounding 
rectangles 

878

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 878



protected:
COLORREF m_Color;                  // Color of an element
CRect m_EnclosingRect;             // Rectangle enclosing an element
int m_Pen;                         // Pen width

public:
virtual ~CElement();               // Virtual destructor
virtual void Draw(CDC* pDC) {}     // Virtual draw operation

CRect GetBoundRect();       // Get the bounding rectangle for an element

protected:
CElement();                        // Here to prevent it being called

};

You can add these by right-clicking the class name and selecting Add Member Variable from the pop-up,
or you can add the statements directly in the Editor window along with the comments.

You must also update the CLine constructor so that it has the correct pen width:

// CLine class constructor
CLine::CLine(CPoint Start, CPoint End, COLORREF aColor)
{

m_StartPoint = Start;               // Set line start point
m_EndPoint = End;                   // Set line start point
m_Color = aColor;                   // Set line color
m_Pen = 1;                          // Set pen width

}

You can now implement the GetBoundRect() member of the base class, assuming the MM_TEXT map-
ping mode:

// Get the bounding rectangle for an element
CRect CElement::GetBoundRect()
{

CRect BoundingRect;                 // Object to store bounding rectangle
BoundingRect = m_EnclosingRect;     // Store the enclosing rectangle

// Increase the rectangle by the pen width
BoundingRect.InflateRect(m_Pen, m_Pen);
return BoundingRect;                // Return the bounding rectangle

}

This returns the bounding rectangle for any derived class object. You define the bounding rectangle by
modifying the coordinates of the enclosing rectangle stored in the base class data member so that it is
enlarged all round by the pen width, using the InflateRect() method of the CRect class.

The CRect class provides an operator + for rectangles, which you could have used instead. For example,
you could have written the statement before the return as:

BoundingRect = m_EnclosingRect + CRect(m_Pen, m_Pen, m_Pen, m_Pen);

879

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 879



Equally, you could have simply added (or subtracted) the pen width for each of the x and y values that
make up the rectangle. You could have replaced the assignment with the following statements:

BoundingRect = m_EnclosingRect;
BoundingRect.top -= m_Pen;
BoundingRect.left -= m_Pen;
BoundingRect.bottom += m_Pen;
BoundingRect.right += m_Pen;

As a reminder, the individual data members of a CRect object are left and top (storing the x and y
coordinates of the upper-left corner) and right and bottom (storing the coordinates of the lower-right
corner). These are all public members, so you can access them directly. A commonly made mistake, espe-
cially by me, is to write the coordinate pair as (top, left) instead of in the correct order (left, top).

The hazard with both this and the InflateRect() option is that there is a built-in assumption that the
mapping mode is MM_TEXT, which means that the positive y-axis is assumed to run from top to bottom.
If you change the mapping mode, neither of these will work properly, although it’s not immediately
obvious that they won’t.

Normalized Rectangles
The InflateRect() function works by subtracting the values that you give it from the top and left
members of the rectangle and adding the values to the bottom and right. This means that you may
find your rectangle actually decreasing in size if you don’t make sure that the rectangle is normalized. A
normalized rectangle has a left value that is less than or equal to the right value, and a top value that
is less than or equal to the bottom value. You can make sure that a CRect object is normalized by calling
the NormalizeRect() member of the object. Most of the CRect member functions require the object to
be normalized for them to work as expected, so you need to make sure that when you store the enclos-
ing rectangle in m_EnclosingRect, it is normalized.

Calculating the Enclosing Rectangle for a Line
All you need now is code in the constructor for a line to calculate the enclosing rectangle:

CLine::CLine(CPoint Start, CPoint End, COLORREF aColor)
{

m_StartPoint = Start;               // Set line start point
m_EndPoint = End;                   // Set line end point
m_Color = aColor;                   // Set line color
m_Pen = 1;                          // Set pen width

// Define the enclosing rectangle
m_EnclosingRect = CRect(Start, End);
m_EnclosingRect.NormalizeRect();

}

The arguments to the CRect constructor you are using here are the start and end points of the line. To
ensure that the bounding rectangle has the top value less than the bottom value, regardless of the rel-
ative positions of the start and end points of the line, you call the NormalizeRect() member of the
m_EnclosingRect object.

880

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 880



The CRectangle Class
Although you’ll be defining a rectangle object by the same data that you use to define a line — a start
point and an end point on a diagonal of the rectangle — you don’t need to store the defining points. The
enclosing rectangle in the data member inherited from the base class completely defines the shape, so
you don’t need any data members. You can therefore define the class like this:

// Class defining a rectangle object
class CRectangle: public CElement
{

public:
~CRectangle(void);
virtual void Draw(CDC* pDC);     // Function to display a rectangle

// Constructor for a rectangle object
CRectangle(CPoint Start, CPoint End, COLORREF aColor);

protected:
CRectangle(void);                // Default constructor - should not be used

};

The no-arg constructor is now protected to prevent it from being used. The definition of the rectangle
becomes very simple — just a constructor, the virtual Draw() function, plus the no-arg constructor in the
protected section of the class.

The CRectangle Class Constructor
The code for the new CRectangle class constructor is somewhat similar to that for a CLine constructor:

// CRectangle class constructor
CRectangle:: CRectangle(CPoint Start, CPoint End, COLORREF aColor)
{

m_Color = aColor;          // Set rectangle color
m_Pen = 1;                 // Set pen width

// Define the enclosing rectangle 
m_EnclosingRect = CRect(Start, End);
m_EnclosingRect.NormalizeRect();

}

If you modified the CRectangle class definition manually, there is no skeleton definition for the construc-
tor, so you just need to add the definition directly to Elements.cpp.

This is cheap code. Some minor alterations to a subset of the CLine constructor, fix the comments, and
we have a new constructor for CRectangle. It just stores the color and pen width and computes the
enclosing rectangle from the points passed as arguments.

Drawing a Rectangle
There is a member of the CDC class called Rectangle() that draws a rectangle. This function draws a
closed figure and fills it with the current brush. You may think that this isn’t quite what you want because

881

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 881



you want to draw rectangles as outlines only, but by selecting a NULL_BRUSH that is exactly what you will
draw. Just so you know, there’s also a function PolyLine(), which draws shapes consisting of multiple
line segments from an array of points, or you could have used LineTo() again, but the easiest approach
is to use the Rectangle() function:

// Draw a CRectangle object
void CRectangle::Draw(CDC* pDC)
{

// Create a pen for this object and
// initialize it to the object color and line width of 1 pixel
CPen aPen;
if(!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))
{

// Pen creation failed
AfxMessageBox(_T(“Pen creation failed drawing a rectangle”), MB_OK);
AfxAbort();

}

// Select the pen
CPen* pOldPen = pDC->SelectObject(&aPen);
// Select the brush
CBrush* pOldBrush = (CBrush*)pDC->SelectStockObject(NULL_BRUSH);

// Now draw the rectangle
pDC->Rectangle(m_EnclosingRect);

pDC->SelectObject(pOldBrush);       // Restore the old brush
pDC->SelectObject(pOldPen);         // Restore the old pen

}

After setting up the pen and the brush, you simply pass the whole rectangle directly to the Rectangle()
function to get it drawn. All that remains to do is to clear up afterwards and restore the device context’s
old pen and brush.

The CCircle Class
The interface of the CCircle class is no different from that of the CRectangle class. You can define a
circle solely by its enclosing rectangle, so the class definition is:

// Class defining a circle object
class CCircle: public CElement
{

public:
~CCircle(void);
virtual void Draw(CDC* pDC);     // Function to display a circle

// Constructor for a circle object
CCircle(CPoint Start, CPoint End, COLORREF aColor);

protected:
CCircle(void);                   // Default constructor - should not be used

};

You have defined a public constructor that creates a circle from two points, and makes the no-arg construc-
tor as protected again. You have also added a declaration for the draw function to the class definition.

882

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 882



Implementing the CCircle Class
As discussed earlier, when you create a circle, the point where you press the left mouse button is the center,
and after moving the cursor with the left button down, the point where you release the cursor is a point on
the circumference of the final circle. The job of the constructor is to convert these points into the form used
in the class to define a circle.

The CCircle Class Constructor
The point at which you release the left mouse button can be anywhere on the circumference, so the coor-
dinates of the points specifying the enclosing rectangle need to be calculated, as illustrated in Figure 15-18.

Figure 15-18

From Figure 15-18 you can see that you can calculate the coordinates of the upper-left and lower-right
points of the enclosing rectangle relative to the center of the circle (x1, y1), which is the point you record
when the left mouse button is pressed. Assuming that the mapping mode is MM_TEXT, for the upper-left
point you just subtract the radius from each of the coordinates of the center. Similarly, the lower-right
point is obtained by adding the radius to the x and y coordinates of the center. You can, therefore, code
the constructor as:

// Constructor for a circle object
CCircle::CCircle(CPoint Start, CPoint End, COLORREF aColor)
{

// First calculate the radius
// We use floating point because that is required by 
// the library function (in math.h) for calculating a square root.
long Radius = static_cast<long> (sqrt(

static_cast<double>((End.x-Start.x)*(End.x-Start.x)+
(End.y-Start.y)*(End.y-Start.y))));

// Now calculate the rectangle enclosing
// the circle assuming the MM_TEXT mapping mode
m_EnclosingRect = CRect(Start.x-Radius, Start.y-Radius,

Start.x+Radius, Start.y+Radius);

m_Color = aColor;                   // Set the color for the circle
m_Pen = 1;                          // Set pen width to 1

}

x2,y2

This distance is 2r

Left mouse button
down here

This distance is 2r

Left mouse button up here

r2=(x2-x1)2+(y2-y1)2

x1,y1

883

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 883



To use the sqrt() function, you must add the line to the beginning of the Elements.cpp file:

#include <cmath>

You can place this after the #include directive for stdafx.h. 

The maximum coordinate values are 32 bits, and the CPoint members x and y are declared as long,
so evaluating the argument to the sqrt() function can safely be carried out as an integer. The result
of the square root calculation is of type double, so you cast it to long because you want to use it as
an integer.

Drawing a Circle
You have already seen how to draw a circle using the Arc() function in the CDC class, so now use the
Ellipse() function here. The implementation of the Draw() function in the CCircle class is:

// Draw a circle
void CCircle::Draw(CDC* pDC)
{

// Create a pen for this object and
// initialize it to the object color and line width of 1 pixel
CPen aPen;
if(!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))
{

// Pen creation failed
AfxMessageBox(_T(“Pen creation failed drawing a circle”), MB_OK);
AfxAbort();

}

CPen* pOldPen = pDC->SelectObject(&aPen);  // Select the pen

// Select a null brush
CBrush* pOldBrush = (CBrush*)pDC->SelectStockObject(NULL_BRUSH);

// Now draw the circle
pDC->Ellipse(m_EnclosingRect);

pDC->SelectObject(pOldPen);                // Restore the old pen
pDC->SelectObject(pOldBrush);              // Restore the old brush

} 

After selecting a pen of the appropriate color and a null brush, the circle is drawn by calling the Ellipse()
function. The only argument is a CRect object that encloses the circle you draw. This is another example of
code that’s almost for free because it’s similar to the code you wrote earlier to draw a rectangle.

The CCurve Class
The CCurve class is different from the others in that it needs to be able to deal with a variable number of
defining points. This necessitates maintaining a list of some kind and although you could use the STL
template to define a list, this has the disadvantage that the list will not be serializable. Because you will
look at how you can create lists that are serializable in the next chapter, I’ll defer defining the detail of

884

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 884



this class until then. For now, you can include a class definition that provides dummy member functions
so you can compile and link code that contains calls to them. In Elements.h, you should have:

class CCurve: public CElement
{

public:
~CCurve(void);
virtual void Draw(CDC* pDC); // Function to display a curve

// Constructor for a curve object
CCurve(COLORREF aColor);

protected:
CCurve(void);                    // Default constructor - should not be used

};

And in Elements.cpp:

// Constructor for a curve object
CCurve::CCurve(COLORREF aColor)
{

m_Color = aColor;
m_EnclosingRect = CRect(0,0,0,0);
m_Pen = 1;

}

// Draw a curve
void CCurve::Draw(CDC* pDC)
{
}

Neither the constructor nor the Draw() member function does anything useful yet, and you have no
data members to define a curve. The constructor just sets the color, sets m_EnclosingRect to an empty
rectangle, and sets the pen width. You’ll expand the class into a working version in the next chapter.

Completing the Mouse Message Handlers
You can now come back to the WM_MOUSEMOVE message handler and fill out the detail. You can get 
to it through selecting CSketcherView in the Class View and double-clicking the handler name,
OnMouseMove().

This handler is concerned only with drawing a succession of temporary versions of an element as you
move the cursor because the final element is created when you release the left mouse button. You can
therefore treat the drawing of temporary elements to provide rubber-banding as being entirely local to
this function, leaving the final version of the element that is created to be drawn by the OnDraw() func-
tion member of the view. This approach results in the drawing of the rubber-banded elements being
reasonably efficient because it won’t involve the OnDraw() function that ultimately is responsible for
drawing the entire document.

You can do this best with the help of a member of the CDC class that is particularly effective in rubber-
banding operations: SetROP2().

885

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 885



Setting the Drawing Mode
The SetROP2() function sets the drawing mode for all subsequent output operations in the device
context associated with a CDC object. The ‘ROP’ bit of the function name stands for Raster OPeration
because the setting of drawing modes applies to raster displays. In case you’re wondering, ‘What’s
SetROP1() then?’ — there isn’t one. The function name represents ‘Set Raster OPeration to’, not 2!

The drawing mode determines how the color of the pen that you use for drawing is to combine with the
background color to produce the color of the entity you are displaying. You specify the drawing mode
with a single argument to the function that can be any of the following values:

Drawing Mode Effect

R2_BLACK All drawing is in black.

R2_WHITE All drawing is in white.

R2_NOP Drawing operations do nothing.

R2_NOT Drawing is in the inverse of the screen color. This ensures the output is always
visible because it prevents drawing in the same color as the background.

R2_COPYPEN Drawing is in the pen color. This is the default drawing mode if you don’t
set it.

R2_NOTCOPYPEN Drawing is in the inverse of the pen color.

R2_MERGEPENNOT Drawing is in the color produced by ORing the pen color with the inverse of
the background color.

R2_MASKPENNOT Drawing is in the color produced by ANDing the pen color with the inverse
of the background color.

R2_MERGENOTPEN Drawing is in the color produced by ORing the background color with the
inverse of the pen color.

R2_MASKNOTPEN Drawing is in the color produced by ANDing the background color with the
inverse of the pen color.

R2_MERGEPEN Drawing is in the color produced by ORing the background color with the
pen color.

R2_NOTMERGEPEN Drawing is in the color that is the inverse of the R2_MERGEPEN color.

R2_MASKPEN Drawing is in the color produced by ANDing the background color with the
pen color.

R2_NOTMASKPEN Drawing is in the color that is the inverse of the R2_MASKPEN color.

R2_XORPEN Drawing is in the color produced by exclusive ORing the pen color and the
background color.

R2_NOTXORPEN Drawing is in the color that is the inverse of the R2_XORPEN color.

886

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 886



Each of these symbols is predefined and corresponds to a particular drawing mode. There are a lot of
options here, but the one that can work some magic for us is the last of them, R2_NOTXORPEN.

When you set the mode as R2_NOTXORPEN, the first time you draw a particular shape on the default white
background, it is drawn normally in the pen color you specify. If you draw the same shape again, over-
writing the first, the shape disappears because the color that the shape is drawn in corresponds to that
produced by exclusive ORing the pen color with itself. The drawing color that results from this is white.
You can see this more clearly by working through an example.

White is formed from equal proportions of the “maximum” amounts of red, blue, and green. For simplic-
ity, this can be represented as 1,1,1 — the three values represent the RGB components of the color. In the
same scheme, red is defined as 1,0,0. These combine as follows:

So, the first time you draw a red line on a white background, it comes out red as the last line above indi-
cates. If you now draw the same line a second time, overwriting the existing line, the background pixels
you are writing over are red. The resultant drawing color works out as follows:

As the last line indicates the line comes out as white and because the rest of the background is white, the
line disappears.

You need to take care to use the right background color here. You should be able to see that drawing with a
white pen on a red background is not going to work too well, as the first time you draw something it is red,
and therefore invisible. The second time it appears as white. If you draw on a black background, things
appear and disappear, as on a white background, but they are not drawn in the pen color you choose.

Coding the OnMouseMove() Handler
Start by adding the code that creates the element after a mouse move message. Because you are going 
to draw the element from the handler function, you need to create an object for the device context. The

R G B

Background — red 1 0 0

Pen — red 1 0 0

XORed 0 0 0

NOT XOR — produces white 1 1 1

R G B

Background — white 1 1 1

Pen — red 1 0 0

XORed 0 1 1

NOT XOR — produces red 1 0 0

887

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 887



most convenient class to use for this is CClientDC, which is derived from CDC. As I said earlier, the advan-
tage of using this class rather than CDC is that it automatically takes care of creating the device context for
you and destroying it when you are done. The device context that it creates corresponds to the client area of
a window, which is exactly what you want. Add the following code to the outline handler that you defined
earlier:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{

// Define a Device Context object for the view
CClientDC aDC(this);                // DC is for this view
aDC.SetROP2(R2_NOTXORPEN);          // Set the drawing mode
if(nFlags & MK_LBUTTON)
{

m_SecondPoint = point;           // Save the current cursor position
// Test for a previous temporary element
{

// We get to here if there was a previous mouse move
// so add code to delete the old element

}

// Create a temporary element of the type and color that
// is recorded in the document object, and draw it
m_pTempElement = CreateElement();// Create a new element
m_pTempElement->Draw(&aDC);      // Draw the element

}
}

The first new line of code creates a local CClientDC object. The this pointer that you pass to the construc-
tor identifies the current view object, so the CClientDC object has a device context that corresponds to the
client area of the current view. As well as the characteristics I mentioned, this object has all the drawing
functions you need because they are inherited from the CDC class. The first member function you use is
SetROP2(), which sets the drawing mode to R2_NOTXORPEN.

To create a new element, you save the current cursor position in the data member m_SecondPoint, and
then call a view member function CreateElement(). (You’ll define the CreateElement() function as
soon as you have finished this handler.) This function should create an element using the two points stored
in the current view object, with the color and type specification stored in the document object, and return
the address of the element. Save this in m_pTempElement.

Using the pointer to the new element, you call its Draw() member to get the object to draw itself. The
address of the CClientDC object is passed as an argument. Because you defined the Draw() function as
virtual in the base class, CElement, the function for whatever type of element m_pTempElement is point-
ing to is automatically selected. The new element is drawn normally with the R2_NOTXORPEN because you
are drawing it for the first time on a white background.

You can use the pointer m_pTempElement as an indicator of whether a previous temporary element exists.
The code for this part of the handler is:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{

// Define a Device Context object for the view

888

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 888



CClientDC aDC(this);                // DC is for this view
aDC.SetROP2(R2_NOTXORPEN);          // Set the drawing mode
if(nFlags&MK_LBUTTON)
{

m_SecondPoint = point;           // Save the current cursor position

if(m_pTempElement)
{

// Redraw the old element so it disappears from the view
m_pTempElement->Draw(&aDC);
delete m_pTempElement;        // Delete the old element
m_pTempElement = 0;           // Reset the pointer to 0

}

// Create a temporary element of the type and color that
// is recorded in the document object, and draw it
m_pTempElement = CreateElement();// Create a new element
m_pTempElement->Draw(&aDC);      // Draw the element

}
}

A previous temporary element exists if the pointer m_pTempElement is not zero. You need to redraw the
element to which it points to remove it from the client area of the view. You then delete the element and
reset the pointer to zero. The new element is then created and drawn by the code that you added previ-
ously. This combination automatically rubber-bands the shape being created, so it appears to be attached
to the cursor position as it moves. You must not forget to reset the pointer m_pTempElement back to 0 in
the WM_LBUTTONUP message handler after you create the final version of the element.

Creating an Element
You should add the CreateElement() function as a protected member to the ‘Operations’ section of
the CSketcherView class:

class CSketcherView: public CView
{

// Rest of the class definition as before...

// Operations
public:

protected:
CElement* CreateElement(void);   // Create a new element on the heap

// Rest of the class definition as before...

};

To do this you can either amend the class definition directly by adding the shaded line, or you can right-
click on the class name, CSketcherView, in Class View, and select Add > Add Function from the con-
text menu. This opens the dialog shown in Figure 15-19.

889

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 889



Figure 15-19

Add the specifications of the function, as shown, and click the Finish button. A declaration for the func-
tion member is added to the class definition and you are taken directly to a skeleton for the function in
SketcherView.cpp. If you added the declaration to the class definition manually, you’ll need to add
the complete definition for the function to the .cpp file. This is:

// Create an element of the current type
CElement* CSketcherView::CreateElement(void)
{

// Get a pointer to the document for this view
CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);                 // Verify the pointer is good

// Now select the element using the type stored in the document
switch(pDoc->GetElementType())
{

case RECTANGLE:
return new CRectangle(m_FirstPoint, m_SecondPoint,

pDoc->GetElementColor());

case CIRCLE:
return new CCircle(m_FirstPoint, m_SecondPoint,

pDoc->GetElementColor());

case CURVE:
return new CCurve(pDoc->GetElementColor());

case LINE:
return new CLine(m_FirstPoint, m_SecondPoint,

pDoc->GetElementColor());

890

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 890



default:
// Something’s gone wrong
AfxMessageBox(_T(“Bad Element code”), MB_OK);
AfxAbort();
return NULL;

}
}

The lines that aren’t shaded are those that will have been supplied automatically if you added the function
to the class using the Add > Add Function dialog. The first thing you do here is get a pointer to the docu-
ment by calling GetDocument(), as you’ve seen before. For safety, you use the ASSERT_VALID() macro 
to ensure that a good pointer is returned. In the debug version of MFC that’s used in the debug version of
your application, this macro calls the AssertValid() member of the object, which is specified as the argu-
ment to the macro. This checks the validity of the current object, and if the pointer is NULL or the object is
defective in some way, an error message is displayed. In the release version of MFC, the ASSERT_VALID()
macro does nothing.

The switch statement selects the element to be created based on the type returned by a function in the
document class, GetElementType(). Another function in the document class is used to obtain the cur-
rent element color. You can add the definitions for both these functions directly to the CSketcherDoc
class definition because they are very simple:

class CSketcherDoc: public CDocument
{

// Rest of the class definition as before...

// Operations
public:

unsigned int GetElementType()    // Get the element type
{ return m_Element; }

COLORREF GetElementColor()       // Get the element color
{ return m_Color; }

// Rest of the class definition as before...

};

Each of the functions returns the value stored in the corresponding data member. Remember that put-
ting a member function definition in the class definition is equivalent to a request to make the function
inline; so as well as being simple, these should be fast.

Dealing with WM_LBUTTONUP Messages
The WM_LBUTTONUP message completes the process of creating an element. The job of the handler for this
message is to pass the final version of the element that was created to the document object, and then clean
up the view object data members. You can access and edit the code for this handler in the same way as you
did for the previous one. Add the following lines to the function:

void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)
{

// Make sure there is an element
if(m_pTempElement)

891

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 891



{
// Call a document class function to store the element
// pointed to by m_pTempElement in the document object

delete m_pTempElement;           // This code is temporary
m_pTempElement = 0;              // Reset the element pointer

}
}

The if statement verifies that m_pTempElement is not zero before processing it. It’s always possible that
the user could press and release the left mouse button without moving the mouse, in which case no ele-
ment would have been created. As long as there is an element, the pointer to the element is passed to the
document object; you’ll add the code for this in the next chapter. In the meantime, you just delete the ele-
ment here so as not to pollute the heap. Finally, the m_pTempElement pointer is reset to 0, ready for the
next time the user draws an element.

Exercising Sketcher
Before you can run the example with the mouse message handlers, you must update the OnDraw() func-
tion in the CSketcherView class implementation to get rid of any old code that you added earlier.

To make sure that the OnDraw() function is clean, go to Class View and double-click the function name to
take you to its implementation in SketcherView.cpp. Delete any old code that you added, but leave in
the first four lines that the wizard provided to get a pointer to the document object. You’ll need this later
to get to the elements when they’re stored in the document. The code for the function should now be:

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(!pDoc)

return;
}

Because you have no elements in the document as yet, you don’t need to add anything to this function at
this point. When you start storing data in the document in the next chapter, you’ll add code to draw the
elements in response to a WM_PAINT message. Without it, the elements just disappear whenever you resize
the view, as you’ll see.

Running the Example
After making sure that you have saved all the source files, build the program. If you haven’t made any
mistakes entering the code, you’ll get a clean compile and link, so you can execute the program. You can
draw lines, circles and rectangles in any of the four colors the program supports. A typical window is
shown in Figure 15-20.

Try experimenting with the user interface. Note that you can move the window around and that the
shapes stay in the window as long as you don’t move it so far that they’re outside the borders of the
application window. If you do, the elements do not reappear after you move it back. This is because 

892

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 892



the existing elements are never redrawn. When the client area is covered and uncovered, Windows
sends a WM_PAINT message to the application that causes the OnDraw() member of the view object to
be called. As you know, the OnDraw() function for the view doesn’t do anything at present. This gets
fixed when you use the document to store the elements.

Figure 15-20

When you resize the view window, the shapes disappear immediately, but when you move the whole
view around, they remain (as long as they don’t slide beyond the application window border). How
come? Well, when you resize the window, Windows invalidates the whole client area and expects your
application to redraw it in response to the WM_PAINT message. If you move the view around, Windows
takes care of relocating the client area as it is. You can demonstrate this by moving the view so that a
shape is partially obscured. When you slide it back, you still have a partial shape, with the bit that was
obscured erased.

If you try drawing a shape while dragging the cursor outside the client view area, you’ll notice some
peculiar effects. Outside the view window, you lose track of the mouse, which tends to mess up the 
rubber-banding mechanism. What’s going on?

Capturing Mouse Messages
The problem is caused by the fact that Windows is sending the mouse messages to the window 
under the cursor. As soon as the cursor leaves the client area of your application view window, the
WM_MOUSEMOVE messages are being sent elsewhere. You can fix this by using some inherited members 
of the CSketcherView class.

The view class inherits a function, SetCapture(), which you can call to tell Windows that you want your
view window to get all the mouse messages until such time as you say otherwise, by calling another inher-
ited function in the view class, ReleaseCapture(). You can capture the mouse as soon as the left button is
pressed by modifying the handler for the WM_LBUTTONDOWN message:

// Handler for left mouse button down message
void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)
{

893

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 893



m_FirstPoint = point;           // Record the cursor position
SetCapture();                   // Capture subsequent mouse messages

}

Now you must call the ReleaseCapture() function in the WM_LBUTTONUP handler. If you don’t do this,
other programs cannot receive any mouse messages as long as your program continues to run. Of course,
you should only release the mouse if you’ve captured it earlier. The GetCapture() function that the view
class inherits returns a pointer to the window that has captured the mouse, and this gives you a way of
telling whether or not you have captured mouse messages. You just need to add the following to the han-
dler for WM_LBUTTONUP:

void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)
{

if(this == GetCapture())
ReleaseCapture();        // Stop capturing mouse messages

// Make sure there is an element
if(m_pTempElement)
{

// Call a document class function to store the element
// pointed to by m_pTempElement in the document object

delete m_pTempElement;   // This code is temporary
m_pTempElement = 0;      // Reset the element pointer

}
}

If the pointer returned by the GetCapture() function is equal to the pointer this, your view has captured
the mouse, so you release it.

The final alteration you should make is to modify the WM_MOUSEMOVE handler so that it only deals with
messages that have been captured by the view. You can do this with one small change:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{

// Define a Device Context object for the view
CClientDC aDC(this);                // DC is for this view
aDC.SetROP2(R2_NOTXORPEN);          // Set the drawing mode
if((nFlags & MK_LBUTTON) && (this == GetCapture()))
{

m_SecondPoint = point;           // Save the current cursor position

if(m_pTempElement)
{

// Redraw the old element so it disappears from the view
m_pTempElement->Draw(&aDC);
delete m_pTempElement;        // Delete the old element
m_pTempElement = 0;           // Reset the pointer to 0

}

// Create a temporary element of the type and color that
// is recorded in the document object, and draw it

894

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 894



m_pTempElement = CreateElement();// Create a new element
m_pTempElement->Draw(&aDC);      // Draw the element

}
}

The handler now processes only the message if the left button is down and the left button down handler
for your view has been called, so that the mouse has been captured by your view window.

If you rebuild Sketcher with these additions, you’ll find that the problems that arose earlier when the
cursor was dragged off the client area no longer occur.

Drawing with the CLR
It’s time to augment the CLRSketcher application from the previous chapter with some drawing capabil-
ity. I won’t discuss the principles of drawing shapes using the mouse again because they are essentially the
same in both environments. 

The MFC is a set of classes that wraps the Windows API, so inevitably most of the processes are very
similar to the Windows API. Of course, the CLR is a virtual machine that insulates you from the host
environment, so there is no need for the CLR to follow the patterns for handling events and drawing in
a window that are in the Windows API. There are significant differences as you’ll see, but it is not so far
from the way that the MFC works that you will have any problems understanding it. Indeed, in a CLR
program things are typically somewhat simpler. 

Drawing on a Form
In a CLR program you have none of the complications of mapping modes when you are drawing on a
form. The origin for drawing purposes is at the top left of the form with the positive x-axis running from
left to right and the positive y-axis running from top to bottom. The classes that enable you to draw on a
form are within the System::Drawing namespace and drawing on the form is carried out by a function
in the Form1 class that handles the Paint event. Right-click on the form in the Design window for CLR
Sketcher and select Properties from the pop-up. Select the Events button to display the events for the form
and double-click the Paint event; it’s the only event in the Appearance group in the Properties window.
This generates the Form1_Paint() function that will be called in response to a Paint event that occurs
when the form must be redrawn. You’ll implement this method to draw a sketch in the next chapter.

One thing you can do at this point is to change the background color for the form. By default the back-
ground color is a shade of gray that is not ideal as a drawing background and it would be better a
shade of white. Change the value of the BackColor property in the Properties window by selecting
ControlLightLight from the drop-down list to the right. The form will now display with a nice
white background to draw on.

Adding Mouse Event Handlers
As I said, the drawing principles in CLR Sketcher are essentially the same as in MFC Sketcher so you
need handlers for the corresponding mouse events. If you scroll down the list of events in the Form1
Properties window you can find the Mouse group of events, as shown in Figure 15-21.

895

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 895



Figure 15-21

The ones that are of particular interest for drawing operations are the MouseDown, MouseMove, and
MouseUp events. The MouseDown event occurs when a mouse button is pressed and you determine
which mouse button from information passed to the event handler. Similarly, the MouseUp event occurs
when any mouse button is released and the arguments passed to the handler for the event enable you 
to figure out which. You need handlers for these two events as well as the MouseMove event, so double-
click each of these events in the Properties window to generate the event handler functions for them.
The handler for the MouseDown event looks like this:

private: System::Void Form1_MouseDown(
System::Object^  sender, System::Windows::Forms::MouseEventArgs^  e) 
{
}

The first parameter identifies the source of the event and the second parameter provides information
about the event itself. The MouseEventArgs object that is passed to this handler function (in fact all of
the mouse event handlers have a parameter of this type) contains several properties that provide infor-
mation you can use in handling the event, and these are described in the following table.

Property Name Description

Button A property of enum type System::Windows::Forms::MouseButtons that
identifies which mouse button was pressed. The MouseButtons enum
defines the following possible values for the property:

MouseButtons::Left: The left mouse.
MouseButtons::Right: The right mouse.
MouseButtons::None: No mouse button was pressed.
MouseButtons::Middle: The middle mouse button.
MouseButtons::XButton1: The first XButton.
MouseButtons::XButton2: The second XButton.

Location A property of type System::Drawing::Point that identifies the location of
the mouse cursor. The X and Y properties of a Point object are the integer x
and y coordinate values.

896

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 896



Following the same logic as you used in the MFC Sketcher program, the MouseDown event handler
needs to check that the left mouse button is pressed and record the current cursor position somewhere
for use in the MouseMove handler. It also should record that drawing an element is in progress. To sup-
port this you can add two private data members to the Form1 class, a bool variable with the name
drawing to record when drawing an element is in progress, and a variable of type Point with the
name firstPoint to record the initial mouse cursor position. You can do this manually, or from Class
View using the Add > Add Variable... capability. Make sure that the variables are initialized by
the Form1 constructor, drawing to false and firstPoint to 0; the wizard should insert this auto-
matically. The Point class is defined in the System::Drawing namespace, so you should add the 
following using directive at the end of the others in Form1.h:

using namespace System::Drawing;

You can now add the code for the MouseDown delegate like this:

private: System::Void Form1_MouseDown(
System::Object^  sender, System::Windows::Forms::MouseEventArgs^  e) 
{
if(e->Button == System::Windows::Forms::MouseButtons::Left)
{
drawing = true;
firstPoint = e->Location;

}
}

As long as the left mouse button is pressed, drawing an element has started so you set drawing to true.
The Location property for the parameter e supplies the cursor location as a Point object so you can
store it directly in firstPoint. 

The MouseMove event handler will take care of creating elements for the sketch and the MouseUp event
handler will finalize the process, but before you complete the code for these two mouse event handlers
you need to take a little diversion to define the classes that encapsulate the elements you can draw. 

Defining C++/CLI Element Classes
The pattern for the classes that define elements will be similar to those in the MFC version of Sketcher;
an Element base class with the specific element types defined by classes derived from Element. Go to
the Solution Explorer window, right-click on the Header Files folder and select Add > New Item...

Property Name Description

X The x coordinate of the mouse cursor as a value of type int.

Y The y coordinate of the mouse cursor as a value of type int.

Clicks A count of the number of times the mouse button was pressed and released
as a value of type int.

Delta A signed count of the number of detents the mouse wheel has rotated as a
value of type int.

897

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 897



from the pop-up. Use the dialog to add a header file with the name Elements.h. Add the code for
Element base class definition to Elements.h like this:

// Elements.h
// Defines element types
#pragma once

using namespace System;
using namespace System::Drawing;

namespace CLRSketcher 
{

public ref class Element abstract
{
protected:
Point position;
Color color;
System::Drawing::Rectangle boundRect;

public:
virtual void Draw(Graphics^ g) abstract;

};
}

You are using classes from the System and System::Drawing namespaces in the element class defi-
nitions so there are using directives for both. The code for the application is defined within the
CLRSketcher namespace, so you put the definitions for the element classes in the same namespace.
The Element class and its subclasses have to be ref classes because value classes cannot be derived
classes. The Element class also must be defined as abstract because there is no implementation 
for the Draw() function. The Draw() function will be overridden in each of the derived classes to 
draw a specific type of element and you will call the function polymorphically, just as you did in 
MFC Sketcher. 

The position member is of type System::Drawing::Point, which is a value type that defines a point
object with two members X and Y. The position, color, and boundRect members will be inherited in
the derived classes and will store the position of the element, the element color, and the bounding rectan-
gle for the element. All elements will be drawn relative to the point position. For the moment you won’t
worry about the distinction between a bounding rectangle and an enclosing rectangle. Incidentally, the
type name for the boundRect variable, System::Drawing::Rectangle, is fully qualified here because
you will add a derived class with the name Rectangle; without the qualified name here, the compiler
would assume you mean the Rectangle class in this header file, which is not what you want. 

Defining a Line
Next you can add an initial definition for the Line class to Elements.h. Make sure you add this code
before the closing brace for the CLRSketcher namespace block:

public ref class Line : Element
{
protected:
Point end;

public:

898

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 898



// Constructor
Line(Color color, Point start, Point end)
{
this->color = color;
position = start;
this->end = end;
boundRect = System::Drawing::Rectangle(Math::Min(position.X, end.X),

Math::Min(position.Y, end.Y),
Math::Abs(position.X - end.X), Math::Abs(position.Y - end.Y));

// Provide for lines that are horizontal or vertical      
if(boundRect.Width < 2) boundRect.Width = 2;
if(boundRect.Height < 2) boundRect.Height = 2;

}

// Function to draw a line
virtual void Draw(Graphics^ g) override
{
// Code to draw a line...

}
};

The constructor sets the value for the color member that is inherited from the base class. It also stores the
start and end points of the line that are passed as arguments in the inherited position member and the
end member respectively. The inherited boundRect member is initialized from the position and the
end points. You have several ways to create a System::Drawing::Rectangle object. Here, the first
two arguments to the Rectangle constructor are the coordinates of the top-left corner of the rectangle.
The third and fourth arguments are the width and height of the rectangle. You use the Min() function
from the System::Math class to obtain the minimum values of the coordinates of position and end
and the Abs() function to obtain the absolute (positive) value for the difference between pairs of corre-
sponding coordinates to get the width and height. The Math class defines several other static utility
functions that are very handy when you want to carry out basic mathematical operations.

If a line is exactly horizontal or vertical, the bounding rectangle will have a width or height that is zero
so the last two if statements in the constructor ensure that the rectangle always has a width and height
greater than zero.

Defining a Color
System::Drawing::Color is a value class that encapsulates an ARGB color value. An ARGB color is a
32-bit value comprising four 8-bit components, an alpha component that determines transparency and
three primary color components, red, green and blue. Each of the component values can be from 0 to 255
where an alpha of 0 is completely transparent and an alpha of 255 is completely opaque; an 8-bit color
component value represents the intensity of that color where 0 is zero intensity (i.e., no color) and 255 is
the maximum. A lot of the time you can make use of standard color constants that the Color class defines
such as Color::Blue or Color::Red. If you look at the documentation for members of the Color class,
you’ll see the complete set.

Drawing Lines
The Draw() function will use the System::Drawing::Graphics object that is passed as the argument
to draw the line in the appropriate color. The Graphics class defines a large number of functions that
you use for drawing shapes, including those in the following table.

899

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 899



In each case the Pen parameter determines the color and style of line used to draw the shape so we’ll
explore the Pen class in a little more depth.

Defining a Pen for Drawing
The System::Drawing::Pen class represents a pen for drawing lines and curves. The simplest Pen
object draws in a specified color with a default line width, for example:

Pen^ pen =  gcnew Pen(Color::CornflowerBlue);

This defines a Pen object that you can use to draw in cornflower blue.

You can also define a Pen with a second argument to the constructor that defines the thickness of the line
as a float value:

Pen^ pen =  gcnew Pen(Color::Green, 2.0f);

This defines a Pen object that will draw green lines with a thickness of 2.0f. Note that the pen width is a
public property so you can always set the width for a given Pen object explicitly:

pen->Width = 3.0f;

You could now conceivably complete the definition of the Draw() function in the Line class, like this:

virtual void Draw(Graphics^ g) override

Function Description

DrawLine(Pen pen,
Point p1, Point p2)

Draws a line from p1 to p2 using pen. A Pen object
draws in a specific color and line thickness.

DrawLine(Pen pen,
int x1, int y1,
int x2, int y2)

Draws a line from (x1,y1) to (x2,y2) using pen.

DrawLines(Pen pen, Point[] pts) Draws a series of lines connecting the points in the
pts array using pen.

DrawRectangle(Pen pen,
Rectangle rect)

Draws the rectangle rect using pen.

DrawRectangle(Pen pen,
int X, int Y,
int width, int height)

Draws a rectangle at (x,y) using pen with the rectangle
dimensions specified by width and height.

DrawEllipse(Pen pen,
Rectangle rect)

Draws the ellipse that is specified by the bounding
rectangle rect using pen.

DrawEllipse(Pen pen,
int x, int y,
int width, int height)

Draws an ellipse using pen. The ellipse is specified by
the bounding rectangle at (x,y) with the dimensions
width and height.

900

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 900



{
g->DrawLine(gcnew Pen(color), position, end);

}

This implementation of the function draws a line from position to end with a default line width of 1
and in the color specified by color. However, don’t add this to CLR Sketcher yet as there’s a better
approach.

The default Pen object draws a continuous line of a default thickness of 1.0f but you can draw other
types of line by setting properties for a Pen object; the following table shows Pen properties.

Pen Property Description

Color Gets or sets the color of the pen as a value of type System::Drawing::Color.
For example, to set the drawing color for a Pen object, pen, to red, you set the
property like this:

pen->Color = Color::Red;

Width Gets or sets the width of the line drawn by the pen as a value of type float.

DashPattern Gets or sets an array of float values specifying a dash pattern for a line. The
array values specify the lengths of alternating dashes and spaces in a line. For
example:

array<float>^ pattern = { 5.0f, 2.0f, 4.0f, 3.0f};
pen->DashPattern = pattern;

This defines a pattern that will be a dash of length 5 followed by a space of length 
2 followed by a dash of length 4 followed by a space of length 3; the pattern repeats
as often as necessary along a line.

DashOffset Specifies the distance from the start of a line to the beginning of a dash pattern
as a value of type float. 

StartCap Specifies the cap style for the start of a line. Cap styles are defined by the
System::Drawing::Drawing2D::LineCap enumeration that defines the 
following possible values:

Flat, Square, Round, Triangle, NoAnchor, SquareAnchor, RoundAnchor,
DiamondAnchor, ArrowAnchor, Custom, AnchorMask

For example, to draw lines with a round line cap at the start you set the prop-
erty like this:

pen->StartCap =
System::Drawing::Drawing2D::LineCap::Round;

EndCap Specifies the cap style for the end of a line. The possible values for the cap style
for the end of a line are the same as for StartCap.

901

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 901



When you are drawing with different line styles and colors, you have the option of creating a new Pen
object for each drawing operation or using a single Pen object and changing the properties to provide
the line that you want. It will be useful later to adopt the latter approach in CLR Sketcher, so add a pro-
tected Pen member to the Element base class:

Pen^ pen;

This will be inherited in each of the concrete derived classes and each derived class constructor will ini-
tialize the pen member appropriately. This will avoid having to create a new Pen object each time an ele-
ment is drawn. Modify the Line class constructor like this:

Line(Color color, Point start, Point end)
{
pen = gcnew Pen(color);
this->color = color;
position = start;
this->end = end;
boundRect = System::Drawing::Rectangle(Math::Min(position.X, end.X),

Math::Min(position.Y, end.Y),
Math::Abs(position.X - end.X), Math::Abs(position.Y - end.Y));

}

With the pen set up, you can now implement the Draw() function for the Line class:

virtual void Draw(Graphics^ g) override
{
g->DrawLine(pen, position, end);

}

It’s important to the performance of the application that the Draw() function does not carry excess over-
head when it executes because it will be called many times, sometimes very frequently. Now the Draw()
function doesn’t create a new Pen object each time it is called. A positive side effect is that adding the
ability to draw using different line styles would now be a piece of cake because all that’s needed is to
change the pen’s properties.

Standard Pens
Sometimes you don’t want full flexibility to change the properties of a Pen object you use. The
System::Drawing::Pens class defines a large number of standard pens that draw a line of width 1 in 
a given color. For example, Pens::Black and Pens::Beige are standard pens that draw in black and
beige respectively. Note that you cannot modify a standard pen — what you see is what you get. Consult
the documentation for the Pens class for the full list of standard pen colors.

Defining a Rectangle
Add the definition of the class encapsulating CLR Sketcher rectangles to Elements.h:

public ref class Rectangle : Element
{
protected:
int width;
int height;

902

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 902



public:
Rectangle(Color color, Point p1, Point p2)
{
pen = gcnew Pen(color);
this->color = color;
position = Point(Math::Min(p1.X, p2.X), Math::Min(p1.Y,p2.Y));
width = Math::Abs(p1.X - p2.X);
height = Math::Abs(p1.Y - p2.Y);
boundRect = System::Drawing::Rectangle(position, Size(width, height));

}

virtual void Draw(Graphics^ g) override
{
g->DrawRectangle(pen, position.X, position.Y, width, height);

}
};

A rectangle is defined by the top-left corner position and the width and height so you have defined class
members to store these. As in the MFC version of Sketcher, you need to figure out the coordinates of the
top-left corner of the rectangle from the points supplied to the constructor. Here you define the value of
the inherited boundRect member of the class as a System::Drawing::Rectangle using a constructor
that accepts a Point object specifying the top-left corner as the first argument. The second argument is a
System::Drawing::Size object encapsulating the width and height of the rectangle. The Draw() func-
tion draws the rectangle on the form using the DrawRectangle() function for the Graphics object, g,
which is passed to the Draw() function.

Defining a Circle
The definition of the Circle class in Elements.h is also very straightforward:

public ref class Circle : Element
{
protected:
int width;
int height;

public:
Circle(Color color, Point center, Point circum)
{
pen = gcnew Pen(color);
this->color = color;
int radius = safe_cast<int>(Math::Sqrt(

(center.X-circum.X)*(center.X-circum.X) +
(center.Y-circum.Y)*(center.Y-circum.Y)));

position = Point(center.X - radius, center.Y - radius);
width = height = 2*radius;
boundRect = System::Drawing::Rectangle(position, Size(width, height));

}

virtual void Draw(Graphics^ g) override
{
g->DrawEllipse(pen, position.X, position.Y, width,height);

}
};

903

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 903



The two points that are passed to the constructor are the center and a point on the circumference of the
circle. The radius is the distance between these two points and the Math::Sqrt() function calculates
this. You need the width and height of the rectangle enclosing the circle to draw it and the value of each
of these is twice the radius. To draw the circle you use the DrawEllipse() function for the Graphics
object, g.

A class to represent a curve is a little trickier as you will draw it as a series of line segments joining a set
of points. As in the MFC version of Sketcher, you need a way to store an arbitrary number of points in a
Curve object, so let’s defer the problem for both versions of Sketcher and leave the Curve class definition
to the next chapter.

Implementing the MouseMove Event Handler
The MouseMove event handler creates a temporary element object of the current type. Add a private
member, tempElement, to the Form1 class of type Element^ to store the reference to the temporary ele-
ment and initialize it to nullptr in the initialization list for the Form1 constructor. This temporary ele-
ment will be stored eventually in the sketch by the MouseUp event handler because the MouseUp event
signals the end of the drawing process for an element but you’ll deal with this in the next chapter. Don’t
forget to add an #include directive for the Elements.h header at the beginning of the Form1.h header
file, otherwise the compiler will not recognize the Element type and the code won’t compile. 

You only want to create an element in the MouseMove event handler when the drawing member of the
Form1 class is true because this is how the MouseDown event handler records that drawing an element
has started. Here’s the code for implementing the MouseMove event handler that you added to the Form1
class earlier:

private: System::Void Form1_MouseMove(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e) 
{
if(drawing)
{
switch(elementType)
{
case ElementType::LINE:
tempElement = gcnew Line(color, firstPoint, e->Location);
break;

case ElementType::RECTANGLE:
tempElement = gcnew Rectangle(color, firstPoint, e->Location);
break;

case ElementType::CIRCLE:
tempElement = gcnew Circle(color, firstPoint, e->Location);
break;

case ElementType::CURVE:
// Code to create a Curve element...
break;

}
Invalidate();
}

}

904

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 904



If drawing is false, the handler does nothing. The switch statement determines which type of ele-
ment is to be created from the elementType member of the Form1 object. Creating lines, rectangles,
and circles is very simple, just using the appropriate class constructor. You obtain the current mouse
cursor position in the way that you used in the MouseDown event handler — by using the Location
property for the MouseEventArgs object. You’ll add the code to create a Curve element in the next
chapter. Calling Invalidate() for the Form1 object causes the form to be redrawn, which results in
the Paint event handler for the form being called. Obviously this is where you will draw the entire
sketch eventually and you’ll implement that in the next chapter, too. 

Implementing the MouseUp Event Handler
The task of the MouseUp event handler is to store the new element in the sketch, to reset tempElement
back to nullptr and the drawing indicator back to false, and to redraw the sketch. Here’s the code 
to do that:

private: System::Void Form1_MouseUp(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e) 
{
if(!drawing)
return;

if(tempElement)
{
// Store the element in the sketch...
tempElement = nullptr;

//  Invalidate();
}
drawing = false;

}

If drawing is false, you return immediately because the element drawing process has not started. The sec-
ond if statement verifies that tempElement is not null before adding the element to the sketch. You might
think that if you get to here, tempElement must exist but this is not so; apart from the fact that drawing a
curve is not yet implemented, a user might press the left mouse button and release it immediately, in which
case the MouseMove handler would not be invoked at all. Of course, you only need to call Invalidate()
to redraw the form when you have added a new element to the sketch. The call to Invalidate() is com-
mented out for the moment because there is no sketch at present and redrawing the form here would cause
the temporary element to disappear as soon as you release the mouse button.

Implementing the Paint Event Handler for the Form
The Paint event delegate that you generated earlier has two parameters: the first parameter of type Object^
identifies the source of the event and the second of type System::Windows::Forms::PaintEventArgs
that provides information about the event, in particular, the Graphics property for this parameter pro-
vided the Graphics object that you use to draw on the form.

You call the Invalidate() function for the form in the MouseUp event handler to draw the sketch and
in the MouseMove event handler to draw the temporary element. Therefore the Paint event handler

905

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 905



must eventually do two things: It must draw the sketch and it must draw the temporary element, but
only if there is one. Here’s the code: 

private: System::Void Form1_Paint(System::Object^  sender,
System::Windows::Forms::PaintEventArgs^  e) 

{
Graphics^ g = e->Graphics;
// Code to draw the sketch...
if(tempElement != nullptr)
tempElement->Draw(g);

}

You initialize the local variable, g, with the value obtained from the Graphics property for the
PaintEventArgs object, e. If tempElement is not nullptr, you call the Draw() function to display 
the element.

Summary
After completing this chapter, you should have a good grasp of how to write message handlers for the
mouse, and how to organize drawing operations in your Windows programs. The important points 
covered in this chapter are:

❑ By default, Windows addresses the client area of a window using a client coordinate system
with the origin in the upper-left corner of the client area. The positive x direction is from left 
to right, and the positive y direction is from top to bottom.

❑ You can only draw in the client area of a window by using a device context.

❑ A device context provides a range of logical coordinate systems called mapping modes for
addressing the client area of a window.

❑ The default origin position for a mapping mode is the upper-left corner of the client area. The
default mapping mode is MM_TEXT, which provides coordinates measured in pixels. The posi-
tive x-axis runs from left to right in this mode, and the positive y-axis from top to bottom.

❑ Your program should always draw the permanent contents of the client area of a window in
response to a WM_PAINT message, although temporary entities can be drawn at other times. All
the drawing for your application document should be controlled from the OnDraw() member
function of a view class. This function is called when a WM_PAINT message is received by your
application.

❑ You can identify the part of the client area you want to have redrawn by calling the
InvalidateRect() function member of your view class. The area passed as an argument 
is added by Windows to the total area to be redrawn when the next WM_PAINT message is 
sent to your application.

❑ Windows sends standard messages to your application for mouse events. You can create 
handlers to deal with these messages by using ClassWizard.

❑ You can cause all mouse messages to be routed to your application by calling the SetCapture()
function in your view class. You must release the mouse when you’re finished with it by calling
the ReleaseCapture() function. If you fail to do this, other applications are unable to receive
mouse messages.

906

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 906



❑ You can implement rubber-banding when creating geometric entities by drawing them in the
message handler for mouse movements.

❑ The SetROP2() member of the CDC class enables you to set drawing modes. Selecting the right
drawing mode greatly simplifies rubber-banding operations.

❑ GUI elements for a CLR program can be created interactively using the Form Design capability.
Controls can be dragged directly from the Toolbox window on to the form. Of course, you can
also create GUI elements programmatically by adding suitable code manually.

❑ You customize GUI controls on a form by setting their properties. 

❑ The Properties window for a GUI component also enables you to add event handler functions
automatically.

❑ The Graphics class defines functions that enable you to draw on a form.

❑ The Pen class defines an object for drawing in a given color and line style.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com. Don’t forget to back up the MFC Sketcher and CLRSketcher projects before you mod-
ify them for the exercises.

1. Add the menu item and Toolbar button to MFC Sketcher for an element of type ellipse, as in the
exercises from Chapter 14, and define a class to support drawing ellipses defined by two points
on opposite corners of their enclosing rectangle.

2. Which functions now need to be modified to support drawing an ellipse? Modify the program
to draw an ellipse.

3. Which functions must you modify in the example from the previous exercise so that the first
point defines the center of the ellipse, and the current cursor position defines a corner of the
enclosing rectangle? Modify the example to work this way. (Hint — look up the CPoint class
members in Help.)

4. Add a new menu pop-up to the IDR_SketcherTYPE menu for Pen Style, to allow solid, dashed,
dotted, dash-dotted, and dash-dot-dotted lines to be specified.

5. Which parts of the program need to be modified to support the operation of the menu, and the
drawing of elements in these line types?

6. Implement support for the new menu pop-up and drawing elements in any of the line types.

7. Modify CLRSketcher to support drawing an ellipse defined by two points on opposite corners
of the enclosing rectangle. Add a toolbar button as well as a menu item to select ellipse mode.

8. Implement a Line Style menu in CLR Sketcher with menu items Solid, Dashed, and Dotted.
Add toolbar buttons for the menu items with tooltips. Implement the capability in CLR Sketcher
for drawing elements in any of the three line styles in the new menu. Create your own represen-
tation for the line styles by setting the DashPattern property for the pen appropriately.

907

Chapter 15: Drawing in a Window

25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 907



25905c15.qxd:WroxPro  2/21/08  9:17 AM  Page 908



16
Creating the Document 
and Improving the View

In this chapter, you’ll look into the facilities offered by MFC for managing collections of data items;
these are similar to the STL containers discussed in Chapter 10. You’ll use the MFC collection classes
to complete the class definition and implementation for the curve element that was left open in MFC
Sketcher in the last chapter. You’ll extend the MFC Sketcher to make the document view more flexi-
ble, introducing several new techniques in the process. You’ll also extend the MFC and CLR versions
of Sketcher to store elements in an object that encapsulates a complete sketch.

In this chapter, you’ll learn about:

❑ MFC collections and what you can do with them

❑ How to use an MFC List collection and an STL/CLR vector container to store point data
for a curve

❑ How to use an MFC List collection and an STL/CLR list container to store sketch data

❑ How to implement drawing a sketch in the MFC and CLR versions of Sketcher

❑ How to implement scrolling in a view in MFC Sketcher

❑ How to create a context menu at the cursor

❑ How to highlight the element nearest the cursor to provide feedback to the user for 
moving and deleting elements

❑ How to program the mouse to move and delete elements

The MFC Collection Classes
By the nature of Windows programming, you’ll frequently need to handle collections of data items
where you have no advance knowledge of how many items you will need to manage, or even what
particular type they are going to be. This is clearly illustrated by the Sketcher application where the
user can draw an arbitrary number of elements which can be lines, rectangles, circles and curves, and

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 909



in any sequence. Of course, the STL that you learned about in Chapter 10 provides a wide range of con-
tainer class templates that do the sort of thing you want to do in Sketcher to store a sketch but the STL
containers have one limitation.

Serialization is a process for transferring objects to and from files that you’ll learn about in Chapter 18
where you will implement the capability to store sketches in a file; unfortunately the STL containers are
not supported by the serialization capability provided by the MFC. You could write your own code to
write the contents of an STL container to a file, but using MFC serialization saves a lot of work, so there
are considerable advantages to following that route.

MFC uses different terminology from the STL for container classes. MFC provides a group of what are
called collection classes that provide similar capability to the STL containers — a collection being an
aggregation of an arbitrary number of data items organized in a particular way. The major advantage
offered by the MFC collection classes over STL containers is that MFC collection class objects are serializ-
able as long as the objects they store are serializable.

Types of Collection
MFC provides you with a large number of collection classes for managing data. You’ll use just a couple 
of them in Sketcher, but we’ll explore the scope of the types of collections available. MFC supports three
kinds of collections, differentiated by the way in which the data items are organized. The way a collection
is organized is referred to as the shape of the collection. The three types of organization, or shape, are:

MFC collection classes provide two approaches to implementing each type of collection. One approach
uses class templates and provides you with type-safe handling of data in a collection. Type-safe handling
means that the data passed to a function member of the collection class is checked to ensure that it’s of a
type that can be processed by the function.

The other approach makes use of a range of concrete collection classes (rather than templates), but these
perform no data checking. If you want your collection classes to be type-safe, you have to include code
yourself to assure this. These latter classes were available in older versions of Visual C++ under Windows
before the template collection classes were introduced and are still around for compatibility reasons. I’ll
concentrate on the template-based versions because these provide the best chance of avoiding errors in
our application.

Shape How information is organized

Array An array in this context is just like the array you have seen in the C++ language.
This is an ordered sequence of elements that is the equivalent of an STL sequence
container. 

List This is a doubly linked list similar to an STL list container.

Map A map is an unordered collection of data items that are key/object pairs and is
equivalent to an STL map.

910

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 910



The Type-Safe Collection Classes
The template-based type-safe collection classes support collections of objects of any native C++ type, and
collections of pointers to objects of any native C++ type. Collections of objects are supported by the tem-
plate classes CArray, CList and CMap, and collections of pointers to objects are supported by the template
classes CTypedPtrArray, CTypedPtrList and CTypedPtrMap. I won’t go into the detail of all of these,
just the two that you’ll use in the Sketcher program. You’ll use one to store objects and the other to store
pointers to objects so you’ll get a feel for both sorts of collection.

Collections of Objects
The template classes for defining collections of objects are all derived from the MFC class CObject. They
are defined this way so that they inherit the properties of the CObject class, which includes file input and
output operations for objects, generally referred to as serialization.

These template classes can store and manage any kind of object, including all the C++ basic data types,
plus any classes or structures that you or anybody else might define. Because these classes store objects,
whenever you add an element to a list, an array, or a map, the class template object needs to make a copy
of your object. Consequently, any class type that you want to store in any of these collections must have 
a copy constructor. The copy constructor for your class is used to create a duplicate of the object that you
want to store in the collection.

Take a look at the general properties of each of the template classes that provide type-safe management of
objects. This is not an exhaustive treatment of all the member functions provided. Rather, it’s intended to
give you a sufficient flavor of how they work to enable you to decide if you want to use them or not. You
can get information on all of the member functions by using Help to get to the template class definition.

The CArray Template Class
You can use this template to store any kind of object in an array and have the array automatically grow
to accommodate more elements when necessary. An array collection is illustrated in Figure 16-1.

As with the STL vector<T> containers, elements in array collections are indexed from 0. The declaration
of an array collection takes two template arguments. The first argument is the type of the object to be stored
so if your array collection is to store objects of type CPoint for example, you specify CPoint as the first
template argument. The second argument is the type used in member function calls. To avoid the overhead
in copying objects when passed by value, the second argument is usually a reference, so an example of an
array collection declaration to hold CPoint objects is:

CArray<CPoint, CPoint&> PointArray;

This defines the array collection class object, PointArray, that stores CPoint objects. When you call func-
tion members of this object, the argument is a reference, so to add a CPoint object, you would write

PointArray.Add(aPoint);

and the argument aPoint is passed as a reference.

911

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 911



Figure 16-1

After you have declared an array collection, it’s important to call the SetSize() member function to fix
the initial number of elements that you require before you use it. It still works if you don’t do this, but the
initial allocation of elements and subsequent increments are small, resulting in inefficient operation and
frequent reallocation of memory for the array. The initial number of elements that you should specify
depends on the typical size of array you expect to need, and how variable the size is. If you expect that 
the minimum your program required is of the order of 400 to 500 elements, for example, but with expan-
sion up to 700 or 800, an initial size of 600 is suitable.

To retrieve the contents of an element, you can use the GetAt() function, as shown in Figure 16-1. To
store the third element of PointArray in a variable aPoint, you write:

aPoint = PointArray.GetAt(2);

The class also overloads the subscript operator ([]), so you could retrieve the third element of PointArray
by using PointArray[2]. For example, if aPoint is a variable of type CPoint, you could write:

aPoint = PointArray[2];                // Store a copy of the third element

For array collections that are not const, this notation can also be used instead of the SetAt() function to
set the contents of an existing element. The following two statements are, therefore, equivalent:

PointArray.SetAt(3,NewPoint);          // Store NewObject in the 4th element
PointArray[3] = NewPoint;              // Same as previous line of code

Here, NewPoint is an object of the type used to declare the array. In both cases, the element must already
exist. You cannot extend the array by this means. To extend the array, you can use the Add() function
shown in the diagram, which adds a new element to the array. There is also a function Append() to add
an array of elements to the end of the array.

Object1

Object2

Object3

Object5

AnObject

Object4

Object6

0

1

Index

GetAt(2)

Array Collection: CArray<ObjectType, ObjectType&> anArray

SetSize(5)
Defines the
initial size

Increases are
automaticAdd (AnObject)

Object returned

Type of object to be
stored

Argument type to be used

At this index

Stores the object

Index returned

2

4

6

3

5

912

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 912



Helper Functions
Whenever you call the SetSize() function member of an array collection, a global function,
ConstructElements(), is called to allocate memory for the number of elements you want to store in the
array collection initially. This is called a helper function because it helps in the process of setting the size of
the array collection. The default version of this function sets the contents of the allocated memory to zero
and doesn’t call a constructor for your object class, so you’ll need to supply your own version of this helper
function if this action isn’t appropriate for your objects. This is the case if space for data members of objects
of your class is allocated dynamically, or if there is other initialization required. ConstructElements() is
also called by the member function InsertAt(), which inserts one or more elements at a particular index
position within the array.

Members of the CArray collection class that remove elements call the helper function
DestructElements(). The default version does nothing, so if your object construction allocates 
any memory on the heap, you must override this function to release the memory properly.

The CList collection template makes use of a helper function when searching the contents of a list for a par-
ticular object. I’ll discuss this further in the next section. Another helper function, SerializeElements(), is
used by the array, list, and map collection classes, and I’ll discuss this when I explain how you can write a
document to file.

The CList Template Class
Take a look at the list collection template in some detail because you’ll apply it in your Sketcher program.
The parameters to the CList collection class template are the same as those for the CArray template:

CList<ObjectType, ObjectType&> aList;

You need to supply two arguments to the template when you declare a list collection: the type of object
to be stored, and the way an object is to be specified in function arguments. The example shows the sec-
ond argument as a reference because this is used most frequently. It doesn’t necessarily have to be a ref-
erence, though — you could use a pointer, or even the object type (so objects would be passed by value),
but this would be slow.

You can use a list to manage a curve in the Sketcher program. You could declare a list collection to store
the points specifying a curve object with the statement:

CList<CPoint, CPoint&> PointList;

This declares a list called PointList that stores CPoint objects that are passed to functions in the
class by reference. You’ll come back to this when you fill out more detail of the Sketcher program in
this chapter.

Adding Elements to a List
You can add objects at the beginning or at the end of the list by using the AddHead() or AddTail()
member functions, as shown in Figure 16-2.

Figure 16-2 shows backward and forward pointers for each list element that “‘glue” the objects in the list
together. These are internal links that you can’t access in any direct way, but you can do just about any-
thing you want by using the functions provided in the public interface to the class.

913

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 913



Figure 16-2

To add the object aPoint to the tail of the list PointList, you write:

PointList.AddTail(aPoint);             // Add an element to the end

As new elements are added, the size of the list increases automatically.

Both the AddHead() and AddTail() functions return a value of type POSITION, which specifies the posi-
tion of the inserted object in the list. The way in which a variable of type POSITION is used is shown in
Figure 16-3.

You can use a value of type POSITION to retrieve the object at a given position in the list by using the
GetNext() function. Note that you can’t perform arithmetic on values of type POSITION — you can
only modify a position value through member functions of the list object. Furthermore, you can’t set a
position value to a specific numerical value. POSITION variables can only be set through member func-
tions of the list object.

As well as returning the object, the GetNext() function increments the position variable passed to it 
so that it points to the next object in the list. You can, therefore, use repeated calls to GetNext() to step
through a list element by element. The position variable is set to NULL if you use GetNext() to retrieve
the last object from the list, so you can use this to control your loop operation. You should always make
sure that you have a valid position value when you call member functions of a list object.

ThisObject

Object1

Object3

ThatObject

Object2

Object4

AddTail (ThatObject)

AddHead (ThisObject)

Stores the object

Stores the object

pointer

pointer

pointer

pointer

pointer

pointer

pointer

pointer

pointer

pointer

List Collection: CList<ObjectType, ObjectType&> aList

Increases in size
are automatic

Type of object to be
stored

Argument type to be used

914

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 914



Figure 16-3

You can insert an element in a list at a specific position as long as you have a POSITION value. To insert
the object ThePoint in the list PointList immediately before an element at the position aPosition,
use the statement:

PointList.InsertBefore(aPosition, ThePoint);

The function InsertBefore()also returns the position of the new object. To insert an element after the
object at a given position, the function InsertAfter() is provided. These functions are often used with a
list containing geometric elements displayed. Elements are drawn on the screen in the sequence that you
traverse the list. Elements that appear later in the list overlay elements positioned earlier, so the order of
elements determines what overlays what. You can therefore determine which of the existing elements a
new element overlays by entering it at an appropriate position in the list.

When you need to set an existing object in a list to a particular value, you can use the function SetAt(),
as long as you know the position value for the object:

PointList.SetAt(aPosition, aPoint);

There is no return value for this function. You must ensure that the POSITION value you pass to the
function is valid. An invalid value causes an error. You should, therefore, only pass a POSITION value
to this function that was returned by one of the other member functions, and you must have verified
that it isn’t NULL.

ThisObject

Object1

Object1

Object3

ThatObject

Object2

Object4

pointer

pointer

List Collection: CList<ObjectType, ObjectType&> aList

GetNext(aPos)

Type of object to be
stored

The position of a particular element
is given by a value of type

POSITION

retrieves the element at
aPos and sets aPos to
the next element

Returns Object1

aPos

Increments aPos

Argument type to be used

915

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 915



Iterating through a List
If you want to get the POSITION value for the beginning or the end of the list, the class provides the
member functions GetHeadPosition() and GetTailPosition(). Starting with the POSITION value
for the head of the list, you can iterate through the complete list by calling GetNext() until the position
value is NULL. You can see the typical code to do this using the list of CPoint objects that you declared
earlier:

CPoint CurrentPoint(0,0);

// Get the position of the first list element
POSITION aPosition = PointList.GetHeadPosition();

while(aPosition)                       // Loop while aPosition is not NULL
{

CurrentPoint = PointList.GetNext(aPosition);
// Process the current object...

}

You can work through the list backwards by using another member function, GetPrev(), which retrieves
the current object and then decrements the position indicator. Of course, in this case, you would start out
by calling GetTailPosition().

After you know a position value for an object in a list, you can retrieve the object with the member function
GetAt(). You specify the position value as an argument and the object is returned. An invalid position
value causes an error.

Searching a List
You can find the position of an element that’s stored in a list by using the member function Find():

POSITION aPosition = PointList.Find(ThePoint);

This searches for the object specified as an argument by calling a global template function
CompareElements() to compare the objects in the list with the argument. This is the helper function I
referred to earlier that aids the search process. The default implementation of this function compares the
address of the argument with the address of each object in the list. This implies that if the search is to be
successful, the argument must actually be an element in the list — not a copy. If the object is found in the
list, the position of the element is returned. If it isn’t found, NULL is returned. You can specify a second
argument to define a position value where the search should begin.

If you want to search a list for an object that is equal to another object, you must implement your own ver-
sion of CompareElements() that performs a proper comparison. The function template is of the form:

template<class TYPE, class ARG_TYPE> BOOL CompareElements(
const TYPE* pElement1, const ARG_TYPE* pElement2);

where pElement1 and pElement2 are pointers to the objects to be compared. For the PointList collection
class object, the prototype of the function generated by the template would be:

BOOL CompareElements(CPoint* pPoint1, CPoint* pPoint2);

916

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 916



To compare the CPoint objects, you could implement this as:

BOOL CompareElements(CPoint* pPoint1, CPoint* pPoint2)
{ return *pPoint1 == *pPoint2; }

This uses the operator==() function implemented in the CPoint class. In general you would need to
implement the operator==() function for your own class in this context. You could then use it to imple-
ment the helper function CompareElements().

You can also obtain the position of an element in a list by using an index value. The index works in the same
way as for an array, with the first element being at index 0, the second at index 1, and so on. The function
FindIndex() takes an index value of type int as an argument and returns a value of type POSITION for the
object at the index position in the list. If you want to use an index value, you are likely to need to know how
many objects there are in a list. The GetCount() function returns this for you:

int ObjectCount = PointList.GetCount();

Here, the integer count of the number of elements in the list is stored in the variable ObjectCount.

Deleting Objects from a List
You can delete the first element in a list using the member function RemoveHead(). This function will return
the object that is the new head of the list. To remove the last object, you can use the function RemoveTail().
Both of these functions require that there should be at least one object in the list, so you should use the func-
tion IsEmpty() first, to verify that the list is not empty. For example:

if(!PointList.IsEmpty())
PointList.RemoveHead();

The function IsEmpty() returns TRUE if the list is empty, and FALSE otherwise.

If you know the position value for an object that you want to delete from the list, you can do this directly:

PointList.RemoveAt(aPosition);

There’s no return value from this function. It’s your responsibility to ensure that the position value you
pass as an argument is valid. If you want to delete the entire contents of a list, you use the member func-
tion RemoveAll():

PointList.RemoveAll();

This function also frees the memory that was allocated for the elements in the list.

Helper Functions for a List
You have already seen how the CompareElements() helper function is used by the Find() function for
a list. Both the ConstructElements() and DestructElements() global helper functions are also used
by members of a CList template class. These are template functions that are declared using the object
type you specify in your CList class declaration. The template prototypes for these functions are:

template< class TYPE > void ConstructElements(TYPE* pElements, int nCount);
template< class TYPE > void DestructElements(TYPE* pElements, int nCount);

917

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 917



To obtain the function that’s specific to your list collection, just plug in the type for the objects you are
storing. For example, the prototypes for the PointList class for these are:

void ConstructElements(CPoint* pPoint, int PointCount);
void DestructElements(CPoint* pPoint, int PointCount);

Note that the parameters here are pointers. I mentioned earlier that arguments to the PointList member
functions would be references, but this doesn’t apply to the helper functions. The parameters to both func-
tions are the same: the first is a pointer to an array of CPoint objects, and the second is a count of the num-
ber of objects in the array.

The ConstructElements() function is called whenever you enter an object in the list, and the
DestructElements() function is called when you remove an object. As for the CArray template class,
you need to implement your versions of these functions if the default operation is not suitable for your
object class.

The CMap Template Class
Because of the way they work, maps are particularly suited to applications where your objects obviously
have a unique key associated with them, such as a customer class where each customer has an associated
customer number or a name and address class where the name might be used as a key. The organization
of a map is shown in Figure 16-4.

Figure 16-4

Object1

Object3

Object2

Object4

Key1

Key3

Key2

Key4

Map Collection: CMap<KeyType, KeyType&, ObjectType, ObjectType&> aMap

aMap[Key2]=Object2;

LookUp(Key3,AnObject);

Type of object to be
stored

Object argument type

Stores the object

Accesses the object
corresponding to the key

Adds an object

Key argument type

Key argument type

918

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 918



A map stores an object and key combination. The key is used to determine where in the block of memory
allocated to the map the object is to be stored. The key, therefore, provides a means of going directly to
an object stored, as long as the key is unique. The process of converting a key to an integer that can be
used to calculate the address of an entry in a map is called hashing.

The hashing process applied to a key produces an integer called a hash value. This hash value is typically
used as an offset to a base address to determine where to store the key and its associated object in the map.
If the memory allocated to the map is at address Base, and each entry requires Length bytes, the entry pro-
ducing the hash value HashValue is stored at Base+HashValue*Length.

The hashing process may not produce a unique hash value from a key, in which case an element — the
key together with the associated object — is entered and linked to whatever element or elements were
previously stored with the same hashed key value (often as a list). Of course, the fewer unique hash val-
ues generated, the less efficient the retrieval process from your map is because searching is required to
retrieve elements that have the same hash value.

There are four arguments necessary when you declare a map:

CMap<LONG, LONG&, CPoint, CPoint&> PointMap;

The first two specify the key type and how it is passed as an argument. Usually, it is passed as a refer-
ence. The second pair of arguments specifies the object type and how the object is passed as an argu-
ment, as you have previously seen.

You can store an object in a map by using the [] operator, as shown in Figure 16-4. You can also use the
SetAt() member function to store an object, where you supply the key value and the object as arguments.
Note that you cannot use the [] operator on the right side of an assignment to retrieve an object, as this
version of the operator is not implemented in the class.

To retrieve an object, use the LookUp() function shown in Figure 16-4. This retrieves the object corre-
sponding to the key specified; the function returns TRUE if the object was found and FALSE otherwise.
You can also iterate through all the objects in a map using a variable of type POSITION, although the
sequence in which objects are retrieved is unrelated to the sequence in which they were added to the
map. This is because objects are stored in a map in locations determined by the hash value, not by the
sequence in which they were entered.

Helper Functions Used by CMap
As well as the helper functions that have been discussed in the context of arrays and lists, map collection
classes also use a global function HashKey(), which is defined by this template:

template<class ARG_KEY>
UINT HashKey(ARG_KEY key);

This function converts your key value to a hash value of type UINT, which is equivalent to unsigned int.
The default version does this by simply shifting your key value right by 4 bit positions. You need to imple-
ment your own version of this function if the default operation isn’t suited to your key type.

919

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 919



There are different techniques used for hashing that vary depending on the type of data being used as a
key, and the number of elements you are likely to want to store in your map. The likely number of ele-
ments to be stored indicates the number of unique hash values you need. A common method for hashing
a numeric key value is to compute the hash value as the value of the key modulo N, where N is the num-
ber of different values you want. For reasons it would take too long to explain here, N needs to be prime
for this to work well. Didn’t you just know that program to calculate primes from way back in Chapter 4
would turn out to be useful after all?

You can get an appreciation of the principles of the mechanism used here with a simple example. Suppose
you expect to store up to 100 different entries in a map using a key value, Key. You could hash the key with
the statement:

HashValue = Key%101;

This results in values for the HashValue between 0 and 100, which is exactly what you need to calculate
the address for an entry. Assuming your map is stored at some location in memory, Base, and the memory
required to store the object along with its key is Length bytes, then you can store an entry that produces
the hash value HashValue at the location Base+HashValue*Length. With the hashing process mentioned
previously, you can accommodate up to 101 entries at unique positions in the map.

Where a key is a character string, the hashing process is rather more complicated, particularly with long
or variable length strings; however, a method commonly used involves using numerical values derived
from characters in the string. This typically involves assigning a numerical value to each character, so if
your string was lowercase letters plus spaces, you could assign each character a value between 0 and 26,
with space as 0, a as 1, b as 2, and so on. The string can then be treated as the representation of a number
to some base, 32 say. The numerical value for the string ‘fred’, for instance, is

6*323+18*322+5*321+4*320

and, assuming you expected to store 500 strings, you could calculate the hashed value of the key as:

6*323+18*323+5*323+4*320 mod 503

The value of 503 for N is the smallest prime greater than the likely number of entries. The base chosen to
evaluate a hash value for a string is usually a power of 2 that corresponds to the minimum value that is
greater than or equal to the number of possible different characters in a string. For long strings, this can
generate very large numbers, so special techniques are used to compute the value modulo N. Detailed
discussion of these techniques is beyond the scope of this book, but you can find numerous Web refer-
ences by searching on “hashing.”

The Typed Pointer Collections
The typed pointer collection class templates store pointers to objects, rather than objects themselves. This
is the primary difference between these class templates and the template classes just discussed. Take a
look at how the CTypedPtrList class template is used, because you’ll use this as a basis for managing
elements in your document class, CSketcherDoc.

920

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 920



The CTypedPtrList Template Class
You can declare a typed pointer list class with a statement of the form:

CTypedPtrList<BaseClass, Type*> ListName;

The first argument specifies a base class that must be one of two pointer list classes defined in MFC, either
CObList or CPtrList. Your choice depends on how your object class has been defined. Using the CObList
class creates a list supporting pointers to objects derived from CObject, while CPtrList supports lists of
void* pointers. Because the elements in the Sketcher example have CObject as a base class, I’ll concentrate
on how CObList is used.

The second argument to the template is the type of the pointers to be stored in the list. In the example, this
is going to be CElement* because all your shapes have CElement as a base class and CElement is derived
from CObject. Thus, the declaration of a class for storing shapes is:

CTypedPtrList<CObList, CElement*> m_ElementList;

You could have used CObList* types to store the pointers to our elements, but then the list could contain
an object of any class that has CObject as a base. The declaration of m_ElementList ensures that only
pointers to objects of the class CElement can be stored. This provides a greatly increased level of security
in the program.

CTypePtrList Operations
The functions provided in the CTypedPtrList based classes are similar to those supported by CList,
except of course that all operations are with pointers to objects rather than with objects, so you need to
tabulate them. They fall into two groups: those that are defined in CTypedPtrList, and those that are
inherited from the base class — CObList in this case.

The functions defined in CTypedPtrList are:

Continued

Function Description

GetHead() Returns the pointer at the head of the list. You should use IsEmpty() to verify
that the list is not empty before calling this function.

GetTail() Returns the pointer at the tail of the list. You should use IsEmpty() to verify
that the list is not empty before calling this function.

RemoveHead() Removes the first pointer in the list. You should use IsEmpty() to verify that
the list is not empty before calling this function.

RemoveTail() Removes the last pointer in the list. You should use IsEmpty() to verify that
the list is not empty before calling this function.

921

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 921



The functions in CTypedPtrList inherited from CObList are:

Function Description

AddHead() Adds the pointer passed as an argument to the head of the list and
returns a value of type POSITION that corresponds to the new element.
There is another version of this function that can add another list to the
head of the list.

AddTail() Adds the pointer passed as an argument to the tail of the list and
returns a value of type POSITION that corresponds to the new element.
There is another version of this function that can add another list to the
tail of the list.

RemoveAll() Removes all the elements from the list. Note that this doesn’t delete the
objects pointed to by elements in the list. You need to take care of this
yourself.

GetHeadPosition() Returns the position of the element at the head of the list.

GetTailPosition() Returns the position of the element at the tail of the list.

SetAt() Stores the pointer specified by the second argument at the position in
the list defined by the first argument. An invalid position value causes
an error.

RemoveAt() Removes the pointer from the position in the list specified by the argu-
ment of type POSITION. An invalid position value causes an error.

Function Description

GetNext() Returns the pointer at the position indicated by the variable of type POSITION
passed as a reference argument. The variable is updated to indicate the next
element in the list. When the end of the list is reached, the position variable 
is set to NULL. This function can be used to iterate forwards through all the
pointers in the list.

GetPrev() Returns the pointer at the position indicated by the variable of type POSITION
passed as a reference argument. The variable is updated to indicate the previ-
ous element in the list. When the beginning of the list is reached, the position
variable is set to NULL. This function can be used to iterate backwards through
all the pointers in the list.

GetAt() Returns the pointer stored at the position indicated by the variable of type
POSITION passed as an argument, which isn’t changed. Because the function
returns a reference, as long as the list is not defined as const, this function
can be used on the left of an assignment operator to modify a list entry.

922

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 922



You’ll see some of these member functions in action a little later in this chapter in the context of imple-
menting the document class for the Sketcher program.

Using the CList Template Class
You can use of the CList collection template in the definition of the curve object in our Sketcher applica-
tion. A curve is defined by two or more points, so storing these in a list would be a good method of han-
dling them. You first need to define a CList collection class object as a member of the CCurve class. You’ll
use this collection to store points. You’ve already looked at the CList template class in some detail, so this
should be easy.

The CList template class has two parameters, so the general form of declaring a collection class of this
type is:

CList<YourObjectType, FunctionArgType> ClassName;

The first argument, YourObjectType, specifies the type of object that you want to store in the list. The
second argument specifies the argument type to be used in function members of the collection class when
referring to an object. This is usually specified as a reference to the object type to minimize copying of
arguments in a function call. Declare a collection class object to suit your needs in the CCurve class as:

class CCurve: public CElement
{

// Rest of the class definition...

Function Description

InsertBefore() Inserts a new pointer specified by the second argument before the posi-
tion specified by the first argument. The position of the new element is
returned.

InsertAfter() Inserts a new pointer specified by the second argument after the posi-
tion specified by the first argument. The position of the new element is
returned.

Find() Searches for a pointer in the list that is identical to the pointer specified
as an argument. Its position is returned if it is found. NULL is returned
otherwise.

FindIndex() Returns the position of a pointer in the list specified by a zero-based
integer index argument.

GetCount() Returns the number of elements in the list.

IsEmpty() Returns TRUE if there are no elements in the list, and FALSE otherwise.

923

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 923



protected:
CCurve(void);                        // Default constructor - should not be used
CList<CPoint, CPoint&> m_PointList;  // Type safe point list

};

You can either add this manually to the class definition or use the Add > Add Variable menu item that
you’ve used before from Class View. I have omitted the rest of the class definition here because you’re not
concerned with it for now. The collection declaration is shaded. It declares the collection m_PointList
that stores CPoint objects in the list, and its functions use reference arguments to CPoint objects.

The CPoint class doesn’t allocate memory dynamically, so you won’t need to implement
ConstructElements() or DestructElements(), and because you don’t need to use the Find()
member function, you can forget about CompareElements() as well.

Drawing a Curve
Drawing a curve is different from drawing a line or a circle. With a line or a circle, as you move the cursor
with the left button down, you are creating a succession of different line or circle elements that share a
common reference point — the point where the left mouse button was pressed. This is not the case when
you draw a curve, as shown in Figure 16-5.

Figure 16-5

X-Axis

Drawing a curve with MM_TEXT mapping mode

The first two points
define a basic 
curve

Each additional point defines
another segment

Minimum y

Maximum y

Minimum x Maximum x

Y-Axis

924

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 924



When you move the cursor while drawing a curve, you’re not creating a sequence of new curves 
but rather extending the same curve, so each successive point adds another segment to the curve’s
definition. You therefore need to create a curve object as soon as you have the two points from the
WM_LBUTTONDOWN message and the first WM_MOUSEMOVE message. Points defined with subsequent
mouse move messages then define additional segments to the existing curve object. You’ll need to
add a function, AddSegment(), to the CCurve class to extend the curve once it has been created by
the constructor.

A further point to consider is how you are to calculate the enclosing rectangle. This is defined by get-
ting the minimum x and minimum y pair from all the defining points to establish the upper-left corner 
of the rectangle, and the maximum x and maximum y pair for the bottom right. This involves going
through all the points in the list. You will, therefore, compute the enclosing rectangle incrementally 
in the AddSegment() function as points are added to the curve.

Defining the CCurve Class
With the constructor and the AddSegment() function added, the complete definition of the CCurve class is:

class CCurve: public CElement
{
public:

~CCurve(void);
virtual void Draw(CDC* pDC);        // Function to display a curve

// Constructor for a curve object
CCurve(CPoint FirstPoint, CPoint SecondPoint, COLORREF aColor);

void AddSegment(CPoint& aPoint);    //Add a segment to the curve

protected:
CCurve(void);                       // Default constructor - should not be used
CList<CPoint, CPoint&> m_PointList; // Type safe point list

};

You should modify the definition of the class in Elements.h to correspond with the previous code. The
constructor has the first two defining points and the color as parameters, so it only defines a curve with
one segment. This is called in the CreateElement() function invoked by the OnMouseMove() function
in the view class the first time a WM_MOUSEMOVE message is received for a curve, so don’t forget to mod-
ify the definition of the CreateElement() function in CSketcherView to call the CCurve class con-
structor with the correct arguments. The statement using the CCurve constructor in the switch in the
CreateElement() function should be changed to:

case CURVE:
return new CCurve(m_FirstPoint, m_SecondPoint, pDoc->GetElementColor());

925

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 925



After the constructor has been called, all subsequent WM_MOUSEMOVE messages results in the
AddSegment() function being called to add a segment to the existing curve, as shown in Figure 16-6:

Figure 16-6

This shows the complete sequence of message handler calls for a curve comprised of nine segments. 
The sequence is indicated by the numbered arrows. The code for the OnMouseMove() function in
CSketcherView needs to be updated as follows:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{

CClientDC aDC(this);             // Device context for the current view
if((nFlags&MK_LBUTTON)&&(this==GetCapture()))
{

m_SecondPoint = point;     // Save the current cursor position

if(m_pTempElement)
{

if(CURVE == GetDocument()->GetElementType())   // Is it a curve?
{  // We are drawing a curve

// so add a segment to the existing curve
static_cast<CCurve*>(m_pTempElement)->AddSegment(m_SecondPoint);
m_pTempElement->Draw(&aDC);  // Now draw it
return;                      // We are done

}

aDC.SetROP2(R2_NOTXORPEN);                 // Set drawing mode
// Redraw the old element so it disappears from the view
m_pTempElement->Draw(&aDC);
delete m_pTempElement;             // Delete the old element
m_pTempElement = 0;                // Reset the pointer to 0

}

OnLbuttonDown()
stores point x1,y1

x2,y2

x3,y3

x4,y4

x1,y1

OnMouseMove()
calls CreateElement(), which
will call the constructor with
the points x1,y1 and x2,y2

OnMouseMove()
calls AddSegment() with the
point x4,y4

OnMouseMove()
calls AddSegment() with the
point x10,y10

OnLButtonUp() called

OnMouseMove()
calls AddSegment() with the
point x3,y3

1

2

3

4

11

10

926

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 926



// Create an element of the type and color
// recorded in the document object
m_pTempElement = CreateElement();
m_pTempElement->Draw(&aDC); 

}
}

You have to treat an element of type CURVE as a special case after it has been created because on all sub-
sequent calls of the OnMouseMove() handler, you want to call the AddSegment() function for the exist-
ing element, rather than construct a new one in place of the old. You don’t want to set the drawing mode
in this instance because you don’t need to erase the previous curve each time. You take care of this by
moving the call to SetROP2() to a position after the code processing a curve.

Adding the curve segment and drawing the extended curve is taken care of within the if statement
you have added. Note that you must cast the m_pTempElement pointer to type CCurve* to use it to call
AddSegment() for the old element because AddSegment() is not a virtual function. If you don’t add
the cast, you’ll get an error because the compiler tries to resolve the call statically to a member of the
CElement class.

Implementing the CCurve Class
Write the code for the constructor; this should be added to Elements.cpp in place of the temporary 
constructor that you used in the last chapter. It needs to store the two points passed as arguments in 
the CList data member, m_PointList:

CCurve::CCurve(CPoint FirstPoint,CPoint SecondPoint, COLORREF aColor)
{

m_PointList.AddTail(FirstPoint);    // Add the 1st point to the list
m_PointList.AddTail(SecondPoint);   // Add the 2nd point to the list
m_Color = aColor;                   // Store the color
m_Pen = 1;                          // Set the pen width

// Construct the enclosing rectangle assuming MM_TEXT mode
m_EnclosingRect = CRect(FirstPoint, SecondPoint);
m_EnclosingRect.NormalizeRect();

}

The points are added to the list, m_PointList, by calling the AddTail() member of the CList template
class. This function adds a copy of the point passed as an argument to the end of the list. The enclosing
rectangle is defined in exactly the same way that that defined it for a line.

You can add the AddSegment() function to Elements.cpp next. This function is called when additional
curve points are recorded, after the first version of a curve object has been created. This member function
is very simple:

void CCurve::AddSegment(CPoint& aPoint)
{

m_PointList.AddTail(aPoint);                // Add the point to the end

// Modify the enclosing rectangle for the new point
m_EnclosingRect = CRect(min(aPoint.x, m_EnclosingRect.left),

927

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 927



min(aPoint.y, m_EnclosingRect.top),
max(aPoint.x, m_EnclosingRect.right),
max(aPoint.y, m_EnclosingRect.bottom));

}

The min() and max() functions you use here are standard macros that are the equivalent of using the
conditional operator for choosing the minimum or maximum of two values. The new point is added to
the tail of the list in the same way as in the constructor. It’s important that each new point is added to the
list in a way that is consistent with the constructor because you’ll draw the segments using the points in
sequence, from the beginning to the end of the list. Each line segment is drawn from the end point of the
previous line to the new point. If the points are not in the right sequence, the line segments won’t be
drawn correctly. After adding the new point, the enclosing rectangle for the curve is redefined, taking
account of the new point.

The last member function you need to define for the interface to the CCurve class is Draw():

void CCurve::Draw(CDC* pDC)
{

// Create a pen for this object and
// initialize it to the object color and line width of 1 pixel
CPen aPen;
if(!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))
{

// Pen creation failed. Close the program
AfxMessageBox(_T(“Pen creation failed drawing a curve”), MB_OK);
AfxAbort();

}

CPen* pOldPen = pDC->SelectObject(&aPen);  // Select the pen

// Now draw the curve
// Get the position in the list of the first element
POSITION aPosition = m_PointList.GetHeadPosition();

// As long as it’s good, move to that point
if(aPosition)

pDC->MoveTo(m_PointList.GetNext(aPosition));

// Draw a segment for each of the following points
while(aPosition)

pDC->LineTo(m_PointList.GetNext(aPosition));

pDC->SelectObject(pOldPen);         // Restore the old pen
}

You draw the CCurve object by iterating through all the points in the list from the beginning, drawing 
each segment as you go. You get a POSITION value for the first element by using the function
GetHeadPosition() and then use MoveTo() to set the first point as the current position in the 
device context. You then draw line segments in the while loop as long as aPosition is not NULL. 
The GetNext() function call that appears as the argument to the LineTo() function returns the 
current point and simultaneously increments aPosition to refer to the next point in the list.

928

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 928



Exercising the CCurve Class
With the changes I’ve just discussed added to the Sketcher program, you have implemented all the code
necessary for the element shapes in your menu. You can now build the Sketcher program once more, and
execute it. You should be able to create curves in all four colors. A typical application window is shown in
Figure 16-7.

Figure 16-7

Of course, like the other elements you can draw, the curves are not persistent. As soon as you cause a
WM_PAINT message to be sent to the application, by resizing the view for instance, they disappear. After
you can store them in the document object for the application, though, they will be a bit more permanent,
so take a look at that next.

Creating the Sketch Document
The document in the Sketcher application needs to be able to store a sketch consisting of an arbitrary col-
lection of lines, rectangles, circles, and curves in any sequence, and an excellent vehicle for handling this
is a list. Because all the element classes that you’ve defined include the capability for the objects to draw
themselves, drawing the document is easily accomplished by stepping through the list.

Using a CTypedPtrList Template
You can declare a CTypedPtrList that stores pointers to instances of the shape classes as CElement point-
ers. You just need to add the list declaration as a new member in the CSketcherDoc class definition:

// SketcherDoc.h : interface of the CSketcherDoc class
//

929

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 929



#pragma once

class CSketcherDoc: public CDocument
{
protected: // create from serialization only

CSketcherDoc();
DECLARE_DYNCREATE(CSketcherDoc)

// Rest of the class as before...

protected:
COLORREF m_Color;                    // Current drawing color
unsigned int m_Element;              // Current element type
CTypedPtrList<CObList, CElement*> m_ElementList;  // Element list

// Rest of the class as before...

};

The CSketcherDoc class now refers to the CElement class and normally a forward declaration of the
CElement class before the CSketcherDoc class definition would be enough for Sketcher to compile
correctly, but not in this case. The compiler needs to know about the base class for the CElement class
to compile the CTypedPtrList template instance correctly. This is only possible if the definition of the
CElement class is available at this point. You have two ways to achieve this. You can make sure that
every #include directive for the SketcherDoc.h header is preceded by an #include directive for
CElement, or you can simply add an #include directive for Elements.h before the CSketcherDoc
class definition. The latter course is the easiest and saves you from hunting for #include directives
for SketcherDoc.h in the source files.

You’ll also need a member function to add an element to the list and AddElement() is a good, if unoriginal,
name for this. You create shape objects on the heap, so you can just pass a pointer to the function. Because all
it does is add an element, you might just as well put the implementation in the class definition:

class CSketcherDoc: public CDocument
{

// Rest of the class as before...

// Operations
public:

unsigned int GetElementType()             // Get the element type
{ return m_Element; }

COLORREF GetElementColor()                // Get the element color
{ return m_Color; }

void AddElement(CElement* pElement)       // Add an element to the list
{ m_ElementList.AddTail(pElement); }

// Rest of the class as before...

};

930

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 930



Adding an element to the list only requires one statement that calls the AddTail() member function.
That’s all you need to create the document, but you still have to consider what happens when a docu-
ment is closed. You must ensure that the list of pointers and all the elements they point to are destroyed
properly. To do this, you need to add code to the destructor for CSketcherDoc objects.

Implementing the Document Destructor
In the destructor, you’ll first go through the list deleting the element pointed to by each entry. After that
is complete, you must delete the pointers from the list. The code to do this is:

CSketcherDoc::~CSketcherDoc(void)
{

// Get the position at the head of the list
POSITION aPosition = m_ElementList.GetHeadPosition();

// Now delete the element pointed to by each list entry
while(aPosition)

delete m_ElementList.GetNext(aPosition);

m_ElementList.RemoveAll();   // Finally delete all pointers
}

You use the GetHeadPosition() function to obtain the position value for the entry at the head of the
list, and initialize the variable aPosition with this value. You then use aPosition in the while loop to
walk through the list and delete the object pointed to by each entry. The GetNext() function returns the
current pointer entry and updates the aPosition variable to refer to the next entry. When the last entry is
retrieved, aPosition is set to NULL by the GetNext() function and the loop ends. After you have deleted
all the element objects pointed to by the pointers in the list, you can delete the pointers themselves. You
delete the whole lot in one go by calling the RemoveAll() function for the list object.

You should add this code to the definition of the destructor in SketcherDoc.cpp. You can go directly to
the code for the destructor through the Class View.

Drawing the Document
As the document owns the list of elements, and the list is protected, you can’t use it directly from the view.
The OnDraw() member of the view does need to be able to call the Draw() member for each of the elements
in the list, though, so you need to consider how best to do this. Take a look at the options:

❑ You could make the list public, but this defeats the object of maintaining protected members of
the document class because it exposes all the function members of the list object.

❑ You could add a member function to return a pointer to the list, but this effectively makes the
list public and also incurs overhead in accessing it.

❑ You could add a public function to the document that calls the Draw() member for each ele-
ment. You could then call this member from the OnDraw() function in the view. This wouldn’t
be a bad solution because it produces what you want and still maintains the privacy of the list.
The only thing against it is that the function needs access to a device context, and this is really
the domain of the view.

931

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 931



❑ You could make the OnDraw() function a friend of CSketcherDoc, but this exposes all of the
members of the class, which isn’t desirable, particularly with a complex class.

❑ You could add a function to provide a POSITION value for the first list element, and a second
member to iterate through the list elements. This doesn’t expose the list, but it makes the ele-
ment pointers available.

The last option looks to be the best choice, so we will go with that. You can extend the document class
definition to:

class CSketcherDoc: public CDocument
{

// Rest of the class as before...

// Operations
public:

unsigned int GetElementType()       // Get the element type
{ return m_Element; }

COLORREF GetElementColor()          // Get the element color
{ return m_Color; }

void AddElement(CElement* pElement) // Add an element to the list
{ m_ElementList.AddTail(pElement); }

POSITION GetListHeadPosition()      // return list head POSITION value
{ return m_ElementList.GetHeadPosition(); }

CElement* GetNext(POSITION& aPos)   // Return current element pointer
{ return m_ElementList.GetNext(aPos); }

// Rest of the class as before...

};

By using the two functions you have added to the document class, the OnDraw() function for the view
will be able to iterate through the list, calling the Draw() function for each element. The implementation
of OnDraw() to do this is:

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(!pDoc)

return;

POSITION aPos = pDoc->GetListHeadPosition();
while(aPos)                              // Loop while aPos is not null
{

pDoc->GetNext(aPos)->Draw(pDC);       // Draw the current element
}

}

This implementation of the OnDraw() function always draws all the elements the document contains. The
statement in the while loop first gets a pointer to an element from the document with the expression
pDoc->GetNext(). The pointer that is returned is used to call the Draw() function for that element. The

932

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 932



statement works this way without parentheses because of the left to right associativity of the -> opera-
tor. The while loop plows through the list from beginning to end. You can do it better though, and make
the program more efficient.

Frequently, when a WM_PAINT message is sent to your program, only part of the window needs to be
redrawn. When Windows sends the WM_PAINT message to a window, it also defines an area in the client
area of the window, and only this area needs to be redrawn. The CDC class provides a member function,
RectVisible(), which checks whether a rectangle that you supply to it as an argument overlaps the
area that Windows requires to be redrawn. You can use this to make sure you only draw the elements
that are in the area Windows wants redrawn, thus improving the performance of the application:

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(!pDoc)

return;

POSITION aPos = pDoc->GetListHeadPosition();
CElement* pElement = 0;             // Store for an element pointer
while(aPos)                         // Loop while aPos is not null
{

pElement = pDoc->GetNext(aPos);  // Get the current element pointer
// If the element is visible...
if(pDC->RectVisible(pElement->GetBoundRect()))

pElement->Draw(pDC);          // ...draw it
}

}

You get the position for the first entry in the list and store it in aPos. You use the value stored in aPos to
control the while loop that retrieves each pointer entry in turn so the loop continues until aPos is NULL.
You retrieve the bounding rectangle for each element using the GetBoundRect() member of the object
and pass it to the RectVisible() function in the if statement. As a result, only elements that overlap
the area that Windows has identified as invalid are drawn. Drawing on the screen is a relatively expen-
sive operation in terms of time, so checking for just the elements that need to be redrawn, rather than
drawing everything each time, improves performance considerably.

Adding an Element to the Document
The last thing you need to do to have a working document in our program is to add the code to the
OnLButtonUp() handler in the CSketcherView class to add the temporary element to the document:

void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)
{

if(this == GetCapture())
ReleaseCapture();      // Stop capturing mouse messages

// If there is an element, add it to the document
if(m_pTempElement)
{

GetDocument()->AddElement(m_pTempElement);
InvalidateRect(0);        // Redraw the current window

933

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 933



m_pTempElement = 0;       // Reset the element pointer
}

}

Of course, you must check that there really is an element before you add it to the document. The user
might just have clicked the left mouse button without moving the mouse. After adding the element to the
list in the document, you call InvalidateRect() to get the client area for the current view redrawn. The
argument of 0 invalidates the whole of the client area in the view. Because of the way the rubber-banding
process works, some elements may not be displayed properly if you don’t do this. If you draw a horizontal
line, for instance, and then rubberband a rectangle with the same color so that its top or bottom edge over-
laps the line, the overlapped bit of line disappears. This is because the edge being drawn is XORed with 
the line underneath, so you get the background color back. You also reset the pointer m_pTempElement to
avoid confusion when another element is created.

Exercising the Document
After saving all the modified files, you can build the latest version of Sketcher and execute it. You’ll now
be able to produce art such as “the happy programmer” shown in Figure 16-8.

Figure 16-8

The program is now working more realistically. It stores a pointer to each element in the document object,
so they’re all automatically redrawn as necessary. The program also does a proper cleanup of the document
data when it’s deleted.

❑ There are still some limitations in the program that you can address. For instance: You can open
another view window by using the Window > New Window menu option in the program. This
capability is built in to an MDI application and opens a new view to an existing document, not 
a new document. If you draw in one window, however, the elements are not drawn in the other
window. Elements never appear in windows other than the one where they were drawn, unless
the area they occupy needs to be redrawn for some other reason.

934

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 934



❑ You can only draw in the client area you can see. It would be nice to be able to scroll the view
and draw over a bigger area.

❑ Neither can you delete an element, so if you make a mistake, you either live with it or start over
with a new document.

These are all quite serious deficiencies that, together, make the program fairly useless as it stands. You’ll
overcome all of them before the end of this chapter.

Improving the View
The first item that you can try to fix is the updating of all the document windows that are displayed when
an element is drawn. The problem arises because only the view in which an element is drawn knows about
the new element. Each view is acting independently of the others and there is no communication between
them. You need to arrange for any view that adds an element to the document to let all the other views
know about it, and they need to take the appropriate action.

Updating Multiple Views
The document class conveniently contains a function UpdateAllViews() to help with this particular
problem. This function essentially provides a means for the document to send a message to all its views.
You just need to call it from the OnLButtonUp() function in the CSketcherView class, whenever you
have added a new element to the document:

void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)
{

if(this == GetCapture())
ReleaseCapture();                // Stop capturing mouse messages

// If there is an element, add it to the document
if(m_pTempElement)
{

GetDocument()->AddElement(m_pTempElement);
GetDocument()->UpdateAllViews(0,0,m_pTempElement);  // Tell all the views
m_pTempElement = 0;              // Reset the element pointer

}
}

When the m_pTempElement pointer is not NULL, the specific action of the function has been extended 
to call the UpdateAllViews() member of your document class. This function communicates with the
views by causing the OnUpdate() member function in each view to be called. The three arguments to
UpdateAllViews() are described in Figure 16-9.

The first argument to the UpdateAllViews() function call is often the this pointer for the current view.
This suppresses the call of the OnUpdate() function for the current view. This is a useful feature when the
current view is already up to date. In the case of Sketcher, because you are rubber-banding you want to get
the current view redrawn as well, so by specifying the first argument as 0 you get the OnUpdate() function
called for all the views, including the current view. This removes the need to call InvalidateRect() as
you did before.

935

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 935



Figure 16-9

You don’t use the second argument to UpdateAllViews() here, but you do pass the pointer to the new
element through the third argument. Passing a pointer to the new element allows the views to figure out
which bit of their client area needs to be redrawn.

To catch the information passed to the UpdateAllViews() function, you add the OnUpdate() member
function to the view class. You can do this from the Class wizard and looking at the properties for
CSketcherView. As I’m sure you recall, you display the properties for a class by right-clicking the class
name and selecting Properties from the pop-up. If you click the Overrides button in the Properties win-
dow, you’ll be able to find OnUpdate in the list of functions you can override. Click the function name,
then the <Add> OnUpdate option that shows in the drop-down list in the adjacent column. If you close
the Properties window, you’ll be able to edit the code for the OnUpdate() override you have added 
in the Editor pane. You only need to add the highlighted code below to the function definition:

void CSketcherView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{

// Invalidate the area corresponding to the element pointed to
// if there is one, otherwise invalidate the whole client area
if(pHint)

InvalidateRect(((CElement*)pHint)->GetBoundRect());
else

InvalidateRect(0);
}

Note that you must uncomment the parameter names in the generated version of the function; otherwise,
it won’t compile with the additional code here. The three arguments passed to the OnUpdate() function
in the view class correspond to the arguments that you passed in the UpdateAllViews() function call.
Thus, pHint contains the address of the new element. However, you can’t assume that this is always the

void UpdateAllView( CView* pSender, LPARAM IHint = OL, CObject* pHint = NULL );

This argument is a pointer
to the current view. It 
suppresses calling of the
OnUpdate() member
funtion for the view. 

LPARAM is a 32-bit
Windows type that can
be used to pass
information about the
region to be updated in
the client area

This argument is a pointer
to an object that can
provide information about
the area in the region to be
updated in the client area.

These two argument values are
passed on to the OnUpdate()
functions in the views

936

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 936



case. The OnUpdate() function is also called when a view is first created, but with a NULL pointer for the
third argument. Therefore, the function checks that the pHint pointer isn’t NULL and only then gets the
bounding rectangle for the element passed as the third argument. It invalidates this area in the client area
of the view by passing the rectangle to the InvalidateRect() function. This area is redrawn by the
OnDraw() function in this view when the next WM_PAINT message is sent to the view. If the pHint pointer
is NULL, the whole client area is invalidated.

You might be tempted to consider redrawing the new element in the OnUpdate() function. This isn’t 
a good idea. You should only do permanent drawing in response to the Windows WM_PAINT message.
This means that the OnDraw() function in the view should be the only place that’s initiating any draw-
ing operations for document data. This ensures that the view is drawn correctly whenever Windows
deems it necessary.

If you build and execute Sketcher with the new modifications included, you should find that all the views
are updated to reflect the contents of the document.

Scrolling Views
Adding scrolling to a view looks remarkably easy at first sight; the water is in fact deeper and murkier
that it at first appears, but jump in anyway. The first step is to change the base class for CSketcherView
from CView to CScrollView. This new base class has the scrolling functionality built in, so you can alter
the definition of the CSketcherView class to:

class CSketcherView: public CScrollView
{

// Class definition as before...
};

You must also modify two lines of code at the beginning of the SketcherView.cpp file, which refer to
the base class for CSketcherView. You need to replace CView with CScrollView as the base class:

IMPLEMENT_DYNCREATE(CSketcherView, CScrollView)

BEGIN_MESSAGE_MAP(CSketcherView, CScrollView)

However, this is still not quite enough. The new version of the view class needs to know some things
about the area you are drawing on, such as the size and how far the view is to be scrolled when you use
the scroller. This information has to be supplied before the view is first drawn. You can put the code to
do this in the OnInitialUpdate() function in the view class.

You supply the information that is required by calling a function that is inherited from the CScrollView
class: SetScrollSizes(). The arguments to this function are explained in Figure 16-10.

Scrolling a distance of one line occurs when you click on the up or down arrow on the scroll bar; a page
scroll occurs when you click on the scrollbar itself. You have an opportunity to change the mapping mode
here. MM_LOENGLISH would be a good choice for the Sketcher application, but first get scrolling working
with the MM_TEXT mapping mode because there are still some difficulties to be uncovered. (Mapping modes
are introduced in Chapter 15.)

937

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 937



Figure 16-10

To add the code to call SetScrollSizes(), you need to override the default version of the
OnInitialUpdate() function in the view. You access this in the same way as for the OnUpdate()
function override — through the Properties window for the CSketcherView class. After you have
added the override, just add the code to the function where indicated by the comment:

void CSketcherView::OnInitialUpdate()
{

CScrollView::OnInitialUpdate();

// Define document size
CSize DocSize(20000,20000);

// Set mapping mode and document size.
SetScrollSizes(MM_TEXT,DocSize);

}

This maintains the mapping mode as MM_TEXT and defines the total extent that you can draw on as
20000 pixels in each direction.

This is enough to get the scrolling mechanism working after a fashion. Build the program and execute 
it with these additions, and you’ll be able to draw a few elements and then scroll the view. However,

int MapMode, SIZE Total, const SIZE& Page = sizeDefault, const SIZE& Line = sizeDefault

void SetScrollSizes(

);

This defines the horizontal(cx) and
vertical(cy) distances to scroll a page.
This can be defined as:
CSize Page(cx, cy);
Default is 1/10 of the total area

This defines the horizontal(cx) and
vertical(cy) distances to scroll a line.
This can be defined as:
CSize Line(cx, cy);
Default is 1/10 of the total area

Can be any of:
MM_TEXT  MM_TWIPS
MM_LOENGLISH MM_HIENGLISH
MM_LOMETRIC MM_HIMETRIC

This is the total drawing area and can
be defined as:
CSize Total(cx,cy);
where cx is the horizontal extent and
cy is the vertical extent in logical units.

938

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 938



although the window scrolls OK, if you try to draw more elements with the view scrolled, things don’t
work as they should. The elements appear in a different position from where you draw them and they’re
not displayed properly. What’s going on?

Logical Coordinates and Client Coordinates
The problem is the coordinate systems that you’re using — and that plural is deliberate. You’ve actually
been using two coordinate systems in all the examples up to now, although you may not have noticed.
As you saw in the previous chapter, when you call a function such as LineTo(), it assumes that the argu-
ments passed are logical coordinates. The function is a member of the CDC class that defines a device con-
text, and the device context has its own system of logical coordinates. The mapping mode, which is a
property of the device context, determines what the unit of measurement is for the coordinates when you
draw something.

The coordinate data that you receive along with the mouse messages, on the other hand, has nothing to
do with the device context or the CDC object — and outside of a device context, logical coordinates don’t
apply. The points passed to the OnLButtonDown() and OnMouseMove() handlers have coordinates that
are always in device units, that is, pixels, and are measured relative to the upper-left corner of the client
area. These are referred to as client coordinates. Similarly, when you call InvalidateRect(), the rectan-
gle is assumed to be defined in terms of client coordinates.

In MM_TEXT mode, the client coordinates and the logical coordinates in the device context are both in units
of pixels, and so they’re the same — as long as you don’t scroll the window. In all the previous examples there
was no scrolling, so everything worked without any problems. With the latest version of Sketcher, it all
works fine until you scroll the view, whereupon the logical coordinates origin (the 0,0 point) is moved by
the scrolling mechanism, so it’s no longer in the same place as the client coordinates origin. The units for
logical coordinates and client coordinates are the same here, but the origins for the two coordinates systems
are different. This situation is illustrated in Figure 16-11.

Figure 16-11

939

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 939



The left side shows the position in the client area where you draw, and the points that are the mouse posi-
tions defining the line. These are recorded in client coordinates. The right side shows where the line is actu-
ally drawn. Drawing is in logical coordinates, but you have been using client coordinate values. In the case
of the scrolled window, the line appears displaced due to the logical origin being relocated.

This means that you are actually using the wrong values to define elements in the Sketcher program, and
when you invalidate areas of the client area to get them redrawn, the rectangles passed to the function are
also wrong — hence, the weird behavior of the program. With other mapping modes it gets worse, because
not only are the units of measurement in the two coordinate systems different, but also the y axes may be in
opposite directions!

Dealing with Client Coordinates
Consider what needs to be done to fix the problem. There are two things you may have to address:

❑ You need to convert the client coordinates that you got with mouse messages to logical coordi-
nates before you can use them to create elements.

❑ You need to convert a bounding rectangle that you created in logical coordinates back to client
coordinates if you want to use it in a call to InvalidateRect().

This amounts to making sure you always use logical coordinates when using device context functions,
and always use client coordinates for other communications about the window. The functions you have
to apply to do the conversions are associated with a device context, so you need to obtain a device con-
text whenever you want to convert from logical to client coordinates, or vice versa. You can use the coor-
dinate conversion functions of the CDC class inherited by CClientDC to do the work.

The new version of the OnLButtonDown() handler incorporating this is:

// Handler for left mouse button down message
void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)
{

CClientDC aDC(this);                // Create a device context
OnPrepareDC(&aDC);                  // Get origin adjusted
aDC.DPtoLP(&point);                 // convert point to Logical
m_FirstPoint = point;               // Record the cursor position
SetCapture();                       // Capture subsequent mouse messages

}

You obtain a device context for the current view by creating a CClientDC object and passing the pointer
this to the constructor. The advantage of CClientDC is that it automatically releases the device context
when the object goes out of scope. It’s important that device contexts are not retained, as there are a limited
number available from Windows and you could run out of them. If you use CClientDC, you’re always safe.

As you’re using CScrollView, the OnPrepareDC() member function inherited from that class must be
called to set the origin for the logical coordinate system in the device context to correspond with the scrolled
position. After you have set the origin by this call, you use the function DPtoLP(), which converts from
Device Points to Logical Points, to convert the point value that’s passed to the handler to logical coordi-
nates. You then store the converted point, ready for creating an element in the OnMouseMove() handler.

The new code for the OnMouseMove() handler is as follows:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

940

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 940



{
CClientDC aDC(this);                // Device context for the current view
OnPrepareDC(&aDC);                  // Get origin adjusted

if((nFlags&MK_LBUTTON)&&(this==GetCapture()))
{

aDC.DPtoLP(&point);              // convert point to Logical
m_SecondPoint = point;           // Save the current cursor position

// Rest of the function as before...
}

The code for the conversion of the point value passed to the handler is essentially the same as in the previ-
ous handler, and that’s all you need here for the moment. The last function that you must change is easy
to overlook: the OnUpdate() function in the view class. This needs to be modified to:

void CSketcherView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{

// Invalidate the area corresponding to the element pointed to
// if there is one, otherwise invalidate the whole client area 
if(pHint)
{

CClientDC aDC(this);            // Create a device context
OnPrepareDC(&aDC);              // Get origin adjusted

// Get the enclosing rectangle and convert to client coordinates
CRect aRect=((CElement*)pHint)->GetBoundRect();
aDC.LPtoDP(aRect);
InvalidateRect(aRect);          // Get the area redrawn

}
else

InvalidateRect(0);              // Invalidate the client area
}

The modification here creates a CClientDC object and uses the LPtoDP() function member to convert the
rectangle for the area that’s to be redrawn to client coordinates.

If you now compile and execute Sketcher with the modifications I have discussed and are lucky enough
not to have introduced any typos, it will work correctly, regardless of the scroller position.

Using MM_LOENGLISH Mapping Mode
Now look into what you need to do to use the MM_LOENGLISH mapping mode. This provides drawings
in logical units of 0.01 inches, and also ensures that the drawing size is consistent on displays at different
resolutions. This makes the application much more satisfactory from the users’ point of view.

You can set the mapping mode in the call to SetScrollSizes() made from the OnInitialUpdate()
function in the view class. You also need to specify the total drawing area, so, if you define it as 3000 by
3000, this provides a drawing area of 30 inches by 30 inches, which should be adequate. The default scroll
distances for a line and a page is satisfactory, so you don’t need to specify those. You can use Class View
to get to the OnInitialUpdate() function and then change it to the following:

void CSketcherView::OnInitialUpdate(void)

941

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 941



{
CScrollView::OnInitialUpdate();

// Define document size as 30x30ins in MM_LOENGLISH
CSize DocSize(3000,3000);

// Set mapping mode and document size.
SetScrollSizes(MM_LOENGLISH, DocSize);

}

You just alter the arguments in the call to SetScrollSizes() for the mapping mode and document the
size that you want. That’s all that’s necessary to enable the view to work in MM_LOENGLISH, but you still
need to fix how you deal with rectangles.

Note that you are not limited to setting the mapping mode once and for all. You can change the mapping
mode in a device context at any time and draw different parts of the image to be displayed using dif-
ferent mapping modes. A function SetMapMode() is used to do this, but I won’t be going into this any
further here. You can get your application working just using MM_LOENGLISH. Whenever you create a
CClientDC object for the view and call OnPrepareDC(), the device context that it owns has the map-
ping mode you’ve set in the OnInitialUpdate() function.

The problem you have with rectangles is that the element classes all assume the mapping mode is MM_TEXT,
and in MM_LOENGLISH the rectangles are upside down because of the reversal of the y-axis. When you apply
LPtoDP() to a rectangle, it is assumed to be oriented properly with respect to the MM_LOENGLISH axes.
Because yours are not, the function mirrors the rectangles in the x-axis. This creates a problem when you call
InvalidateRect() to invalidate an area of a view because the mirrored rectangle in device coordinates is
not recognized by Windows as being inside the visible client area.

You have two options for dealing with this. You can modify the element classes so that the enclosing rec-
tangles are the right way up for MM_LOENGLISH, or you can re-normalize the rectangle that you intend to
pass to the InvalidateRect() function. The latter is the easiest course because you only need to modify
one member of the view class, OnUpdate():

void CSketcherView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{

// Invalidate the area corresponding to the element pointed to
// if there is one, otherwise invalidate the whole client area 
if(pHint)
{

CClientDC aDC(this);             // Create a device context
OnPrepareDC(&aDC);               // Get origin adjusted

// Get the enclosing rectangle and convert to client coordinates
CRect aRect=((CElement*)pHint)->GetBoundRect();
aDC.LPtoDP(aRect);
aRect.NormalizeRect();
InvalidateRect(aRect);           // Get the area redrawn

}
else

InvalidateRect(0);
}

942

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 942



That should do it for the program as it stands. If you rebuild Sketcher, you should have scrolling work-
ing, with support for multiple views. You’ll need to remember to re-normalize any rectangle that you
convert to device coordinates for use with InvalidateRect() in the future. Any reverse conversions
are also affected.

Deleting and Moving Shapes
Being able to delete shapes is a fundamental requirement in a drawing program. One question relating
to this is how you’re going to select the element you want to delete. Of course, after you decide how to
select an element, this applies equally well if you want to move an element, so you can treat moving
and deleting elements as related problems. But first consider how you’re going to bring move and
delete operations into the program.

A neat way of providing move and delete functions would be to have a pop-up context menu appear at
the cursor position when you click the right mouse button. You could then put Move and Delete as items
on the menu. A pop-up that works like this is a very handy facility that you can use in lots of different
situations.

How should the pop-up be used? The standard way that context menus work is that the user moves the
mouse over a particular object and right-clicks on it. This selects the object and pops up a menu contain-
ing a list of items, which relate to actions that can be performed on that object. This means that different
objects can have different menus. You can see this in action in Developer Studio itself. When you right-
click on a class icon in Class View, you get a menu that’s different from the one you get if you right-click
on the icon for a member function. The menu that appears is sensitive to the context of the cursor, hence
the term “context menu.” You have two contexts to consider in Sketcher. You could right-click with the
cursor over an element, and you could right-click when there is no element under the cursor.

So, how can you implement this functionality in the Sketcher application? You can do it simply by creating
two menus: one for when you have an element under the cursor, and one for when you don’t. You can check
if there’s an element under the cursor when the user presses the right mouse button. If there is an element
under the cursor, you can highlight the element so that the user knows exactly which element the context
pop-up is referring to.

Take a look at how you can create a pop-up at the cursor and, after that works, come back to how to
implement the detail of the move and delete operations.

Implementing a Context Menu
The first step is to create a menu containing two pop-ups: one containing Move and Delete as items, the
other a combination of items from the Element and Color menus. So, change to Resource View and expand
the list of resources. Right-click on the Menu folder to bring up a context menu — another demonstration of
what you are now trying to create in the Sketcher application. Select Insert Menu to create a new menu.
This has a default ID IDR_MENU1 assigned, but you can change this. Select the name of the new menu in the

943

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 943



Resource View and display the Properties window for the resource by pressing Alt+Enter (This is a short-
cut to the View > Other Windows > Properties Window menu item). You can then edit the resource ID
in the Properties window by clicking the value for the ID. You could change it to something more suit-
able, such as IDR_CURSOR_MENU, in the right column. Note that the name for a menu resource must start
with IDR. Pressing the Enter key saves the new name.

You can now create two new items on the menu bar in the Editor pane. These can have any old captions
because they won’t actually be seen by the user. They represents the two context menus that you provide
with Sketcher, so you can name them element and no element, according to the situation in which the
context menu will be used. Now you can add the Move and Delete items to the element pop-up. The default
IDs of ID_ELEMENT_MOVE and ID_ELEMENT_DELETE will do fine, but you could change them if you wanted
to in the Properties window for each item. Figure 16-12 shows how the new element menu looks.

Figure 16-12

The second menu contains the list of available element types and colors, identical to the items on the
Element and Color menus on the main menu bar, but here separated by a Separator. The IDs you use for
these items must be the same as you applied to the IDR_SketcherTYPE menu. This is because the han-
dler for a menu is associated with the menu ID. Menu items with the same ID use the same handlers, so
the same handler is used for the Line menu item regardless of whether it’s invoked from the main menu
pop-up or from the context menu.

You have a shortcut that saves you having to create all these menu items one-by-one. If you display the
IDR_SketcherTYPE menu and extend the Element menu, you can select all the menu items by clicking
the first item and then by clicking the last item while holding down the Shift key. You can then right-
click the selection and select Copy from the pop-up or simply press Ctrl+C. If you then return to the
IDR_CURSOR_MENU and right-click the first item on the no-element menu, you can insert the complete
contents of the Element menu by selecting Paste from the pop-up or by pressing Ctrl+V. The copied
menu items will have the same IDs as the originals. To insert the separator, just right-click the empty
menu item and select Insert Separator from the pop-up. Repeat the process for the Color menu items
and you’re done — almost. Putting the items from the Element and Color menus together has created a
conflict — both Rectangle and Red share the same shortcut. Changing &Red to Re&d here will fix it, and
it’s a good idea to change it on in the IDRSketcherTYPE menu too for consistency. You do this by edit-
ing the Caption property for the menu item. The completed menu should look as shown in Figure 16-13.

Close the properties box and save the resource file. At the moment, all you have is the definition of the
menu in a resource file. It isn’t connected to the code in the Sketcher program. You now need to associate

944

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 944



this menu and its ID, IDR_CURSOR_MENU, with the view class. You also must create command handlers
for the menu items in the pop-up corresponding to the IDs ID_MOVE and ID_DELETE.

Figure 16-13

Associating a Menu with a Class
To associate the context menu with the view class in Sketcher, go to the Class View pane and display the
Properties window for CSketcherView by right-clicking the class name and selecting Properties from
the pop-up. If you click the Messages button in the Properties window, you’ll be able to add a handler
for the WM_CONTEXTMENU message by selecting <Add>OnContextMenu from the adjacent cell in the right
column. You can then add the following code to the handler:

void CSketcherView::OnContextMenu(CWnd* pWnd, CPoint point)
{
CMenu menu;
menu.LoadMenu(IDR_CURSOR_MENU);               // Load the context menu 
CMenu* pPopup = menu.GetSubMenu(0);           // Get the first menu
ASSERT(pPopup != NULL);                       // Ensure it’s there

// Display the popup menu
pPopup->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON, point.x, point.y, this);

}

For now, this handler arbitrarily displays the first of the two context menus. You still need to figure out
how you’ll determine whether or not the cursor is over an element to decide which menu to display, but
we’ll come back to that a little later. Calling the LoadMenu() method for the menu object loads the menu
resource corresponding to the ID supplied as the argument and attaches it to the CMenu object menu. The
GetSubMenu() function returns a pointer to the pop-up menu corresponding to the integer argument
that specifies the position of the pop-up, with 0 being the first pop-up, 1 being the second, and so on.
After you ensure the pointer returned by GetSubMenu() is not NULL, you display the pop-up by calling
TrackPopupMenu().

945

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:18 AM  Page 945



The first argument to the TrackPopupMenu() function consists of two flags ORed together. One flag
specifies how the pop-up menu should be positioned and can be any of the following values: 

The second flag specifies the mouse button and can be either of the following:

The next two arguments to the TrackPopupMenu() function specify the x and y coordinates of the pop-
up menu on the screen respectively. The y coordinate determines to position of the top of the menu. The
fourth argument specifies the window that owns the menu and that should receive all WM_COMMAND mes-
sages from the menu.

Now you can add the handlers for the items in the first pop-up menu. Return to the Resource View and
double-click on IDR_CURSOR_MENU. Right-click the Move menu item and then select Add Event Handler
from the pop-up. You can then specify the handler in the dialog for the Event Handler wizard, as shown
in Figure 16-14.

It’s a COMMAND handler and is to be created in the CSketcherView class. Click the Add and Edit button
to create the handler function. You can follow the same procedure to create the hander for the Delete
menu item.

You don’t have to do anything for the second context menu, as you already have handlers written for them
in the document class. These take care of the messages from the pop-up items automatically.

Choosing a Context Menu
At the moment, the OnContextMenu() handler only displays the first context pop-up, no matter
where the right button is clicked in the view. This isn’t really what you want it to do. The first context
menu applies specifically to an element, whereas the second context menu applies in general. You
want to display the first menu if there is an element under the cursor and to display the second 
menu if there isn’t.

Flag Description

TPM_LEFTMOUSEBUTTON Specifies that the pop-up tracks the left mouse button.

TPM_RIGHTMOUSEBUTTON Specifies that the pop-up tracks the right mouse button.

Flag Description

TPM_CENTERALIGN Centers the pop-up horizontally relative to the x coordinate supplied
as the second argument to the function.

TPM_LEFTALIGN Positions the pop-up so that the left side of the menu is aligned with
the x coordinate supplied as the second argument to the function.

TPM_RIGHTALIGN Positions the pop-up so that the right side of the menu is aligned with
the x coordinate supplied as the second argument to the function.

946

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 946



Figure 16-14

You need two things to fix this up: You need a mechanism to find out which (if any) element is at the cur-
rent cursor position, and you need to save the address of this element somewhere so you can use it in the
OnContextMenu() handler. You can deal with saving the address of the element first because this is the
easier bit.

When you find out which element is under the cursor, you’ll store its address in a data member,
m_pSelected, of the view class. This is available to the right mouse button handler because that’s 
in the same class. You can add the declaration for this variable to the protected section of the
CSketcherView class:

class CSketcherView: public CScrollView
{

// Rest of the class as before...

protected:
CPoint m_FirstPoint;         // First point recorded for an element
CPoint m_SecondPoint;        // Second point recorded for an element
CElement* m_pTempElement;    // Pointer to temporary element
CElement* m_pSelected;       // Currently selected element

// Rest of the class as before...
};

You can add this manually or alternatively, you can right-click the class name and select 
Add > AddVariable from the pop-up to open the dialog for adding a data member. If you add

947

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 947



m_pSelected manually you’ll also need to initialize this element in the class constructor, so add the fol-
lowing code:

CSketcherView::CSketcherView()
: m_FirstPoint(CPoint(0,0))
, m_SecondPoint(CPoint(0,0))
, m_pTempElement(NULL)
, m_pSelected(NULL)
{
// TODO: add construction code here

}

You’ll figure out how to decide when an element is under the cursor in a moment, but in the meantime you
can use the m_pSelected member of the view in the implementation of the OnContextMenu() handler:

void CSketcherView::OnContextMenu(CWnd* pWnd, CPoint point)
{

CMenu menu;
menu.LoadMenu(IDR_CURSOR_MENU);
CMenu* pPopup = menu.GetSubMenu(m_pSelected == 0 ? 1 : 0);
ASSERT(pPopup != NULL);
pPopup->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON, point.x, point.y, this);

}

The expression m_pSelected == 0 ? 1 : 0 results in 1 when the pointer is null and 0 otherwise; so
you’ll select the first pop-up menu containing Move and Delete when m_pSelected is not null and the
second pop-up when it is.

Identifying a Selected Element
To keep track of which element is under the cursor you can add code to the OnMouseMove() handler in
the CSketcherView class. This handler is called every time the mouse cursor moves, so all you have to 
do is add code to test whether there’s an element under the current cursor position and set m_pSelected
accordingly. The test whether a particular element is under the cursor is simple; if the cursor position is
within the bounding rectangle for an element, that element is under the cursor. Here’s how you can mod-
ify the OnMouseMove() handler to check if there’s an element under the cursor:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{

// Define a Device Context object for the view
CClientDC aDC(this);                // DC is for this view
OnPrepareDC(&aDC);                  // Get origin adjusted

CSketcherDoc* pDoc=GetDocument();   // Get a pointer to the document
CElement* pElement = 0;             // Store an element pointer
CRect aRect(0,0,0,0);               // Store a rectangle
POSITION aPos = pDoc->GetListHeadPosition();  // Get first element position
m_pSelected = 0;
while(aPos)                         // Iterate through the list
{

pElement = pDoc->GetNext(aPos);
aRect = pElement->GetBoundRect();
aDC.LPtoDP(aRect);               // Convert to device coordinates

948

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 948



aRect.NormalizeRect();           // Renormalize the rectangle

if(aRect.PtInRect(point))        // Is the current element under the cursor?
{
m_pSelected = pElement;
break;

}
}

aDC.SetROP2(R2_NOTXORPEN);          // Set the drawing mode
if((nFlags&MK_LBUTTON)  && (this==GetCapture()))
{

aDC.DPtoLP(&point);              // convert point to Logical
m_SecondPoint = point;           // Save the current cursor position

if(m_pTempElement)
{

if(CURVE == GetDocument()->GetElementType())   // Is it a curve?
{  // We are drawing a curve

// so add a segment to the existing curve
static_cast<CCurve*>(m_pTempElement)->AddSegment(m_SecondPoint);  
m_pTempElement->Draw(&aDC);  // Now draw it
return;                      // We are done

}

aDC.SetROP2(R2_NOTXORPEN);                 // Set drawing mode
// Redraw the old element so it disappears from the view
m_pTempElement->Draw(&aDC);
delete m_pTempElement;        // Delete the old element
m_pTempElement = 0;           // Reset the pointer to 0

}

// Create a temporary element of the type and color that
// is recorded in the document object, and draw it
m_pTempElement = CreateElement();// Create a new element
m_pTempElement->Draw(&aDC);      // Draw the element

}
}

The new code looks like a lot, but it is very simple. It tests whether the cursor lies within the bounding
rectangle for each element in turn, and stores the address of the first element where this is the case in
m_pSelected. If the cursor does not lie within any of the bounding rectangles, m_pSelected element
contains 0. Note how you convert each bounding rectangle to device coordinates and renormalize
before testing it. Without this the rectangle would be in the wrong place because the mapping mode
is MM_LOENGLISH.

The code is now in a state where you can test the context menus.

Exercising the Pop-Ups
You have added all the code you need to make the pop-ups operate, so you can build and execute Sketcher
to try it out. If there are no elements under the cursor, the second context pop-up appears, allowing you to
change the element type and color. These options work because they generate exactly the same messages as
the main menu options and because you have already written handlers for them.

949

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 949



If there is an element under the cursor, the first context menu will appear with Move and Delete on it. It
won’t do anything at the moment, as you’ve yet to implement the handlers for the messages it generates.
Try right button clicks outside of the view window. Messages for these are not passed to the document
view window in your application, so the pop-up is not displayed.

Note that the context menu to select elements and colors isn’t quite right — they set the right type or color
in the class but the check marks in the pop-up are not set properly. The document class handles the mes-
sages from the menu, but the UPDATE_COMMAND_UI messages don’t apply to the context menu — they only
work with the IDR_SketcherTYPE menu. Read on to see how you can fix that.

Checking the Context Menu Items
Checking the items in the no element menu has to be done in the OnContextMenu() function in the
CSketcherView class before the context menu is displayed. The CMenu class has a function designed 
to do exactly what you want. Its prototype is:

UINT CheckMenuItem(UINT nIDCheckItem, UINT nCheck);

This function checks or unchecks any item in the context menu. The first parameter selects which entry
in the context pop-up is to be checked or unchecked; the second parameter is a combination of two flags,
one of which determines how the first parameter specifies which item is to be checked, and the other
specifies whether the menu item is to be checked or unchecked. Because each flag is a single bit in a
UINT value, you combine the two using the bitwise OR.

The flag to determine how the item is identified can be one of two possible values:

Use MF_BYCOMMAND so you won’t have to worry about the sequence in which the menu items appear in
the pop-up, or even in which submenu they appear.

The possible flag values to check or uncheck an item are MF_CHECKED and MF_UNCHECKED, respectively.

The code for checking or unchecking a menu item is essentially the same for all the menu items in the
second context pop-up. See how you can set the check for the menu item Black correctly. The first argu-
ment to the CheckMenuItem() function will be the menu ID, ID_COLOR_BLACK. The second argument 
is MF_BYCOMMAND combined with either MF_CHECKED or MF_UNCHECKED, depending on the current color
selected. You can obtain the current color from the document using the GetElementColor() function,
with the following statement:

COLORREF Color = GetDocument()->GetElementColor();

MF_BYPOSITION The first parameter is an index where 0 specifies the first item, 1 the second,
and so on.

MF_BYCOMMAND The first parameter is a menu ID.

950

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 950



You can use the Color variable to select the appropriate flag using the conditional operator, and then
combine the result with the MF_BYCOMMAND flag to obtain the second argument to the CheckMenuItem()
function, so the statement to set the check for the item is:

menu.CheckMenuItem(ID_COLOR_BLACK,
(BLACK==Color ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);

You don’t need to specify the sub-menu here because the menu item is uniquely defined in the menu by
its ID. You just need to change the ID and the color value in this statement to obtain the statement to set
the flags for each of the other color menu items.

Checking the element menu items is essentially the same. To check the Line menu item you can write:

unsigned int ElementType = GetDocument()->GetElementType();
menu.CheckMenuItem(ID_ELEMENT_LINE,

(LINE==ElementType ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);

The complete code for the OnContextMenu() handler is:

void CSketcherView::OnContextMenu(CWnd* pWnd, CPoint point)
{

CMenu menu;
menu.LoadMenu(IDR_CURSOR_MENU);

// Set check marks if it’s the no element menu
if(m_pSelected == 0)
{

// Check color menu items
COLORREF Color = GetDocument()->GetElementColor();
menu.CheckMenuItem(ID_COLOR_BLACK,

(BLACK==Color ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);
menu.CheckMenuItem(ID_COLOR_RED,

(RED==Color ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);
menu.CheckMenuItem(ID_COLOR_GREEN,

(GREEN==Color ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);
menu.CheckMenuItem(ID_COLOR_BLUE,

(BLUE==Color ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);

// Check element menu items
unsigned int ElementType = GetDocument()->GetElementType();
menu.CheckMenuItem(ID_ELEMENT_LINE,

(LINE==ElementType ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);
menu.CheckMenuItem(ID_ELEMENT_RECTANGLE,

(RECTANGLE==ElementType ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);
menu.CheckMenuItem(ID_ELEMENT_CIRCLE,

(CIRCLE==ElementType ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);
menu.CheckMenuItem(ID_ELEMENT_CURVE,

(CURVE==ElementType ? MF_CHECKED : MF_UNCHECKED) | MF_BYCOMMAND);
}

951

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 951



CMenu* pPopup = menu.GetSubMenu(m_pSelected == 0 ? 1 : 0);
ASSERT(pPopup != NULL);
pPopup->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON, point.x, point.y, this);

}

With this change, the context menu items should be checked correctly when you build and run Sketcher
again.

Highlighting Elements
Ideally, the user will want to know which element is under the cursor before they right-click to get the con-
text menu. When you want to delete an element, you want to know which element you are operating on.
Equally, when you want to use the other context menu — to change color, for example — you need to be
sure no element is under the cursor. To show precisely which element is under the cursor, you need to
highlight it in some way before a right button click occurs.

You can do this in the Draw() member function for an element. All you need to do is pass an argument
to the Draw() function to indicate when the element should be highlighted. If you pass the address of the
currently-selected element that you save in the m_pSelected member of the view to the Draw() function,
you will be able to compare it to the this pointer to see if it is the current element.

Highlights all work in the same way, so let’s take the CLine member as an example. You can add similar
code to each of the classes for the other element types. Before you start changing CLine, you must first
amend the definition of the base class CElement:

class CElement : public CObject
{

protected:
COLORREF m_Color;                // Color of an element
CRect m_EnclosingRect;           // Rectangle enclosing an element
int m_Pen;                       // Pen width

public:
virtual ~CElement(void);  
// Virtual draw operation
virtual void Draw(CDC* pDC,CElement* pElement=0) {}

CRect GetBoundRect();            // Get the bounding rectangle for an element

protected:
CElement(void);                  // Here to prevent it being called

};

The change is to add a second parameter to the virtual Draw() function. This is a pointer to an element. The
reason for initializing the second parameter to zero is to allow the use of the function with just one argu-
ment; the second will be supplied as 0 by default.

You need to modify the declaration of the Draw() function in each of the classes derived from CElement
in exactly the same way. For example, you should change the CLine class definition to:

class CLine :
public CElement

952

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 952



{
public:

~CLine(void);
// Function to display a line
virtual void Draw(CDC* pDC, CElement* pElement=0);     

// Constructor for a line object
CLine(CPoint Start, CPoint End, COLORREF aColor);

protected:
CPoint m_StartPoint;             // Start point of line
CPoint m_EndPoint;               // End point of line

CLine(void);                     // Default constructor - should not be used
};

The implementation for each of the Draw() functions for the classes derived from CElement all need to
be extended in the same way. The function for the CLine class is:

void CLine::Draw(CDC* pDC, CElement* pElement)
{

// Create a pen for this object and
// initialize it to the object color and line width of 1 pixel
CPen aPen;
COLORREF aColor = m_Color;             // Initialize with element color
if(this == pElement)                   // This element selected?

aColor = SELECT_COLOR;              // Set highlight color
if(!aPen.CreatePen(PS_SOLID, m_Pen, aColor))
{

// Pen creation failed. Abort the program
AfxMessageBox(_T(“Pen creation failed drawing a line”), MB_OK);
AfxAbort();

}

CPen* pOldPen = pDC->SelectObject(&aPen);  // Select the pen

// Now draw the line
pDC->MoveTo(m_StartPoint);
pDC->LineTo(m_EndPoint);

pDC->SelectObject(pOldPen);                // Restore the old pen
}

This is a very simple change. You set the new local variable aColor to the current color stored in
m_Color, and the if statement will reset the value of aColor to SELECT_COLOR when pElement is
equal to this — which is the case when the current element and the selected element are the same. 
You also need to add the definition for SELECT_COLOR to the OurConstants.h file:

//Definitions of constants

#pragma once

// Element type definitions
// Each type value must be unique

953

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 953



const unsigned int LINE = 101U;
const unsigned int RECTANGLE = 102U;
const unsigned int CIRCLE = 103U;
const unsigned int CURVE = 104U;
///////////////////////////////////

// Color values for drawing
const COLORREF BLACK = RGB(0,0,0);
const COLORREF RED = RGB(255,0,0);
const COLORREF GREEN = RGB(0,255,0);
const COLORREF BLUE = RGB(0,0,255);
const COLORREF SELECT_COLOR = RGB(255,0,180);
///////////////////////////////////

Now you should add an #include directive for OurConstants.h to the CElements.cpp file to make
the definition of SELECT_COLOR available. You have nearly implemented the highlighting. The derived
classes of the CElement class are now able to draw themselves as selected — you just need a mechanism
to cause an element to be selected. So where should you do this? You determine which element, if any, 
is under the cursor in the OnMouseMove() handler in the CSketcherView class, so that’s obviously the
place to expedite the highlighting.

The amendments to the OnMouseMove() handler are:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{
// Define a Device Context object for the view
CClientDC aDC(this);                // DC is for this view
OnPrepareDC(&aDC);                  // Get origin adjusted

aDC.SetROP2(R2_NOTXORPEN);          // Set the drawing mode
if((nFlags&MK_LBUTTON)  && (this==GetCapture()))
{
aDC.DPtoLP(&point);              // convert point to Logical
m_SecondPoint = point;           // Save the current cursor position

if(m_pTempElement)
{

if(CURVE == GetDocument()->GetElementType())   // Is it a curve?
{  // We are drawing a curve

// so add a segment to the existing curve
static_cast<CCurve*>(m_pTempElement)->AddSegment(m_SecondPoint);  
m_pTempElement->Draw(&aDC);   // Now draw it
return;                       // We are done

}

aDC.SetROP2(R2_NOTXORPEN);       // Set drawing mode
// Redraw the old element so it disappears from the view
m_pTempElement->Draw(&aDC);
delete m_pTempElement;           // Delete the old element
m_pTempElement = 0;              // Reset the pointer to 0

}

// Create a temporary element of the type and color that
// is recorded in the document object, and draw it
m_pTempElement = CreateElement();  // Create a new element

954

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 954



m_pTempElement->Draw(&aDC);        // Draw the element
}
else
{ // We are not drawing an element so do highlighting...
CSketcherDoc* pDoc=GetDocument();  // Get a pointer to the document
CElement* pElement = 0;            // Store an element pointer
CRect aRect(0,0,0,0);              // Store a rectangle
POSITION aPos = pDoc->GetListHeadPosition();  // Get first element posn
CElement* pOldSelection = m_pSelected;        // Save old selected element
m_pSelected = 0;
while(aPos)                        // Iterate through the list
{
pElement = pDoc->GetNext(aPos);
aRect = pElement->GetBoundRect();
aDC.LPtoDP(aRect);
aRect.NormalizeRect();

// Select the first element that appears under the cursor
if(aRect.PtInRect(point))
{
m_pSelected = pElement;
break;

}
}
if(m_pSelected == pOldSelection)   // If new selection is same as old       
return;                          // we are done

// Unhighlight old selection if there is one
if(pOldSelection != 0)             // Verify there is one
{
aRect = pOldSelection->GetBoundRect();
aDC.LPtoDP(aRect);               // Convert to device coords
aRect.NormalizeRect();           // Normalize
InvalidateRect(aRect, FALSE);    // Invalidate area

}

// Highlight new selection if there is one
if(m_pSelected != 0)               // Verify there is one
{
aRect = m_pSelected->GetBoundRect();
aDC.LPtoDP(aRect);               // Convert to device coords
aRect.NormalizeRect();           // Normalize
InvalidateRect(aRect, FALSE);    // Invalidate area

}
}

}

You only want to deal with highlighting elements when you are not in the process of creating a new ele-
ment. All the highlighting code can thus be added in a new else clause for the main if. This involves
moving the code you had previously to determine the element under the cursor to the new else clause
and adding to it.

You must keep track of any previously highlighted element because if there’s a new one, you must un-
highlight the old one. To do this you save the value of m_pSelected in pOldSelection. You then search
for an element under the cursor and if there is one, you store its address in m_pSelected.

955

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 955



If pOldSelection and m_pSelected are equal then either they both contain the address of the same
element or they are both zero. If they are the same and non-zero, what was already highlighted should
stay highlighted so there’s nothing to be done. If they are both zero, nothing was highlighted and noth-
ing needs to be highlighted so there’s nothing to do in this case too. Either way you just return from the
function. If they are different, you may have to do something with both.

If pOldSelection is not null then you must un-highlight the old element. The mechanism is the same as
before — get the bounding rectangle in device coordinates and pass it to the InvalidateRect() function
for the device context. You then check m_pSelected and if it is not null then you have to highlight the
element whose address it contains. This again involves getting the bounding rectangle in device coordi-
nates and pass it to the InvalidateRect() function.

Drawing Highlighted Elements
You still need to arrange that the highlighted element is actually drawn highlighted. Somewhere, the
m_pSelected pointer must be passed to the draw function for each element. The only place to do this 
is in the OnDraw() function in the view:

void CSketcherView::OnDraw(CDC* pDC)
{
CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if(!pDoc)
return;

POSITION aPos = pDoc->GetListHeadPosition();
CElement* pElement = 0;              // Store for an element pointer
while(aPos)                          // Loop while aPos is not null
{
pElement = pDoc->GetNext(aPos);    // Get the current element pointer
// If the element is visible...
if(pDC->RectVisible(pElement->GetBoundRect()))
pElement->Draw(pDC, m_pSelected);// ...draw it

}
}

You only need to change one line. The Draw() function for an element has the second argument added
to communicate the address of the element to be highlighted.

Exercising the Highlights
This is all that’s required for the highlighting to work all the time. It wasn’t trivial but on the other hand
it wasn’t terribly difficult either. You can build and execute Sketcher to try it out. Any time there is an
element under the cursor, the element is drawn in magenta. This makes it obvious which element the
context menu is going to act on before you right-click the mouse and means that you know in advance
which context menu is displayed.

Servicing the Menu Messages
The next step is to provide code in the bodies of the handlers for the Move and Delete menu items that
you added earlier. You can add the code for Delete first, as that’s the simpler of the two.

956

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 956



Deleting an Element
The code that you need in the OnElementDelete() handler in the CSketcherView class to delete the
currently selected element is simple:

void CSketcherView::OnElementDelete()
{
if(m_pSelected)
{
CSketcherDoc* pDoc = GetDocument();// Get the document pointer
pDoc->DeleteElement(m_pSelected);  // Delete the element
pDoc->UpdateAllViews(0);           // Redraw all the views
m_pSelected = 0;                   // Reset selected element ptr

}
}

The code to delete an element is only executed if m_pSelected contains a valid address, indicating that
there is an element to be deleted. You get a pointer to the document and call the function DeleteElement()
for the document object; you’ll add this member to the CSketcherDoc class in a moment. When the element
has been removed from the document, you call UpdateAllViews() to get all the views redrawn without
the deleted element. Finally, you set m_pSelected to zero to indicate that there isn’t an element selected.

You can add a declaration for DeleteElement() as a public member of the CSketcherDoc class:

class CSketcherDoc : public CDocument
{
protected: // create from serialization only

CSketcherDoc();
DECLARE_DYNCREATE(CSketcherDoc)

// Attributes
public:

// Operations
public:

void DeleteElement(CElement* pElement); // Delete an element
unsigned int GetElementType()           // Get the element type

{ return m_Element; }

// Rest of the class as before...
};

It accepts a pointer to the element to be deleted as an argument and returns nothing. You can implement
it in SketcherDoc.cpp as:

void CSketcherDoc::DeleteElement(CElement* pElement)
{
if(pElement)
{
// If the element pointer is valid,
// find the pointer in the list and delete it
POSITION aPosition = m_ElementList.Find(pElement);
m_ElementList.RemoveAt(aPosition);

957

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 957



delete pElement;                   // Delete the element from the heap
}

}

You shouldn’t have any trouble understanding how this works. After making sure that you have a non-
null pointer, you find the POSITION value for the pointer in the list using the Find() member of the list
object. You use this with the RemoveAt() member to delete the pointer from the list, then delete the ele-
ment pointed to by the parameter pElement from the heap.

That’s all you need to delete elements. You should now have a Sketcher program in which you can draw
in multiple scrolled views, and delete any of the elements in your sketch from any of the views.

Moving an Element
Moving the selected element is a bit more involved. As the element must move along with the mouse
cursor, you must add code to the OnMouseMove() method to account for this behavior. As this function
is also used to draw elements, you need a mechanism for indicating when you’re in “move” mode. The
easiest way to do this is to have a flag in the view class, which you can call m_MoveMode. If you make it
of type BOOL, you use the value TRUE for when move mode is on, and FALSE for when it’s off. Of course,
you could also define it as the fundamental type, bool, and the values are true and false.

You’ll also have to keep track of the cursor during the move, so you can another data member in the view
for this. You can call it m_CursorPos, and it will be of type CPoint. Another thing you should provide for
is the possibility of aborting a move. To do this you must remember the first position of the cursor when
the move operation started, so you can move the element back when necessary. This is another member of
type CPoint, and it is called m_FirstPos. Add the three new members to the protected section of the
view class:

class CSketcherView: public CScrollView
{
// Rest of the class as before...

protected:
CPoint m_FirstPoint;       // First point recorded for an element
CPoint m_SecondPoint;      // Second point recorded for an element
CElement* m_pTempElement;  // Pointer to temporary element
CElement* m_pSelected;     // Currently selected element
BOOL m_MoveMode;           // Move element flag
CPoint m_CursorPos;        // Cursor position
CPoint m_FirstPos;         // Original position in a move

// Rest of the class as before...
};

These must also be initialized in the constructor for CSketcherView so modify it to:

CSketcherView::CSketcherView()
: m_FirstPoint(CPoint(0,0))
, m_SecondPoint(CPoint(0,0))
, m_pTempElement(NULL)
, m_pSelected(NULL)
, m_MoveMode(FALSE)
, m_CursorPos(CPoint(0,0))
, m_FirstPos(CPoint(0,0))

958

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 958



{
// TODO: add construction code here

}

The element move process starts when the Move menu item from the context menu is selected. Now you
can add the code to the message handler for the Move menu item to set up the conditions necessary for
the operation:

void CSketcherView::OnElementMove()
{

CClientDC aDC(this);
OnPrepareDC(&aDC);              // Set up the device context
GetCursorPos(&m_CursorPos);     // Get cursor position in screen coords
ScreenToClient(&m_CursorPos);   // Convert to client coords
aDC.DPtoLP(&m_CursorPos);       // Convert to logical
m_FirstPos = m_CursorPos;       // Remember first position
m_MoveMode = TRUE;              // Start move mode

}

You are doing four things in this handler:

1. Getting the coordinate of the current position of the cursor because the move operation starts
from this reference point.

2. Converting the cursor position to logical coordinates because your elements are defined in 
logical coordinates.

3. Remembering the initial cursor position in case the user wants to abort the move later.

4. Setting the move mode on as a flag for the OnMouseMove() handler to recognize.

The GetCursorPos() function is a Windows API function that stores the current cursor position in
m_CursorPos. Note that you pass a pointer to this function. The cursor position is in screen coordinates
(that is, coordinates relative to the upper-left corner of the screen). All operations with the cursor are in
screen coordinates. You want the position in logical coordinates, so you must do the conversion in two
steps. The ScreentoClient() function (which is an inherited member of the view class) converts from
screen to client coordinates, and then you apply the DPtoLP() function member of the aDC object to the
result to convert to logical coordinates.

After saving the initial cursor position in m_FirstPos, set m_MoveMode to TRUE so that the OnMouseMove()
handler can deal with moving the element.

Now you have set the move mode flag, it’s time to update the mouse move message handler to deal with
moving an element.

Modifying the WM_MOUSEMOVE Handler
Moving an element only occurs when move mode is on and the cursor is being moved. Therefore, all
you need to do in OnMouseMove() is to add code to handle moving an element in a block that only gets
executed when m_MoveMode is TRUE. The new code to do this is as follows:

void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)
{

CClientDC aDC(this);                 // DC is for this view

959

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 959



OnPrepareDC(&aDC);                   // Get origin adjusted

// If we are in move mode, move the selected element and return
if(m_MoveMode)
{
aDC.DPtoLP(&point);                // Convert to logical coordinatess
MoveElement(aDC, point);           // Move the element
return;

}

// Rest of the mouse move handler as before...
}

This addition doesn’t need much explaining really, does it? The if statement verifies that you’re in move
mode and then calls a function MoveElement(), which does what is necessary for the move. All you have
to do now is implement this function.

Add the declaration for MoveElement() as a protected member of the CSketcherView class by adding
the following at the appropriate point in the class definition:

void MoveElement(CClientDC& aDC, CPoint& point);  // Move an element

As always, you can also right-click the class name in Class View to do this, if you want to. The function
needs access to the object encapsulating a device context for the view, aDC, and the current cursor posi-
tion, point, so both of these are reference parameters. The implementation of the function in the
SketcherView.cpp file is:

void CSketcherView::MoveElement(CClientDC& aDC, CPoint& point)
{
CSize Distance = point - m_CursorPos;  // Get move distance
m_CursorPos = point;                   // Set current point as 1st for next time

// If there is an element, selected, move it
if(m_pSelected)
{
aDC.SetROP2(R2_NOTXORPEN);
m_pSelected->Draw(&aDC,m_pSelected); // Draw the element to erase it
m_pSelected->Move(Distance);         // Now move the element
m_pSelected->Draw(&aDC,m_pSelected); // Draw the moved element

}
}

The distance to move the element currently selected is stored locally as a CSize object, Distance. The
CSize class is specifically designed to represent a relative coordinate position and has two public data
members, cx and cy, which correspond to the x and y increments. These are calculated as the differ-
ence between the current cursor position, stored in point, and the previous cursor position saved in
m_CursorPos. This uses the — operator, which is overloaded in the CPoint class. The version you 
are using here returns a CSize object, but there is also a version that returns a CPoint object. You 
can usually operate on CSize and CPoint objects combined. You save the current cursor position in
m_CursorPos for use the next time this function is called, which occurs if there is a further mouse
move message during the current move operation.

960

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 960



You are going to implement moving an element in the view using the R2_NOTXORPEN drawing mode,
because it’s easy and fast. This is exactly the same as what you have been using during the creation of
an element. You redraw the selected element in its current color (the selected color) to reset it to the
background color, and then call the function Move() to relocate the element by the distance specified by
Distance. You’ll add this function to the element classes in a moment. When the element has moved
itself, you simply use the Draw() function once more to display it highlighted at the new position. The
color of the element will revert to normal when the move operation ends, as the OnLButtonUp() han-
dler will redraw all the windows normally by calling UpdateAllViews().

Getting the Elements to Move Themselves
Add the Move() function as a virtual member of the base class, CElement. Modify the class definition to:

class CElement:public CObject
{

protected:
COLORREF m_Color;                  // Color of an element
CRect m_EnclosingRect;             // Rectangle enclosing an element
int m_Pen;                         // Pen width

public:
virtual ~CElement(void);           // Virtual destructor

// Virtual draw operation
virtual void Draw(CDC* pDC, BOOL Select=FALSE){}
virtual void Move(CSize& aSize){}  // Move an element
CRect GetBoundRect();              // Get the bounding rectangle for an element

protected:
CElement(void);                    // Here to prevent it being called

};

As discussed earlier in relation to the Draw() member, although an implementation of the Move()
function here has no meaning, you can’t make it a pure virtual function because of the requirements 
of serialization.

You can now add a declaration for the Move() function as a public member of each of the classes
derived from CElement. It is the same in each:

// Function to move an element
virtual void Move(CSize& aSize);

Next you can implement the Move() function in the CLine class:

void CLine::Move(CSize& aSize)
{
m_StartPoint += aSize;               // Move the start point
m_EndPoint += aSize;                 // and the end point
m_EnclosingRect += aSize;            // Move the enclosing rectangle

}

961

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 961



This is easy because of the overloaded += operators in the CPoint and CRect classes. They all work
with CSize objects, so you just add the relative distance specified by aSize to the start and end points
for the line and to the enclosing rectangle.

Moving a CRectangle object is even easier:

void CRectangle::Move(CSize& aSize)
{
m_EnclosingRect+= aSize;             // Move the rectangle

}

Because the rectangle is defined by the m_EnclosingRect member, that’s all you need to move it.

The Move() member of the CCircle class is identical:

void CCircle::Move(CSize& aSize)
{
m_EnclosingRect+= aSize;             // Move rectangle defining the circle

}

Moving a CCurve object is a little more complicated because it’s defined by an arbitrary number of points.
You can implement the function as follows:

void CCurve::Move(CSize& aSize)
{
m_EnclosingRect += aSize;            // Move the rectangle

// Get the 1st element position
POSITION aPosition = m_PointList.GetHeadPosition();

while(aPosition)
m_PointList.GetNext(aPosition) += aSize; // Move each pt in the list

}

There’s still not a lot to it. You first move the enclosing rectangle stored in m_EnclosingRect, using the
overloaded += operator for CRect objects. You then iterate through all the points defining the curve,
moving each one in turn with the overloaded += operator in CPoint.

Dropping the Element
All that remains now is to drop the element in position once the user has finished moving it, or to abort
the whole move. To drop the element in its new position, the user clicks the left mouse button, so you
can manage this operation in the OnLButtonDown() handler. To abort the operation, the user clicks the
right mouse button — so you can add a handler for OnRButtonDown() to deal with this.

Take care of the left mouse button first. You’ll have to provide for this as a special action when move mode
is on. The changes are highlighted in the following:

void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point) 
{
CClientDC aDC(this);                 // Create a device context

962

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 962



OnPrepareDC(&aDC);                   // Get origin adjusted
aDC.DPtoLP(&point);                  // convert point to Logical

if(m_MoveMode)
{
// In moving mode, so drop the element
m_MoveMode = FALSE;                // Kill move mode
m_pSelected = 0;                   // De-select the element
GetDocument()->UpdateAllViews(0);  // Redraw all the views

}
else
{

m_FirstPoint = point;              // Record the cursor position
SetCapture();                      // Capture subsequent mouse messages

}
}

The code is pretty simple. You first make sure that you’re in move mode. If this is the case, you just set
the move mode flag back to FALSE and then de-select the element. This is all that’s required because
you’ve been tracking the element with the mouse, so it’s already in the right place. Finally, to tidy up all
the views of the document, you call the document’s UpdateAllViews() function, causing all the views
to be redrawn.

Add a handler for the WM_RBUTTONDOWN message to CSketcherView using the Properties window for the
class. The implementation for this must do two things: Move the element back to where it was and the
turn off move mode. The code to do this is:

void CSketcherView::OnRButtonDown(UINT nFlags, CPoint point)
{

if(m_MoveMode)
{
// In moving mode, so drop element back in original position
CClientDC aDC(this);
OnPrepareDC(&aDC);                // Get origin adjusted
MoveElement(aDC, m_FirstPos);     // Move element to orig position
m_MoveMode = FALSE;               // Kill move mode
m_pSelected = 0;                  // De-select element
GetDocument()->UpdateAllViews(0); // Redraw all the views
return;                           // We are done

}
} 

You first create a CClientDC object for use in the MoveElement() function. You then call the
MoveElement() function to move the currently selected element the distance from the current cursor
position to the original cursor position that we saved in m_FirstPos. After the element has been reposi-
tioned, you just turn off move mode, deselect the element, and get all the views redrawn.

Exercising the Application
Everything is now complete for the context pop-ups to work. If you build Sketcher, you can select the ele-
ment type and color from one context menu, or if you are over an element, you can then move or delete
that element from the other context menu.

963

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 963



Dealing with Masked Elements
There’s still a limitation that you might want to get over. If the element you want to move or delete 
is enclosed by the rectangle of another element that is drawn after the element you want, you won’t 
be able to highlight it because Sketcher always finds the outer element first. The outer element com-
pletely masks the element it encloses. This is a result of the sequence of elements in the list. You could
fix this by adding a Send to Back item to the context menu that would move an element to the begin-
ning of the list.

Add a separator and a menu item to the element drop-down in the IDR_CURSOR_MENU resource as
shown in Figure 16-15.

Figure 16-15

You can add a handler for the item to the view class through the Properties window for the CSketcherView
class. It’s best to handle it in the view because that’s where you record the selected element. Select 
the Messages toolbar button in the Properties window for the class and double-click the message 
ID ID_ELEMENT_SENDTOBACK. You’ll then be able to select COMMAND below and
<Add>OnElementSendtoback in the right column. You can implement the handler as:

void CSketcherView:: OnElementSendtoback()
{
GetDocument()->SendToBack(m_pSelected);   // Move element in list

}

You’ll get the document to do the work by passing the currently selected element pointer to a public
function SendToBack() that you implement in the CSketcherDoc class. Add it to the class definition
with a void return type, and a parameter of type CElement*. You can implement this function as:

void CSketcherDoc::SendToBack(CElement* pElement)
{
if(pElement)
{
// If the element pointer is valid,
// find the pointer in the list and remove the element
POSITION aPosition = m_ElementList.Find(pElement);
m_ElementList.RemoveAt(aPosition);

m_ElementList.AddTail(pElement);  // Put it back to the end of the list
}

} 

964

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 964



After you have the POSITION value corresponding to the element, you remove the element from the list by
calling RemoveAt(). Of course, this does not delete the element from memory; it just removes the pointer to
it from the list. You then add the element pointer back at the end of the list using the AddTail() function.

With the element moved to the end of the list, it cannot mask any of the others because you search from
the beginning. You will always find one of the other elements first if the applicable bounding rectangle
encloses the current cursor position. The Send to Back menu option is always able to resolve any element
masking problem in the view.

Extending CLRSketcher
It’s time to extend CLR Sketcher by implementing the class representing a curve element and adding a
class encapsulating a complete sketch. You’ll also implement element highlighting and a context menu
with the ability to move and delete elements. You can adopt a different approach to drawing elements 
in this version of Sketcher that will make the move element operation easy to implement. Before you
start extending CLR Sketcher and working with the element classes, let’s explore another feature of the
Graphics class that will be useful in the application.

Coordinate System Transformations
The Graphics class contains functions that can move, rotate, and scale the entire drawing coordinate sys-
tem. This is a very powerful capability that you can use in the element drawing operations in Sketcher.
The following table describes the most useful functions that transform the coordinate system.

You will be using the TranslateTransform() function in the element drawing operations. To draw an
element you can translate the origin for the coordinate system to the position specified by the inherited
position member of the Element class, draw the element relative to the origin, (0,0), and then restore
the coordinate system back to its original state. This process is illustrated in Figure 16-16, which shows
how you draw a circle.

Transform Function Description

TranslateTransform(float dx,
float dy)

Translate the coordinate system origin by dx in the 
x-direction and dy in the y-direction.

RotateTransform(float angle) Rotates the coordinate system about the origin by angle
degrees. A positive value for angle represents rotation
from the x-axis toward the y-axis, a clockwise rotation in
other words.

ScaleTransform(float scaleX,
float scaleY)

Scales the x-axis by multiplying by scaleX and scales
the y-axis by multiplying by scaleY. 

ResetTransform() Resets the current transform state for a Graphics object
so no transforms are in effect.

965

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 965



Figure 16-16

You can change the Draw() function in the Circle class to use the TranslateTransform() function:

virtual void Draw(Graphics^ g) override
{
g->TranslateTransform(safe_cast<float>(position.X),

safe_cast<float>(position.Y));
g->DrawEllipse(pen, 0, 0, width,height);
g->ResetTransform();

}

The TranslateTransform() function requires arguments of type float, so you cast the coordinates to
this type. This is not absolutely necessary but you will get warning messages from the compiler if you
don’t, so it is a good idea to always put the casts in.

Change the Draw() function in the Line class to the following:

966

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 966



virtual void Draw(Graphics^ g) override
{
g->TranslateTransform(safe_cast<float>(position.X),

safe_cast<float>(position.Y));
g->DrawLine(pen, 0, 0, end.X-position.X, end.Y-position.Y);
g->ResetTransform();

}

Because you are drawing the line relative to the origin with the DrawLine() function, you must specify
the end point relative to the origin. You subtract the coordinates of position from the coordinates of
end to do this.

The Draw() function for the Rectangle class is very similar to that in the Circle class:

virtual void Draw(Graphics^ g) override
{
g->TranslateTransform(safe_cast<float>(position.X), 

safe_cast<float>(position.Y));
g->DrawRectangle(pen, 0, 0, width, height);
g->ResetTransform();

}

With the existing element classes updated, you are ready to tackle the Curve class.

Defining a Curve
A class that represents a curve needs to have a member that can store an arbitrary number of points that
define the curve. An STL/CLR container looks to be a promising solution and a vector<Point> con-
tainer is a good choice to store the points on a curve. Here’s how the Curve class definition looks based
on that:

public ref class Curve : Element
{
private:
vector<Point>^ points;

public:
Curve(Color color, Point p1, Point p2)
{
pen = gcnew Pen(color);
this->color = color;
points = gcnew vector<Point>();
position = p1;
points->push_back(Point(p2.X-position.X, p2.Y-position.Y));

// Find the minimum and maximum coordinates
int minX = p1.X < p2.X ? p1.X : p2.X;
int minY = p1.Y < p2.Y ? p1.Y : p2.Y;
int maxX = p1.X > p2.X ? p1.X : p2.X;
int maxY = p1.Y > p2.Y ? p1.Y : p2.Y;
int width = Math::Max(2, maxX - minX);
int height = Math::Max(2, maxY - minY);

967

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 967



boundRect = System::Drawing::Rectangle(minX, minY, width, height);
}

void Add(Point p)
{
points->push_back(Point(p.X-position.X, p.Y-position.Y));

// Modify the bounding rectangle to accommodate the new point
if(p.X < boundRect.X)
{
boundRect.Width = boundRect.Right - p.X;
boundRect.X = p.X;

}
else if(p.X > boundRect.Right)
boundRect.Width = p.X - boundRect.Left;

if(p.Y < boundRect.Y)
{
boundRect.Height = boundRect.Bottom - p.Y;
boundRect.Y = p.Y;

}
else if(p.Y > boundRect.Bottom)
boundRect.Height = p.Y - boundRect.Top;

}

virtual void Draw(Graphics^ g) override
{
Point previous = Point(0,0);
for each(Point p in points)
{
g->DrawLine(pen, previous, p);
previous = p;

}
}

};

Don’t forget to add an #include directive for the <cliext/vector> header to Elements.h. You will
also need a using directive for the cliext namespace.

You create a Curve object initially from the first two points on the curve. The first point, p1, defines the
position of the curve so you store it in position. Because you draw the curve relative to the origin, the
second point must be specified relative to position so you store this in the points container. You add
subsequent points to the vector<Point> container by calling the Add() member function after modify-
ing the coordinates of each point so it is defined relative to position.

The constructor creates the initial bounding rectangle for the curve from the first two points by obtaining
the minimum and maximum coordinate values and using these to determine the top left point coordinates
and the width and height of the rectangle. A curve could be a vertical or horizontal line that would result in
a zero width or height, so the width and height are always set to at least 2. The Add() function updates the
object referenced by boundRect to accommodate the new point that it adds to the container. The Right
property of a System::Drawing::Rectangle object corresponds to the sum of the x-coordinate for the
top left position and the width and the Bottom property are the sum of the y-coordinate and the height;

968

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 968



these properties are set only. There are also Left and Top properties that are set only properties, and these
correspond to the x-coordinate of the left edge and the y-coordinate of the top edge of the rectangle respec-
tively. The X, Y, Width, and Height properties of a System::Drawing::Rectangle object are the x and y
coordinates of the top-left corner and the width and height; you can get and set these properties.

You draw the curve in the Draw() member by setting the start point for the first line segment as 0,0 and iter-
ating through the points in the points container. The DrawLine() member of the Graphics object draws
the line, then you store the last point in previous so it becomes the first point for the next line segment.

To create a Curve object you must add some additional code to the MouseMove event handler in the
Form1 class:

private: System::Void Form1_MouseMove(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e) {

if(drawing)
{

switch(elementType)
{

case ElementType::LINE:
tempElement = gcnew Line(color, firstPoint, e->Location);
break;

case ElementType::RECTANGLE:
tempElement = gcnew Rectangle(color, firstPoint, e->Location);
break;

case ElementType::CIRCLE:
tempElement = gcnew Circle(color, firstPoint, e->Location);
break;

case ElementType::CURVE:
if(tempElement)
safe_cast<Curve^>(tempElement)->Add(e->Location);

else
tempElement = gcnew Curve(color, firstPoint, e->Location);

break;
}
Invalidate();

}
}

If tempElement is not null, the Curve object already exists so you call the Add() function to add the
new point to the curve. Note the cast of tempElement to type Curve^ is necessary to allow the Add()
member of the Curve class to be called. If tempElement is null, the else clause will execute to create
the new Curve object from the firstPoint stored by the MouseDown event handler and the current
point obtained from the Location property of the parameter e.

Next you need a class that encapsulates a sketch.

Defining a Sketch Class
Create a new header file with the name Sketch.h to hold the Sketch class using Solution Explorer; just
right-click on the Header Files folder and select from the pop-up. A sketch is an arbitrary sequence of
elements of any type that has Element as a base class. An STL/CLR container looks a good bet to store

969

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 969



the elements in a sketch and this time you can use a list<T> container. To allow any type of element to
be stored in the list you can define the container class as type list<Element^>. Specifying that the con-
tainer stores references of type Element^ will allow you to store references to objects of any type that is
derived from Element.

Initially, the Sketch class will need a constructor, an Add() function that adds a new element to a sketch,
and a Draw() function to draw a sketch. Here’s what you need to put in Sketch.h:

// Sketch.h
// Defines a sketch
#pragma once
#include <cliext/list>
#include “Elements.h”

using namespace System;
using namespace cliext;

namespace CLRSketcher 
{
public ref class Sketch
{
private:
list<Element^>^ elements;

public:
Sketch()
{
elements = gcnew list<Element^>();
}

void Add(Element^ element)
{
elements->push_back(element);

}

void Draw(Graphics^ g)
{
for each(Element^ element in elements)
element->Draw(g);

}
};
}

The #include directive for the <cliext/list> header is necessary to access the STL/CLR list<T>
container template and the #include for the Elements.h header enables you to reference the Element
base class. The Sketch class is defined within the CLRSketcher namespace so it can be referenced with-
out qualification from anywhere within the CLRSketcher application. The elements container that the
constructor creates stores the sketch. You add elements to a Sketch object by calling its Add() function,
which calls the push_back() function for the elements container to store the new element. Drawing 
a sketch is very simple. The Draw() function for the Sketch object iterates over all the elements in the
elements container and calls the Draw() function for each of them.

970

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 970



To make the current Sketch object a member of the Form1 class, add a member of type Sketch^ with the
name sketch to the class. You can add the initialization for sketch to the Form1 constructor:

Form1(void) : drawing(false), firstPoint(0), 
elementType(ElementType::LINE), color(Color::Black), 
tempElement(nullptr), sketch(gcnew Sketch())

{
InitializeComponent();
//
//TODO: Add the constructor code here
//

}

Don’t forget to add an #include directive for the Sketch.h header at the beginning of the Form1.h
header. Now you have the Sketch class defined, you can modify the MouseUp event handler in the
Form1 class to add elements to the sketch:

private: System::Void Form1_MouseUp(System::Object^  sender, 
System::Windows::Forms::MouseEventArgs^  e) 

{
if(!drawing)

return;
if(tempElement)
{
sketch->Add(tempElement);
tempElement = nullptr;
Invalidate();

}
drawing = false;

}

The function calls the Add() function for the sketch object when tempElement is not nullptr. After
resetting tempElement back to nullptr you call the Invalidate() function to redraw the form. The
final piece of the jigsaw for creating a sketch is the implementation of the Paint event handler to draw
the sketch.

Drawing the Sketch in the Paint Event Handler
Amazingly you only need one extra line of code to draw an entire sketch:

private: System::Void Form1_Paint(System::Object^  sender,
System::Windows::Forms::PaintEventArgs^  e) 

{
Graphics^ g = e->Graphics;
sketch->Draw(g);
if(tempElement != nullptr)

tempElement->Draw(g);
}

You pass the Graphics object, g, to the Draw() function for the sketch object to draw the sketch. This
will result in g being passed to the Draw() function for each element in the sketch to enable each element

971

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 971



to draw itself. Finally, if tempElement is not nullptr, you call the Draw() function for that, too. With the
Paint() event handler complete you should have a working version of CLR Sketcher capable of draw-
ing sketches with the sort of quality shown in Figure 16-17.

Figure 16-17

A little later in this chapter you will add the capability to pop a context menu to allow elements to be
moved as in the MFC version of Sketcher, but first you need to get the element highlighting mechanism
working.

Implementing Element Highlighting
You want to highlight an element when the mouse cursor is within the element’s bounding rectangle,
just like the MFC version of Sketcher. You will implement the mechanism to accomplish this in CLR
Sketcher in a slightly different way.

The MouseMove event handler in the Form1 is the prime mover in highlighting elements because it tracks
the movement of the cursor, but highlighting should only occur when there is not a drawing operation in
progress. The first thing you need to do before you can modify the MouseMove handler is to implement a
way for an element to draw itself in a highlight color when it is under the cursor. Add highlighted as a
public member of the Element class to record whether an element is highlighted or not. You can also add
a protected member to the Element class to specify the highlight color for elements:

Color highlightColor;

Add a public constructor to the Element class to initialize the new members:

Element() : highlighted(false), highlightColor(Color::Magenta) {}

Now you can change the implementation of the Draw() function in each of the classes derived from
Element. Here’s how the function looks for the Line class:

virtual void Draw(Graphics^ g) override
{
pen->Color = highlighted ? highlightColor : color;
g->TranslateTransform(safe_cast<float>(position.X), 

972

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 972



safe_cast<float>(position.Y));
g->DrawLine(pen, 0, 0, end.X-position.X, end.Y-position.Y);
g->ResetTransform();

}

The extra statement sets the Color property for pen to highlightColor whenever highlighted is
true, or to color otherwise. You can add the same statement to the Draw() function for the other ele-
ment classes.

To highlight an element you must discover which element, if any, is under the cursor at any given time.
It would be helpful if an element could tell you if a given point is within the bounding rectangle. This
process will be the same for all types of element, so you can add a public function to the Element base
class to implement this:

bool Hit(Point p)
{
return boundRect.Contains(p);

}

The Contains() member of the System::Drawing::Rectangle structure returns true if the Point
argument lies within the rectangle and false otherwise. There are two other versions of this function:
One accepts two arguments of type int that specify the x and y coordinates of a point and the other accepts
an argument of type System::Drawing::Rectangle and returns true if the rectangle for which the func-
tion is called contains the rectangle passed as an argument.

You can now add a public function to the Sketch class to determine if any element in the sketch is under
the cursor:

Element^ HitElement(Point p)
{
for each(Element^ element in elements)
{
if(element->Hit(p))
return element;

}
return nullptr;

}

This function iterates over the elements in the sketch and returns a reference to the first element for which
the Hit() function returns true. If the Hit() function does not return true for any of the elements in the
sketch, the HitElement() function returns nullptr. This provides a simple way to detect whether or not
there is an element under the cursor.

Add a protected member, highlightedElement, of type Element^ to the Form1 class to record the cur-
rently highlighted element and initialize it to nullptr in the Form1 constructor. Now you can add code
to the MouseMove handler to make the highlighting work:

private: System::Void Form1_MouseMove(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e) 
{

if(drawing)

973

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 973



{
switch(elementType)
{

case ElementType::LINE:
tempElement = gcnew Line(color, firstPoint, e->Location);
break;

case ElementType::RECTANGLE:
tempElement = gcnew Rectangle(color, firstPoint, e->Location);
break;

case ElementType::CIRCLE:
tempElement = gcnew Circle(color, firstPoint, e->Location);
break;

case ElementType::CURVE:
if(tempElement)

safe_cast<Curve^>(tempElement)->Add(e->Location);
else

tempElement = gcnew Curve(color, firstPoint, e->Location);
break;

}
Invalidate();

}
else
{
// Reset any existing highlighted element
if(highlightedElement)
{
highlightedElement->highlighted = false;
highlightedElement = nullptr;

}
// Find and set new highlighted element, if any
if(highlightedElement = sketch->HitElement(e->Location))
{
highlightedElement->highlighted = true;
Invalidate();

}
}

}

If drawing is false, you execute the highlighting code that is shaded. First you test for an existing
highlighted element and if there is one, you reset it by setting the value of its highlighted member
to false. You then set highlightedElement back to nullptr. To look for a new element to highlight,
you call the HitElement() function for the sketch object with the current cursor location as the argu-
ment. You store the value returned by HitElement() in highlightedElement and if this is not null
you set the highlighted member for the element to true and call Invalidate() to redraw the form.

The highlight code will execute repeatedly for every movement of the mouse cursor so it needs to be effi-
cient. At the moment, the code redraws the entire sketch to highlight an element when in fact only the
regions occupied by the unhighlighted element and the newly highlighted element need to be redrawn.
The Invalidate() member of the System::Windows::Forms::Form class has an overloaded version
that accepts an argument of type System::Drawing::Rectangle to add the rectangle specified by the
argument to the currently invalidated region for the form. Thus you can call Invalidate() repeatedly 
to accumulate a composite of rectangles to be redrawn.

974

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 974



Calling Invalidate() with a rectangle argument does not redraw the form, but you can get the invalid
region redrawn by calling the Update() function for the form. You must pass the enclosing rectangle for
an element to Invalidate() rather than the bounding rectangle to get elements redrawn properly. At
present, the element classes define the bounding rectangle but you can get the enclosing rectangle for an
element quite easily by adding a public property to the Element class like this:

property System::Drawing::Rectangle Bound
{
System::Drawing::Rectangle get()
{ return System::Drawing::Rectangle::Inflate(boundRect,1,1); }

}

The Bound property get() function calls the static Inflate() function in the Rectangle class to gener-
ate the enclosing rectangle. The Inflate() function increases the size of the rectangle that you supply as
the first argument, and the second and third arguments specify the increases for the rectangle in the x and
y directions respectively. By using the Invalidate() function with an enclosing rectangle argument you
can improve the performance of the highlighting code:

else
{
Element^ element = sketch->HitElement(e->Location);
if(highlightedElement == element)
return;

if(highlightedElement)
{
Invalidate(highlightedElement->Bound);
highlightedElement->highlighted = false;
highlightedElement = nullptr;

}

if(element)
{
highlightedElement = element;
highlightedElement->highlighted = true;
Invalidate(highlightedElement->Bound);

}
Update();

}

If the Hit() member of the element classes returns a reference that is the same as the reference stored in
highlightedElement you do nothing; the references can both be nullptr or both reference the same
element, but in either case there’s nothing to do. When the form display needs to be updated, the code
only redraws the regions occupied by the two elements affected by a new element being highlighted.
Overall the code will be faster than the previous version.

Of course, you can apply this technique to the code in the MouseMove handler that creates a temporary
element, too:

if(drawing)
{

975

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 975



if(tempElement)
Invalidate(tempElement->Bound);  // The old element region

switch(elementType)
{

// Code to create a temporary element as before...
}
Invalidate(tempElement->Bound);    // The new element region
Update();

}

The shaded if statement invalidates the region occupied by any existing temporary element and the
two new lines at the end invalidate the region occupied by the new temporary element and redraw the
total invalid region.

Creating Context Menus
You use the Design window to create context menus interactively by dragging a ContextMenuStrip
control from the Toolbox window to the form. You need to display two different context menus, one for
when there is an element under the cursor and one for when there isn’t, and you can arrange for both
possibilities using a single context menu strip. First drag a ContextMenuStrip control from the Toolbox
window to the form in the Design window; this will have the default name ContextMenuStrip1 but
you can change this if you want. To make the context menu strip display when the form is right-clicked,
display the Properties window for the form and set the ContextMenuStrip property in the Behavior
group by selecting ContextMenuStrip1 from the drop-down in the value column.

The drop-down for the context menu is empty at present and you are going to control what menu items it
contains programmatically. When an element is under the cursor the element-specific menu items should
display, and when there is no element under the cursor, menu items equivalent to those from the Element
and Color menus should display. First add a Send-To-Back menu item, a Delete menu item, and a Move
menu item to the drop-down for the context menu by typing the entries in the design window. Change 
the (name) properties for the items to sendToBackContextMenuItem, deleteContextMenuItem, and
moveContextMenuItem. A menu item can only belong to one menu strip, so you need to add new ones
matching those from the Element and Color menus.Add a separator and then add menu items Line,
Rectangle, Circle and Curve, and Black, Red, Green and Blue. Change the (name) property for each
in the same way as the others, to lineContextMenuItem, rectangleContextMenuItem, and so on. Also
change the (name) property for the separator to contextSeparator so you can refer to it easily.

You need Click event handlers for all the menu items in the context menu, but the only new ones you
need to create are for the Move, Delete and Send-To-Back items; you can set the handlers for all the
other menu items to be the same as the corresponding items in the Element and Color menus.

You can control what displays in the drop-down for the context menu in the Opening event handler 
for the context menu strip because this event handler is called before the drop-down displays. Open the
Properties window for the context menu strip, click the Events button and double-click the Opening event
to add a handler. You are going to add a different set of menu items to the context menu strip depending
on whether or not an element is under the cursor; so how can you determine if anything is under the cur-
sor? Well, the MouseMove handler for the form has already taken care of it. All you need to do is check to
see whether the reference contained in the highlightElement member of the form is nullptr or not.

976

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 976



You have added items to the drop-down for contextMenuStrip1 to add the code to create the objects in the
Form1 class that encapsulate them, but you want to start with a clean slate for the drop-down menu when
it is to display so you can set it up the way you want. In the Opening event handler you want to remove
any existing menu items before you add back the specific menu items you want. A ContextMenuStrip
object that encapsulates a context menu stores its drop-down menu items in an Items property that is 
of type ToolStripItemsCollection^. To remove existing items from the drop-down you simply call
Clear() for the Items property. To add a menu item to the context menu you call the Add() function 
for the Items property with the menu item as the argument.

The implementation of the Opening handler for the context menu strip is as follows:

private: System::Void contextMenuStrip1_Opening(System::Object^  sender, 
System::ComponentModel::CancelEventArgs^  e) 

{
contextMenuStrip1->Items->Clear();    // Remove existing items
if(highlightedElement)
{
contextMenuStrip1->Items->Add(moveToolStripMenuItem);
contextMenuStrip1->Items->Add(deleteToolStripMenuItem);
contextMenuStrip1->Items->Add(sendToBackToolStripMenuItem);

}
else
{
contextMenuStrip1->Items->Add(lineToolStripMenuItem);
contextMenuStrip1->Items->Add(rectangleToolStripMenuItem);
contextMenuStrip1->Items->Add(circleToolStripMenuItem);
contextMenuStrip1->Items->Add(curveToolStripMenuItem);
contextMenuStrip1->Items->Add(contextSeparator);
contextMenuStrip1->Items->Add(lineToolStripMenuItem);
contextMenuStrip1->Items->Add(blackToolStripMenuItem);
contextMenuStrip1->Items->Add(redToolStripMenuItem);
contextMenuStrip1->Items->Add(greenToolStripMenuItem);
contextMenuStrip1->Items->Add(blueToolStripMenuItem);

// Set checks for the menu items
lineContextMenuItem->Checked = elementType == ElementType::LINE;
rectangleContextMenuItem->Checked = elementType == ElementType::RECTANGLE;
circleContextMenuItem->Checked = elementType == ElementType::CIRCLE;
curveContextMenuItem->Checked = elementType == ElementType::CURVE;
blackContextMenuItem->Checked = color == Color::Black;
redContextMenuItem->Checked = color == Color::Red;
greenContextMenuItem->Checked = color == Color::Green;
blueContextMenuItem->Checked = color == Color::Blue;

}
}

After clearing the context menu, you add items depending on whether or not highlightedElement is
null. You set the checks for the element and color menu items in the same way as you did for the main
menu by setting the Checked property for each of the menu items.

All the element and color menu items in the context menu should now work, so try it out. All that remains
is to implement the element-specific operations. Let’s do the easiest one first.

977

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 977



Implementing the Element Delete Operation
To make it possible to delete an element from the sketch, you first must add a public function to the
Sketch class definition that will delete an element:

Element^ Delete(Element^ element)
{
elements->remove(element);
return element;

}

The Delete() function calls remove() for the list<Element^> object to remove the element that you
pass as the argument and returns the reference to the deleted element as a convenience.

You use the Delete() function in the implementation of the Click event handler for the Delete
menu item:

private: System::Void deleteContextMenuItem_Click(System::Object^  sender,
System::EventArgs^  e) 

{
if(highlightedElement)
{
sketch->Delete(highlightedElement);
Invalidate(highlightedElement->Bound);
highlightedElement = nullptr;
Update();

}  
}

As well as deleting the element from the sketch, the event handler also invalidates the region it occupies
to remove it from the display and resets highlightedElement back to nullptr.

Implementing the Send-To-Back operation
The Send-To-Back operation works in the same way as in MFC Sketcher. You remove the highlighted ele-
ment from the list in the Sketch object and add it to the end of the list. Here’s the implementation of the
handler function:

private: System::Void sendToBackContextMenuItem_Click(System::Object^  sender,
System::EventArgs^  e) 

{
if(highlightedElement)
{
sketch->Add(sketch->Delete(highlightedElement));
highlightedElement->highlighted = false;
Invalidate(highlightedElement->Bound);
highlightedElement = nullptr;
Update();

}
}

You pass the reference returned by the Delete() member of the sketch to the Add() member to add the
deleted element to the back of the list. You reset the highlighted member of the element to false and
highlightedElement to nullptr before calling Invalidate() for the form to redraw the region occu-
pied by the previously highlighted element.

978

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 978



Implementing the Element Move Operation
You’ll move an element by dragging it with the left mouse button down. This implies that a move opera-
tion needs a different set of functions to be carried out by the mouse event handlers from normal so a
move will have to be modal, as in the MFC version of Sketcher. You can identify possible modes by an
enum class that you can add following the ElementType enum in Form1.h:

enum class Mode {Normal, Move,};

This just defines two modes but you could add more if you wanted to implement other modal operations.
You can now add a private member of type Mode with the name mode to the Form1 class. Initialize the new
variable to Mode::Normal in the Form1 constructor.

The only thing the Click event handler for the Move menu item has to do is set mode to Mode::Move:

private: System::Void moveContextMenuItem_Click(System::Object^  sender,
System::EventArgs^  e)

{
mode = Mode::Move;

}

The mouse event handlers for the form must take care of moving an element. Change the code for the
MouseDown handler so it only sets drawing to true when mode is Mode::Normal:

private: System::Void Form1_MouseDown(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e)

{
if(e->Button == System::Windows::Forms::MouseButtons::Left)
{
if(mode == Mode::Normal)
drawing = true;

firstPoint = e->Location;
}

}

This sets drawing to true only when mode has the value Mode::Normal. If mode has a different
value, only the point is stored for use in the MouseMove event handler. The MouseMove event handler
will not create elements when drawing is false so this functionality is switched off for all modes
except Mode::Normal. The MouseUp event handler will restore mode back to Mode::Normal when 
a move operation is complete.

Moving an Element
Because you now draw all elements relative to a given position, you can move an element just by chang-
ing the inherited position member to reflect the new position and adjust the location of the bounding
rectangle in a similar way. You can add a public Move() function to the Element base class to take care
of this:

void Move(int dx, int dy)
{
position.Offset(dx, dy);
boundRect.X += dx;
boundRect.Y += dy;

}

979

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 979



Calling the Offset() function for the Point object, position, adds dx and dy to the coordinates stored
in the object. To adjust the location of boundRect, you just add dx to the Rectangle object’s X field and
dy to its Y field.

The MouseMove event handler will expedite the moving process:

private: System::Void Form1_MouseMove(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e) {

if(drawing)
{
if(tempElement)

Invalidate(tempElement->Bound);  // The old element region
switch(elementType)
{

// Code to create a temporary element as before...
}
Invalidate(tempElement->Bound);    // The new element region
Update();

}
else if(mode == Mode::Normal)
{

code to highlight the element under the cursor as before
}
else if(mode == Mode::Move &&

e->Button == System::Windows::Forms::MouseButtons::Left)
{  // Move the highlighted element
if(highlightedElement)
{

Invalidate(highlightedElement->Bound);    // Region before move
highlightedElement->Move(e->X - firstPoint.X, e->Y - firstPoint.Y);
firstPoint = e->Location;
Invalidate(highlightedElement->Bound);     // Region after move
Update();

}
}

}

This event handler now provides three different functions: It creates an element when drawing is true,
it does element highlighting when drawing is false and mode is Mode::Normal, and it moves the cur-
rently highlighted element when mode is Mode::Move and the left mouse button is down.

The new else if clause executes only when mode has the value Mode::Move and the left button is
down. Without the button test, moving would occur if you moved the cursor after clicking the menu
item. This would happen without a MouseDown event occurring, which would create some confusion 
as firstPoint would not have been initialized. With the code as you have it here, the moving process 
is initiated when you click the menu item and release the left mouse button. You then press the left
mouse button and drag the cursor to move the highlighted element.

If there is a highlighted element, you invalidate its bounding rectangle before moving the element the
distance from firstPoint to the current cursor location. You then update firstPoint to the current
cursor position ready for the next move increment and invalidate the new region the highlighted ele-
ment occupies. You finally call Update() to redraw the invalid regions of the form.

980

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 980



The last part you must implement to complete the ability to move elements is in the MouseUp event handler:

private: System::Void Form1_MouseUp(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e) {

if(!drawing)
{
mode = Mode::Normal;
return;

}
if(tempElement)
{

sketch->Add(tempElement);
tempElement = nullptr;
Invalidate();

}

Releasing the left mouse button ends a move operation. The drawing variable is false when an element
is being moved and the only thing the handler has to do is to reset mode back to Mode::Normal to end the
move operation when this is the case.

With that done you should now have a version of CLR sketcher in which you can move and delete ele-
ments, as illustrated in Figure 16-18.

Figure 16-18

The Send-To-Back facility ensures that any element can always be highlighted to move or delete it; if an
element will not highlight, just send-to-back any elements enclosing the element you want to move or
delete. In Chapter 18 you implement the capability to save a sketch in a file.

Summary
In this chapter, you’ve seen how to apply MFC collection classes to the problems of managing objects and
managing pointers to objects. Collections are a real asset in programming for Windows because the appli-
cation data that you store in a document often originates in an unstructured and unpredictable way, and
you need to be able traverse the data whenever a view needs to be updated.

981

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 981



You have also seen how to create document data and manage it in a pointer list in the document, and in
the context of the Sketcher application, how the views and the document communicate with each other.

You have improved the view capability in Sketcher in several ways. You’ve added scrolling to the views
using the MFC class CScrollView, and you’ve introduced a pop-up at the cursor for moving and delet-
ing elements. You have also implemented an element highlighting feature to provide the user with feed-
back when moving or deleting elements.

CLR Sketcher has most of the features of MFC Sketcher including drawing operations and a context
menu, but you implemented some things a little differently because the characteristics of the CLR are
not the same as the MFC environment. The coding effort was considerably less than for MFC Sketcher
because of the automatic code generation provided by the Forms Design capability. The downside of
using Forms Design is that you can’t control how the code is organized and the Form1 class becomes
rather unwieldy because of the sheer volume of code in the definition. However the Class View is a
great help in navigating around the class definition.

You have covered quite a lot of ground in this chapter, and some of the important points you need to
keep in mind are:

❑ The best choice of MFC collection class to manage your objects or pointers is one of the template-
based collection classes because they provide type-safe operation in most cases.

❑ When you draw in a device context using the MFC, coordinates are in logical units that depend
on the mapping mode set. Points in a window that are supplied along with Windows mouse
messages are in client coordinates. The two coordinate systems are usually not the same.

❑ Coordinates that define the position of the cursor are in screen coordinates that are measured in
pixels relative to the upper- left corner of the screen.

❑ Functions to convert between client coordinates and logical coordinates in a MFC application
are available in the CDC class.

❑ Windows requests that a view is redrawn by sending a WM_PAINT message to your MFC appli-
cation. This causes the OnDraw() member of the affected view to be called.

❑ You should always do any permanent drawing of a document in the OnDraw() member of the
view class in your MFC application. This ensures that the window is drawn properly when
required by Windows.

❑ You can make your OnDraw() implementation more efficient by calling the RectVisible()
member of the CDC class to check whether an entity needs to be drawn.

❑ To get multiple views updated when you change the document contents, you can call the
UpdateAllViews() member of the document object. This causes the OnUpdate() member 
of each view to be called.

❑ You can pass information to the UpdateAllViews() function to indicate which area in the view
needs to be redrawn. This makes redrawing the views faster.

❑ You can display a context menu at the cursor position in an MFC application in response to a
right mouse click. This menu is created as a normal pop-up.

❑ You create menu strips, context menus and toolbars in a Windows Forms application by drag-
ging the appropriate component from the Toolbox window to the form in the Forms Designer

982

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 982



window. You cause the context menu to be displayed on the form in response to right-clicking
the mouse by setting the ContextMenuStrip property for the form.

❑ You create event handlers for a component in a Windows Forms application through the
Properties window for the component. You can change the name of the event handler function
that is created by changing the value of its (name) property.

❑ Implementing the DropDownOpening event handler for a menu item enables you to modify the
drop-down before it displays.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Implement the CCurve class so that points are added to the head of the list instead of the tail.

2. Implement the CCurve class in the Sketcher program using a typed pointer list, instead of a list
of objects to represent a curve.

3. Look up the CArray template collection class in Help, and use it to store points in the CCurve
class in the Sketcher program.

4. Add the capability in CLR Sketcher to change the color of an existing element. Make this avail-
able through the context menu.

983

Chapter 16: Creating the Document and Improving the View

25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 983



25905c16.qxd:WroxPro  2/21/08  9:19 AM  Page 984



17
Working with Dialogs 

and Controls

Dialogs and controls are basic tools for user communications in the Windows environment. In 
this chapter, you’ll learn how to implement dialogs and controls by applying them to extend the
Sketcher program. As you do so, you’ll learn about:

❑ Dialogs and how you can create dialog resources

❑ Controls and how to add them to a dialog

❑ Basic varieties of controls available to you

❑ How to create a dialog class to manage a dialog

❑ How to program the creation of a dialog box and how to get information back from the
controls in it

❑ Modal and modeless dialogs

❑ How to implement and use direct data exchange and validation with controls

❑ How to implement view scaling

❑ How you can add a status bar to an application

Understanding Dialogs
Of course, dialog boxes are not new to you. Most Windows programs of consequence use dialogs
to manage some of their data input. You click a menu item and up pops a dialog box with various
controls that you use for entering information. Just about everything that appears in a dialog box
is a control. A dialog box is actually a window and, in fact, each of the controls in a dialog is also 
a specialized window. Come to think of it, most things you see on the screen under Windows are
windows.

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 985



Although controls have a particular association with dialog boxes, you can also create and use them in
other windows if you want to. A typical dialog box is illustrated in Figure 17-1.

Figure 17-1

This is the File > Open > File dialog in Visual C++ 2008. The annotations show the variety of con-
trols used that combine to provide an intuitive interface for selecting a file to be opened. This makes the
dialog easy to use, even though there’s a whole range of possibilities here.

There are two things needed to create and display a dialog box in an MFC program: the physical appear-
ance of the dialog box, which is defined in a resource file, and a dialog class object used to manage the
operation of the dialog and its controls. MFC provides a class called CDialog for you to use after you
have defined your dialog resource.

Understanding Controls
There are many different controls available to you in Windows, and in most cases there’s flexibility in
how they look and operate. Most of them fall into one of the six categories shown in the following table.

Control Type What They Do

Static Controls These are used to provide titles or descriptive information.

Button Controls Buttons provide a single-click input mechanism. There are basically three flavors
of button controls, simple push buttons, radio buttons where only one may be 
in a selected state at any one time, and checkboxes where several may be in a
selected state at one time.

Buttons

Toolbar buttons

Combobox

List Box

Buttons

List Box

986

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 986



Figure 17-2 shows some examples of various types of controls.

Figure 17-2

A control may or may not be associated with a class object. Static controls don’t do anything directly, so
an associated class object may seem superfluous; however, there’s an MFC class, CStatic, that provides
functions to enable you to alter the appearance of static controls. Button controls can also be handled by
the dialog object in many cases, but again MFC does provide the CButton class for use in situations where
you need a class object to manage a control. MFC also provides a full complement of classes to support the
other controls. Because controls are windows, they are all derived from CWnd.

A list box presents a predefined 
list of items from which you can 
choose. The scroll bar need not be 
present for a short list. A list can 
also have multiple columns and be 
scrolled horizontally. A version of 
the list box is available that can 
display icons as well as text. 

Comboboxes combine the capability of a
dropdown list from which you can select
with the option of entering data yourself.
The Save As... dialog uses a combobox
to enable you to enter the file name.

You have already seen scroll
bars attached to the client

area of the Sketcher window.
Scroll bars can also be free

standing.

This text box is the
simplest form of edit
control that allows you
to enter and/or edit a
line of text. More
sophisticated edit
controls can display
multiple lines of text
and support scrolling
of the text.

Static controls provide static information, 
such as titles or instructions, or simply 

provide decoration in a dialog in the form 
of an icon or a filled rectangle. 

Radio buttons are
usually grouped so

that if one is checked
all the others are

unchecked.

Check boxes are
individually checked and

more than one can be
checked at one time.

Buttons can have labels
as here and they can

also display icons.

Control Type What They Do

Scrollbars Scrollbars are typically used to scroll text or images either horizontally or 
vertically within another control.

List Boxes These present a list of choices and one or more selections can be in effect at
one time.

Edit Controls Edit controls allow text input or editing of text that is displayed.

Combo boxes Combo boxes present a list of choices from which you can select combined
with the option of entering text yourself.

987

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 987



Common Controls
The set of standard controls that are supported by MFC and the Resource editor are called common 
controls. Common controls include all of the controls you have just seen, as well as other more complex
controls such as the animate control, for example, which has the capability to play an AVI (Audio Video
Interleaved) file, and the tree control that can display a hierarchy of items in a tree.

Another useful control in the set of common controls is the spin button. You can use this to increment or
decrement values in an associated edit control. To go into all of the possible controls that you might use
is beyond the scope of this book, so I’ll just take a few illustrative examples (including an example that
uses a spin button) and implement them in the Sketcher program.

Creating a Dialog Resource
Here’s a concrete example. You could add a dialog to Sketcher to provide a choice of pen widths for
drawing elements. This ultimately involves modifying the current pen width in the document, as well 
as in the CElement class, and adding or modifying functions to deal with pen widths. You’ll deal with
all that, though, after you’ve got the dialog together.

Display the Resource View, expand the resource tree for Sketcher, and right-click the Dialog folder in 
the tree; then click Insert Dialog from the pop-up to add a new dialog resource to Sketcher. This results
in the Dialog Resource editor swinging into action and displaying the dialog in the Editor pane along
with the Toolbox showing a list of controls that you can add. The dialog has OK and Cancel button con-
trols already in place. Adding more controls to the dialog is simplicity itself; you can just drag the con-
trol from the palette to the position where you want to place it in the dialog. Alternatively, you can 
click a control from the list to select it and then click in the dialog where you want the control to be 
positioned. When it appears you’ll still be able to move it around to set its exact position, and you’ll 
also be able to resize it by dragging handles on the boundaries.

The dialog has a default ID assigned that is IDD_DIALOG1, but it would be better to have an ID that was
a bit more meaningful. You can edit the ID by right-clicking the dialog name in the Resource View pane
and selecting Properties from the pop-up. You can also display the dialog’s properties by right-clicking
in the Dialog Editor pane and selecting from the pop-up. Change the ID to something that relates to the
purpose of the dialog such as IDD_PENWIDTH_DLG. At the same time, you could also change the Caption
property value to Set Pen Width.

Adding Controls to a Dialog Box
To provide a mechanism for entering a pen width, you can add controls to the basic dialog that’s initially
displayed until it looks like the one shown in Figure 17-3.

Figure 17-3 shows the grid that you can use to position controls. If the grid is not displayed, you can select
the appropriate Toolbar button to display it; the Toolbar button toggles the grid on and off. Alternatively,
you can display rules along the side and top of the dialog that you can use to create guide lines as shown
in Figure 17-4.

988

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 988



You create a horizontal guide by clicking the appropriate rule. You can position a guide line by dragging
the arrow for it along the rule and then using one or more guides when positioning a control.

Figure 17-3

Figure 17-4

The dialog has six radio buttons that provide the pen width options. These are enclosed within a group
box with the caption Pen Widths. The group box serves to enclose the radio buttons and make them oper-
ate as a group, where only one member of the group can be checked at any given time. Each radio button
has an appropriate label to identify the pen width that is set when selected. There are also the default OK
and Cancel buttons that close the dialog. Each of the controls in the dialog has its own set of properties
that you can access and modify in the same way as for the dialog box itself.

The next step is to add the group box. As I said, the group box serves to associate the radio buttons in a
group from an operational standpoint, and to provide a caption and a boundary for the group of buttons.
Where you need more than one set of radio buttons, a means of grouping them is essential if they are to
work properly. You can select the button corresponding to the group box from the common controls palette
by clicking it; then click the approximate position in the dialog box where you want the center of the group
box. This places a group box of default size on to the dialog. You can then drag the borders of the group box
to enlarge it to accommodate the six radio buttons that you add. To set the caption for the group box, type
the caption you want (in this, case type Pen Widths).

The last step is to add the radio buttons. Select the radio button control by clicking it and then clicking on the
position in the dialog where you want to position a radio button within the group box. Do the same for all

989

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 989



six radio buttons. For each button you can select it by clicking it; then type in the caption to change it. You
can also drag the border of the button to set its size, if necessary. To display the Properties window for a con-
trol, select it by clicking it; then select Properties from the pop-up. You can change the ID for each radio
button in the properties window for the control to correspond better with its purpose: IDC_PENWIDTH0
for the 1 pixel pen width, IDC_PENWIDTH1 for the 0.01 inch width pen, IDC_PENWIDTH2 for the 0.02 inch
pen, and so on.

You can position individual controls by dragging them around with the mouse. You can also select a
group of controls by selecting successive controls with the Shift key pressed, or by dragging the cursor
with the left button pressed to create a rectangle enclosing them. To align a group of controls, select the
appropriate button from the Dialog Editor toolbar shown in Figure 17-5.

Figure 17-5

The toolbar is shown in its undocked state — that is, dragged away from the toolbar area at the top of
the window. If the toolbar is not visible, you can show it by right-clicking in the toolbar area and select-
ing it in the list of toolbars that is displayed. You also can align controls in the dialog by selecting from
the Format menu.

Testing the Dialog
The dialog resource is now complete. You can test it by selecting the Toolbar button that appears at the
left end of the toolbar in Figure 17-5 or by pressing Ctrl+T. This displays the dialog window with the
basic operations of the controls available, so you can try clicking on the radio buttons. When you have 
a group of radio buttons, only one can be selected. As you select one, any other that was previously
selected is reset. Click either of the OK or Cancel buttons or even the Close icon in the title bar for dialog
to end the test. After you have saved the dialog resource, you’re ready to add some code to support it.

Programming for a Dialog
There are two aspects to programming for a dialog: getting it displayed, and handling the effects of its
controls. Before you can display the dialog corresponding to the resource you’ve just created, you must
first define a dialog class for it. The Class Wizard helps with this.

Adding a Dialog Class
Right-click the dialog box that you just created in the Resource Editor pane and then select Add Class
from the pop-up tool display the Class Wizard dialog. You’ll define a new dialog class derived from the
MFC class CDialog, so select that class name from the Base Class: drop-down list box. You can enter the
class name as CPenDialog in the Class name: edit box. The Class Wizard dialog should look as shown in
Figure 17-6.

Click the Finish button to create the new class.

990

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 990



Figure 17-6

The CDialog class is a window class (derived from the MFC class CWnd) that’s specifically for displaying
and managing dialogs. The dialog resource that you have created automatically associates with an object
of type CPenDialog because the IDD class member is initialized with the ID of the dialog resource:

class CPenDialog : public CDialog
{

DECLARE_DYNAMIC(CPenDialog)

public:
CPenDialog(CWnd* pParent = NULL);   // standard constructor
virtual ~CPenDialog();

// Dialog Data
enum { IDD = IDD_PENWIDTH_DLG };

protected:
virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support

DECLARE_MESSAGE_MAP()
};

The highlighted statement defines IDD as a symbolic name for the dialog ID in the enumeration.
Incidentally, using an enumeration is the only way you can get an initialized data member into a class
definition. If you try putting an initial value for any regular data member declaration, it won’t compile.
You will get an error message about illegal use of pure syntax. It works here because an enum defines a
symbolic name for a value of type int. Unfortunately, you can only define values of type int in this
way. It’s not strictly necessary here because the initialization for IDD could be done in the constructor, but

991

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 991



this is how Class Wizard chooses to do it. This technique is more commonly used to define a symbol for
the dimension of an array (a member of a class), in which case using an enumeration is your only option.

Having your own dialog class derived from CDialog means that you get all the functionality that that class
provides. You can also customize the dialog class by adding data members and functions to suit your par-
ticular needs. You’ll often want to handle messages from controls within the dialog class, although you can
also choose to handle them in a view or a document class if this is more convenient.

Modal and Modeless Dialogs
There two different types of dialog, termed modal and modeless dialogs, and they work in completely
different ways. While a modal dialog remains in effect, all operations in the other windows in the appli-
cation are suspended until the dialog box is closed, usually by clicking an OK or Cancel button. With a
modeless dialog, you can move the focus back and forth between the dialog box and other windows in
your application just by clicking them, and you can continue to use the dialog box at any time until you
close it. Class wizard is an example of a modal dialog; the Properties window is modeless.

A modeless dialog box is created by calling the Create() function defined in the CDialog class, but
because you’ll only be using modal dialogs in the Sketcher example, you’ll call the DoModal() function
for the dialog object, as you’ll see shortly.

Displaying a Dialog
Where you put the code to display a dialog in your program depends on the application. In the Sketcher
program, it is convenient to add a menu item that, when selected, results in the pen width dialog being
displayed. You’ll put this in the IDR_SketcherTYPE menu bar. As both the width and the color are asso-
ciated with a pen, you can rename the Color menu as Pen. You do this just by double-clicking the Color
menu item in the Resource Editor pane to open its Properties window and changing the value of the
Caption property to &Pen. Closing the window puts the change into effect.

When you add the Width menu item to the Pen menu, you should separate it from the colors in the menu.
You can add a separator after the last color menu item by right-clicking the empty menu item and selecting
the Insert Separator menu item from the pop-up. You can then enter the new Width item as the next
menu item after the separator. The menu item ends with an ellipsis (three periods) to indicate that it dis-
plays a dialog; this is a standard Windows convention. Double-click the menu to display the menu proper-
ties for modification, as shown in Figure 17-7.

Enter ID_PENWIDTH as the ID for the menu item, as shown in Figure 17-7. You can also add a status bar
prompt for it and because you’ll also add a toolbar button, you can include text for the tool tip as well.
Remember, you just put the tooltip text following the status bar prompt text, separated from it by “\n”.
Here the value for the Prompt property is “Change pen width\nShow pen width options”. The menu
will look as shown in Figure 17-8.

To add the Toolbar button, open the toolbar resource by extending the Toolbar folder in the Resource
View and double-clicking IDR_MAINFRAME. You can add a toolbar button to represent a pen width. The
one shown in Figure 17-9 tries to represent a pen drawing a line.

To associate the new button with the menu item that you just added, open the properties box for the but-
ton and specify its ID as ID_PENWIDTH, the same as that for the menu item.

992

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 992



Figure 17-7

Figure 17-8

Figure 17-9

993

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 993



Code to Display the Dialog
The code to display the dialog goes in the handler for the Pen > Width menu item, so in which class
should you implement this handler? The view class is a candidate for dealing with pen widths, but fol-
lowing the previous logic with colors and elements, it would be sensible to have the current pen width
selection in the document, so the handler should go in the CSketcherDoc class. Right-click the Width
menu item in the Resource View pane for the ID_SketcherTYPE menu and select Add Event Handler
from the pop-up. You can then create a function for the COMMAND message handler corresponding to
ID_PENWIDTH in the CSketcherDoc class. Now edit this handler and enter the following code:

// Handler for the pen width menu item
void CSketcherDoc::OnPenwidth()
{

CPenDialog aDlg;                    // Create a local dialog object

// Display the dialog as modal
aDlg.DoModal();

}

There are just two statements in the handler at the moment. The first creates a dialog object that is auto-
matically associated with your dialog resource. You then display the dialog by calling the DoModal()
function for the aDlg object.

Because the handler declares a CPenDialog object, you must add a #include statement for PenDialog.h
to the beginning of SketcherDoc.cpp (after the #include directives for stdafx.h and Sketcher.h);
otherwise, you’ll get compilation errors when you build the program. After you’ve done that, you can build
Sketcher and try out the dialog. It should appear when you click the Toolbar button or the Pen > Width
menu item. Of course, if the dialog is to do anything, you still have to add the code to support the operation
of the controls; to close the dialog, you can use either of the buttons or the Close icon in the title bar.

Code to Close the Dialog
The OK and Cancel buttons (and the close icon on the title bar) already close the dialog. The handlers to
deal with the BN_CLICKED event handlers for the OK and Cancel button controls have been implemented
for you. However, it’s useful to know how the action of closing the dialog is implemented in case you want
to do more before the dialog is finally closed or if you are working with a modeless dialog.

The CDialog class defines the OnOK() method that is called when you click the default OK button, which
has IDOK as its ID. This function closes the dialog and causes the DoModal() method to return the ID of
the default OK button, IDOK. The OnCancel() function is called when you click the default Cancel button
in the dialog and this closes the dialog and DoModal() returns the button ID, which is IDCANCEL. You can
override either or both of these functions in your dialog class to do what you want. You just need to make
sure you call the corresponding base class function at the end of your function implementation. You’ll
probably remember by now that you can add an override class by selecting the overrides button in the
Properties window for the class.

For example, you could implement an override for the OnOK() function like this:

void CPenDialog::OnOK()
{
// Your code for data validation or other actions...

994

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 994



CDialog::OnOK();                     // Close the dialog
}

In a complicated dialog, you might want to verify that the options selected or the data that has been entered
is valid. You could put code here to check the state of the dialog and fix up the data or even leave the dialog
open if there are problems.

Calling the OnOK()function defined in the base class closes the dialog and causes the DoModal() function
to return IDOK. Thus you can use the value returned from DoModal() to detect when the dialog was closed
by clicking the OK button.

As I said, you can also override the OnCancel() function in a similar way if you need to do extra clean-
up operations before the dialog closes. Be sure to call the base class method at the end of your function
implementation.

When you are using a modeless dialog you must implement the OnOK() and OnCancel() function over-
rides so that they call the inherited DestroyWindow() to terminate the dialog. In this case, you must not
call the base class OnOK() or OnCancel() functions, because they do not destroy the dialog window,
but merely render it invisible.

Suppor ting the Dialog Controls
For the Pen dialog, you’ll store the selected pen width in a data member, m_PenWidth, of the CPenDialog
class. You can either add the data member by right-clicking the CPenDialog class name and selecting from
the context menu, or you can add it directly to the class definition as follows:

class CPenDialog : public CDialog
{
// Construction
public:

CPenDialog(CWnd* pParent = NULL);   // standard constructor

// Dialog Data
enum { IDD = IDD_PENWIDTH_DLG };

// Data stored in the dialog
public:

int m_PenWidth;                     // Record the pen width

// Plus the rest of the class definition....

};

If you do use the context menu for the class to add m_PenWidth, be sure to add a comment to the class
definition. This is a good habit to get into, even when the member name looks self-explanatory.

You’ll use the m_PenWidth data member to set the radio button corresponding to the current pen width
in the document as checked. You’ll also arrange that the pen width selected in the dialog is stored in this

995

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 995



member, so that you can retrieve it when the dialog closes. At this point you could arrange to initialize
m_PenWidth to 0 in the class constructor.

Initializing the Controls
You can initialize the radio buttons by overriding the OnInitDialog() function that is defined in the
base class, CDialog. This function is called in response to a WM_INITDIALOG message, which is sent dur-
ing the execution of DoModal() just before the dialog box is displayed. You can add the function to the
CPenDialog class by selecting OnInitDialog in the list of overrides in the Properties window for the
CPenDialog class, as shown in Figure 17-10.

Figure 17-10

The implementation for the new version of OnInitDialog() is:

BOOL CPenDialog::OnInitDialog()
{

CDialog::OnInitDialog();

// Check the radio button corresponding to the pen width
switch(m_PenWidth)
{

case 1:
CheckDlgButton(IDC_PENWIDTH1,1);
break;

case 2:
CheckDlgButton(IDC_PENWIDTH2,1);
break;

case 3:
CheckDlgButton(IDC_PENWIDTH3,1);
break;

case 4:
CheckDlgButton(IDC_PENWIDTH4,1);
break;

996

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 996



case 5:
CheckDlgButton(IDC_PENWIDTH5,1);
break;

default:
CheckDlgButton(IDC_PENWIDTH0,1);

}
return TRUE;  // return TRUE unless you set the focus to a control

// EXCEPTION: OCX Property Pages should return FALSE
}

You should leave the call to the base class function there because it does some essential setup for the dialog.
The switch statement checks one of the radio buttons, depending on the value set in the m_PenWidth
data member. This implies that you must arrange to set m_PenWidth to a suitable value before you execute
DoModal() because the DoModal() function causes the WM_INITDIALOG message to be sent, resulting in
your version of OnInitDialog() being called.

The CheckDlgButton() function is inherited indirectly from CWnd through CDialog. If the second argu-
ment is 1, it checks the button corresponding to the ID specified in the first argument. If the second argu-
ment is 0, the button is unchecked. This works with both checkboxes and radio buttons.

Handling Radio Button Messages
After the dialog box is displayed, every time you click on one of the radio buttons a message is gener-
ated and sent to the application. To deal with these messages, you can add handlers to the CPenDialog
class. Right-click each of the radio buttons in turn and select Add Event Handler from the pop-up to cre-
ate a handler for the BN_CLICKED message. Figure 17-11 shows the event handler dialog window for the
button that has IDC_PENWIDTH0 as its ID. Note that I have edited the name of the handler as the default
name was a little cumbersome.

Figure 17-11

997

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 997



The implementations of the BN_CLICKED event handlers for all of these radio buttons are similar because
they each just set the pen width in the dialog object. As an example, the handler for IDC_PENWIDTH0 is:

void CPenDialog::OnPenwidth0()
{

m_PenWidth = 0;
}

You need to add the code for all six handlers to the CPenDialog class implementation, setting m_PenWidth
to 1 in OnPenwidth1(), to 2 in OnPenwidth2(), and so on.

Completing Dialog Operations
You must now modify the OnPenwidth() handler in CSketcherDoc to make the dialog effective. Add
the following code to the function:

// Handler for the pen width menu item
void CSketcherDoc::OnPenwidth()
{

CPenDialog aDlg;     // Create a local dialog object

// Set the pen width in the dialog to that stored in the document
aDlg.m_PenWidth = m_PenWidth;

// Display the dialog as modal
// When closed with OK, get the pen width
if(aDlg.DoModal() == IDOK)

m_PenWidth = aDlg.m_PenWidth;
}

The m_PenWidth member of the aDlg object is passed a pen width stored in the m_PenWidth member of
the document; you’ve still got to add this member to CSketcherDoc. The call of the DoModal() function
now occurs in the condition of the if statement, which is true if the DoModal() function returns IDOK. 
In this case, you retrieve the pen width stored in the aDlg object and store it in the m_PenWidth member
of the document. If the dialog box is closed using the Cancel button or the close icon, IDOK won’t be
returned by DoModal() and the value of m_PenWidth in the document is not changed.

Note that even though the dialog box is closed when DoModal() returns a value, the aDlg object still exists,
so you can call its member functions without any problem. The aDlg object is destroyed automatically on
return from OnPenwidth().

All that remains to do to support variable pen widths in your application is to update the affected classes:
CSketcherDoc, CElement, and the four shape classes derived from CElement.

Adding Pen Widths to the Document
You need to add the m_PenWidth member to the document class, and the GetPenWidth() function 
to allow external access to the value stored. You should add the following shaded statements to the
CSketcherDoc class definition:

class CSketcherDoc : public CDocument

998

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 998



{
// the rest as before...

protected:
// the rest as before...

int m_PenWidth;                     // Current pen width

// Operations
public:
// the rest as before...

int GetPenWidth()                   // Get the current pen width
{ return m_PenWidth; }

// the rest as before...
};

Because it’s trivial, you can define the GetPenWidth() function in the definition of the class and gain
the benefit of it being implicitly inline. You still need to add initialization for m_PenWidth to the con-
structor for CSketcherDoc, so modify the constructor in SketcherDoc.cpp by adding the shaded line:

CSketcherDoc::CSketcherDoc()
: m_Element(LINE), m_Color(BLACK)
,m_PenWidth(0)                        // 1 pixel pen
{

// TODO: add one-time construction code here
}

Adding Pen Widths to the Elements
You have a little more to do to the CElement class and the shape classes that are derived from it. You
already have a member m_Pen in CElement to store the width to be used when drawing an element, and
you must extend each of the constructors for elements to accept a pen width as an argument, and set the
member in the class accordingly. The GetBoundRect() function in CElement must be altered to deal with
a pen width of zero. You can deal with the CElement class first. The new version of the GetBoundRect()
function in the CElement class is:

// Get the bounding rectangle for an element
CRect CElement::GetBoundRect()
{

CRect BoundingRect;                 // Object to store the bounding rectangle
BoundingRect = m_EnclosingRect;     // Initialize with the enclosing rectangle

//Increase bounding rectangle by the pen width
int Offset = m_Pen == 0 ? 1 : m_Pen; // Width must be at least 1
BoundingRect.InflateRect(Offset, Offset);
return BoundingRect;

}

You use the local variable Offset to ensure that you pass the InflateRect() function a value of 1 if
the pen width is zero (a pen width of 0 is always draw a line one pixel wide), and pass the actual pen
width in all other cases.

Each of the constructors for CLine, CRectangle, CCircle and CCurve must be modified to accept a pen
width as an argument, and to store it in the inherited m_Pen member of the class. The declaration for the

999

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 999



constructor in each class definition needs to be modified to add the extra parameter. For example, in the
CLine class, the constructor declaration becomes:

CLine(CPoint Start, CPoint End, COLORREF aColor, int PenWidth);

and the constructor implementation should be modified to:

CLine::CLine(CPoint Start, CPoint End, COLORREF aColor, int PenWidth)
:m_EndPoint(CPoint(0,0))

{
m_StartPoint = Start;               // Set line start point
m_EndPoint = End;                   // Set line end point
m_Color = aColor;                   // Set line color
m_Pen = PenWidth;                   // Set pen width

// Define the enclosing rectangle
m_EnclosingRect = CRect(Start, End);
m_EnclosingRect.NormalizeRect();

}

You should modify each of the class definitions and constructors for the shapes in the same way so that
they each initialize m_Pen with the value passed as the last argument.

Creating Elements in the View
The last change you need to make is to the CreateElement() member of CSketcherView. Because you
have added the pen width as an argument to the constructors for each of the shapes, you must update the
calls to the constructors to reflect this. Change the definition of CSketcherView::CreateElement() to:

CElement* CSketcherView::CreateElement()
{

// Get a pointer to the document for this view
CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);                       // Verify the pointer is good

// Now select the element using the type stored in the document
switch(pDoc->GetElementType())
{

case RECTANGLE:
return new CRectangle(m_FirstPoint, m_SecondPoint,

pDoc->GetElementColor(), pDoc->GetPenWidth());
case CIRCLE:

return new CCircle(m_FirstPoint, m_SecondPoint,
pDoc->GetElementColor(), pDoc->GetPenWidth());

case CURVE:
return new CCurve(m_FirstPoint, m_SecondPoint,

pDoc->GetElementColor(), pDoc->GetPenWidth());
case LINE:                         // Always default to a line

return new CLine(m_FirstPoint, m_SecondPoint,
pDoc->GetElementColor(), pDoc->GetPenWidth());

default:                   // Something’s gone wrong
AfxMessageBox(“Bad Element code”, MB_OK);

1000

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1000



AfxAbort();
}

}

Each constructor call now passes the pen width as an argument. This is retrieved from the document using
the GetPenWidth() function that you added to the document class.

Exercising the Dialog
You can now build and run the latest version of Sketcher to see how the pen dialog works out. Selecting
the Pen > Width menu option or the associated Toolbar button displays the dialog box so that you can
select the pen width. The screen shown in Figure 17-12 is typical of what you might see when the Sketcher
program is executing.

Figure 17-12

Note that the dialog box is a completely separate window. You can drag it around to position it where
you want. You can even drag it outside the Sketcher application window.

Using a Spin Button Control
Now you can move on to looking at how the spin button can help in the Sketcher application. The spin
button is particularly useful when you want to constrain an input within a given integer range. It’s nor-
mally used in association with another control, called a buddy control, that displays the value that the
spin button modifies. The associated control is usually an edit control, but it doesn’t have to be.

It would be nice to be able to draw at different scales in Sketcher. If you had a way to change the drawing
scale, you could scale up whenever you wanted to fill in the fine detail in your masterpiece and scale

1001

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1001



down again when working across the whole vista. You could apply the spin control to managing scaling
in a document view. A drawing scale would be a view-specific property, and you would want the element
drawing functions to take account of the current scale for a view. Altering the existing code to deal with
view scaling requires rather more work than setting up the control, so first look at how you create a spin
button and make it work.

Adding the Scale Menu Item and Toolbar Button
Begin by providing a means of displaying the scale dialog. Go to Resource View and open the
IDR_SketcherTYPE menu. You are going to add a Scale menu item to the end of the View menu. Enter
the caption for the unused menu item as Scale.... This item brings up the scale dialog, so you end
the caption with an ellipsis (three periods) to indicate that it displays a dialog. Next you can add a sepa-
rator preceding the new menu item by right-clicking it and selecting Insert Separator from the pop-up.
You can then verify that the properties for the menu item are as shown in Figure 17-13.

The menu should now look as shown in Figure 17-14.

Figure 17-13

Figure 17-14

1002

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1002



You can also add a Toolbar button for this menu item. All you need to do is make sure that the ID for the
button is also set to ID_VIEW_SCALE.

Creating the Spin Button
You’ve got the menu item; you’d better have a dialog to go with it. In Resource View, add a new dialog
by right-clicking the Dialog folder on the tree and selecting Insert Dialog from the pop-up. Change the
ID to IDD_SCALE_DLG and the caption in the title bar to Set Drawing Scale.

Click the spin control in the palette and then click on the position in the dialog where you want it to be
placed. Next, right-click the spin control to display its properties. Change its ID to something more mean-
ingful than the default, such as IDC_SPIN_SCALE. Now take at look at the properties for the spin button.
They are shown in Figure 17-15.

Figure 17-15

The Arrow Keys property is already set as True, enabling you to operate the spin button by using arrow
keys on the keyboard. You should also set the value for the Set buddy integer property which specifies
the buddy control value as an integer to True, and the Auto buddy which provides for automatic selection
of the buddy control to True. The effect of this is that the control selected as the buddy is automatically the
previous control defined in the dialog. At the moment, this is the Cancel button, which is not exactly ideal,
but you’ll see how to change this in a moment. The Alignment property determines how the spin button is
displayed in relation to its buddy. You should set this to Right Align so that the spin button is attached to
the right edge of its buddy control.

Next, add an edit control at the side of the spin button by selecting the edit control from the list in the
Toolbox pane and clicking in the dialog where you want it positioned. Change the ID for the edit control
to IDC_SCALE.

1003

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1003



To make the contents of the edit control quite clear, you could add a static control just to the left of the
edit control in the palette and enter View Scale: as the caption. You can select all three controls by click-
ing on them while holding down the Shift key. Pressing the F9 function key aligns the controls tidily, or
you can use the Format menu.

The Controls’ Tab Sequence
Controls in a dialog have what is called a tab sequence. This is the sequence in which the focus shifts from
one control to the next, determined initially by the sequence in which controls are added to the dialog.
You can see the tab sequence for the current dialog box by selecting Format > Tab Order from the
main menu, or by pressing Ctrl+D. When I finished adding the controls, the dialog was annotated as
shown on the left in Figure 17-16.

Figure 17-16

The tab order is indicated by the sequence of numbers in Figure 17-16. Because the Cancel button
immediately precedes the spin button in sequence in the dialog on the left, the Auto Buddy property
for the spin button selects it as the buddy control. You really want the edit control to precede the spin
button in the tab sequence, so you need to select the controls by clicking on them in the sequence: OK
button; Cancel button; edit control; spin button; and finally the static control so the tab order will be 
as shown in the dialog on the right in Figure 17-16. Now the edit control is selected as the buddy to 
the spin button.

Generating the Scale Dialog Class
After saving the resource file, you can right-click the dialog and select Add Class from the pop-up at the
cursor. You’ll then be able to define the new class associated with the dialog resource that you have cre-
ated. You should name the class CScaleDialog and select the base class as CDialog. Clicking the Finish
button adds the class to the Sketcher project.

You need to add a variable to the dialog class that stores the value returned from the edit control, so click the
CScaleDialog class name in the Class View and select Add > Add Variable from the pop-up. The new
data member of the class is a special kind, called a control variable, so first check the Control variable
box in the window for the Add Member Variable wizard. Select IDC_SCALE as the ID from the Control ID:
drop-down list and Value from the Category: list box. Enter the variable name as m_Scale. You’ll be stor-
ing an integer scale value, so select int as the variable type. The Add Member Variable wizard displays edit
boxes where you can enter maximum and minimum values for the variable m_Scale. For our application, a
minimum of 1 and a maximum of 8 would be good values. Note that this constraint only applies to the edit
box; the spin control is independent of it. Figure 17-17 shows how the window for the Add Member Wizard
should look when you are done.

Original tab order for the controls Tab order to make the Edit control the 
buddy for the Spin control

1004

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1004



Figure 17-17

If you click the Finish button, the wizard takes care of entering the code necessary to support your new
control variable. The class definition you’ll end up with after the wizard has added the new member is
as follows:

class CScaleDialog : public CDialog
{

DECLARE_DYNAMIC(CScaleDialog)

public:
CScaleDialog(CWnd* pParent = NULL);   // standard constructor
virtual ~CScaleDialog();

// Dialog Data
enum { IDD = IDD_SCALE_DLG };

protected:
virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support

DECLARE_MESSAGE_MAP()
public:

// Stores the current drawing scale
int m_Scale;

};

The interesting bits of the class definition are shaded. The class is associated with the dialog resource
through the enum statement initializing IDD with the ID of the resource. It contains the variable m_Scale,
which is specified as a public member of the class, so you can set and retrieve its value in a CScaleDialog
object directly. There’s also some special code in the implementation of the class to deal with the new
m_Scale member.

1005

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1005



Dialog Data Exchange and Validation
A virtual function called DoDataExchange() has been included in the class by the Class Wizard. If you
look in the ScaleDialog.cpp file, you’ll find the implementation looks like this:

void CScaleDialog::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
DDX_Text(pDX, IDC_SCALE, m_Scale);
DDV_MinMaxInt(pDX, m_Scale, 1, 8);

}

This function is called by the framework to carry out the exchange of data between variables in a dialog
and the dialog’s controls. This mechanism is called Dialog Data Exchange, usually abbreviated to DDX.
This is a powerful mechanism that can provide automatic transfer of information between a dialog and
its controls in most circumstances, thus saving you the effort of programming to get the data yourself, as
you did with the radio buttons in the pen width dialog.

In the scale dialog, DDX handles data transfers between the edit control and the variable m_Scale in the
CScaleDialog class. The variable pDX passed to the DoDataExchange() function controls the direction
in which data is transferred. After calling the base class DoDataExchange() function, the DDX_Text()
function is called, which actually moves data between the variable, m_Scale, and the edit control.

The call to the DDV_MinMaxInt() function verifies that the value transferred is within the limits speci-
fied. This mechanism is called Dialog Data Validation, or DDV. The DoDataExchange() function is
called automatically before the dialog is displayed, to pass the value stored in m_Scale to the edit con-
trol. When the dialog is closed with the OK button, it is automatically called again to pass the value in
the control back to the variable m_Scale in the dialog object. All this is taken care of for you. You need
only to ensure that the right value is stored in m_Scale before the dialog box is displayed, and arrange
to collect the result when the dialog box closes.

Initializing the Dialog
You’ll use the OnInitDialog() function to initialize the dialog, just as you did for the pen width dialog.
This time you’ll use it to set up the spin control. You’ll initialize the m_Scale member a little later when
you create the dialog in the handler for a Scale menu item because it should be set to the value of the scale
stored in the view. For now, add an override for the OnInitDialog() function to the CScaleDialog class,
using the same mechanism that you used for the previous dialog, and add code to initialize the spin control
as follows:

BOOL CScaleDialog::OnInitDialog()
{

CDialog::OnInitDialog();

// First get a pointer to the spin control
CSpinButtonCtrl* pSpin;
pSpin = (CSpinButtonCtrl*)GetDlgItem(IDC_SPIN_SCALE);

// If you have not checked the auto buddy option in
// the spin control’s properties, set the buddy control here

// Set the spin control range

1006

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1006



pSpin->SetRange(1, 8);

return TRUE;  // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE

}

There are only three lines of code to add, along with four lines of comments. The first line of code cre-
ates a pointer to an object of the MFC class CSpinButtonCtrl. This class is specifically for managing
spin buttons, and is initialized in the next statement to point to the control in our dialog. The function
GetDlgItem() is inherited from CWnd via CDialog, and it retrieves the address of any control from the
ID you pass as the argument. As you saw earlier, a control is just a specialized window, so the pointer
returned is of type CWnd*; you therefore have to cast it to the type appropriate to the particular control,
which is CSpinButtonCtrl* in this case. The third statement that you’ve added sets the upper and
lower limits for the spin button by calling the SetRange() member of the spin control object. Although
you have set the range limits for the edit control, this doesn’t affect the spin control directly. If you don’t
limit the values in the spin control here, you would be allowing the spin control to insert values in the
edit control that were outside the limits, so there would be an error message from the edit control. You
can demonstrate this by commenting out the statement that calls SetRange() here and trying out
Sketcher without it.

If you want to set the buddy control using code rather than setting the value of Auto buddy in the spin
button’s properties to True, the CSpinButtonCtrl class has a function member to do this. You would
need to add the statement

pSpin->SetBuddy(GetDlgItem(IDC_SCALE));

at the point indicated by the comments.

Displaying the Spin Button
The dialog is to be displayed when the Scale menu option (or its associated toolbar button) is selected, 
so you need to add a COMMAND event handler to the CSketcherView class corresponding to the
ID_VIEW_SCALE message through the Properties window for the class. You can then add code as follows:

void CSketcherView::OnViewScale()
{
CScaleDialog aDlg;                   // Create a dialog object
aDlg.m_Scale = m_Scale;              // Pass the view scale to the dialog
if(aDlg.DoModal() == IDOK)
{
m_Scale = aDlg.m_Scale;            // Get the new scale
InvalidateRect(0);                 // Invalidate the whole window

}
}

You create the dialog as a modal dialog in the same way as for the pen width dialog. Before the dialog box
is displayed by the DoModal() function call, you store the scale value provided by the m_Scale member
of CSketcherView in the dialog member with the same name; this ensures that the control displays the
current scale value when the dialog is displayed. If the dialog is closed with the OK button, you store the
new scale from the m_Scale member of the dialog object in the view member with the same name.

1007

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1007



Because you have changed the view scale, you need to get the view redrawn with the new scale value
applied. The call to InvalidateRect() does this.

Of course, you must not forget to add the m_Scale data member to the definition of CSketcherView, so
add the following line at the end of the other data members in the class definition:

int m_Scale;                         // Current view scale

You should also modify the CSketcherView constructor to initialize m_Scale to 1. This results in a view
always starting out with a scale of one to one. 

If you forget to do this, it’s unlikely that your program will work properly.

Because you are referring the CScaleDialog class in the CSketcherView class implementation, you must
add an #include directive for ScaleDialog.h to the beginning of the SketcherView.cpp file. That’s all
you need to get the scale dialog and its spin control operational. You can build and run Sketcher to give it a
trial spin before you add the code to use a view scale factor in the drawing process.

Using the Scale Factor
Scaling with Windows usually involves using one of the scaleable mapping modes, MM_ISOTROPIC or
MM_ANISOTROPIC. By using one or other of these mapping modes, you can get Windows to do most of
the work. Unfortunately, it’s not as simple as just changing the mapping mode, because neither of these
mapping modes is supported by CScrollView. If you can get around that, however, you’re home and
dry. You’ll use MM_ANISOTROPIC for reasons that you’ll see in a moment, so let’s first understand what’s
involved in using this mapping mode.

Scaleable Mapping Modes
As I’ve said, there are two mapping modes that allow the mapping between logical coordinates and
device coordinates to be altered and these are the MM_ISOTROPIC and MM_ANISOTROPIC modes. The
MM_ISOTROPIC mode has the property that Windows will force the scaling factor for both the x and y
axes to be the same, which has the advantage that your circles will always be circles. The disadvantage 
is that you can’t map a document to fit into a rectangle of a different shape. The MM_ANISOTROPIC mode,
on the other hand, permits scaling of each axis independently. Because it’s the more flexible mode of the
two, you’ll use MM_ANISOTROPIC for scaling operations in Sketcher.

The way in which logical coordinates are transformed to device coordinates is dependent on the following
parameters, which you can set:

Parameter Description

Window Origin The logical coordinates of the upper-left corner of the window. This is set
by calling the function CDC::SetWindowOrg().

Window Extent The size of the window specified in logical coordinates. This is set by call-
ing the function CDC::SetWindowExt().

1008

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1008



The viewport referred to here has no physical significance by itself; it serves only as a parameter for
defining how coordinates are transformed from logical coordinates to device coordinates.

Remember that:

❑ Logical coordinates (also referred to as page coordinates) are determined by the mapping mode.
For example, the MM_LOENGLISH mapping mode has logical coordinates in units of 0.01 inches,
with the origin in the upper-left corner of the client area, and the positive y-axis direction running
from bottom to top. These are used by the device context drawing functions.

❑ Device coordinates (also referred to as client coordinates in a window) are measured in pixels
in the case of a window, with the origin at the upper-left corner of the client area, and with the
positive y-axis direction from top to bottom. These are used outside of a device context, for
example for defining the position of the cursor in mouse message handlers.

❑ Screen coordinates are measured in pixels and have the origin at the upper-left corner of the
screen, with the positive y-axis direction from top to bottom. These are used when getting or
setting the cursor position.

The formulae used by Windows to convert from logical coordinates to device coordinates are:

With coordinate systems other than those provided by the MM_ISOTROPIC and MM_ANISOTROPIC map-
ping modes, the window extent and the viewport extent are fixed by the mapping mode and you can’t
change them. Calling the functions SetWindowExt() or SetViewportExt() in the CDC object to change
them has no effect, although you can still move the position of (0,0) in your logical reference frame by
calling SetWindowOrg() or SetViewportOrg(). However, for a given document size expressed by the
window extent in logical coordinate units, you can adjust the scale at which elements are displayed by
setting the viewport extent appropriately. By using and setting the window and viewport extents, you
can get the scaling done automatically.

Setting the Document Size
You need to maintain the size of the document in logical units in the document object. You can add a pro-
tected data member, m_DocSize, to the CSketcherDoc class definition to store the size of the document:

CSize m_DocSize;                     // Document size

y D e v i c e = yLogical – yWindowOrg (  ) *
yWindowExt
yViewportExt + yViewportOrg

x D e v i c e = xLogical – xWindowOrg (  ) *
xWindowExt
xViewportExt + xViewportOrg

Parameter Description

Viewport Origin The coordinates of the upper-left corner of the window in device coordi-
nates (pixels). This is set by calling the function
CDC::SetViewportOrg().

Viewport Extent The size of the window in device coordinates (pixels). This is set by call-
ing the function CDC::SetViewportExt().

1009

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1009



You will also want to access this data member from the view class, so add a public function to the
CSketcherDoc class definition as follows:

CSize GetDocSize()
{ return m_DocSize; }              // Retrieve the document size

You must initialize the m_DocSize member in the constructor for the document, so modify the imple-
mentation of CSketcherDoc() as follows:

CSketcherDoc::CSketcherDoc()
: m_Element(LINE)
, m_Color(BLACK)
,m_PenWidth(0)
,m_DocSize(CSize(3000,3000))
{
// TODO: add one-time construction code here

}

You’ll be using notional MM_LOENGLISH coordinates, so you can treat the logical units as 0.01 inches, and
the value set gives you an area of 30 inches square to draw on.

Setting the Mapping Mode
You can set the mapping mode to MM_ANISOTROPIC in an override for the inherited OnPrepareDC()
in the CSketcherView class. This function is always called for any WM_PAINT message, and you have
arranged to call it when you draw temporary objects in the mouse message handlers; however, you
have to do a little more than just set the mapping mode. You’ll need to create the function override in
CSketcherView before you can add the code. Just open the Properties window for the CSketcherView
class and click the Overrides toolbar button. You can then add the override by selecting OnPrepareDC
from the list and clicking on <Add> OnPrepareDC in the adjacent column. You then are able to type the
code directly in the Editor pane. The implementation of OnPrepareDC() is:

void CSketcherView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
CScrollView::OnPrepareDC(pDC, pInfo);
CSketcherDoc* pDoc = GetDocument();
pDC->SetMapMode(MM_ANISOTROPIC);     // Set the map mode
CSize DocSize = pDoc->GetDocSize();  // Get the document size

// y extent must be negative because we want MM_LOENGLISH
DocSize.cy = -DocSize.cy;            // Change sign of y
pDC->SetWindowExt(DocSize);          // Now set the window extent

// Get the number of pixels per inch in x and y
int xLogPixels = pDC->GetDeviceCaps(LOGPIXELSX);
int yLogPixels = pDC->GetDeviceCaps(LOGPIXELSY);

// Calculate the viewport extent in x and y
long xExtent = static_cast<long>(DocSize.cx)*m_Scale*xLogPixels/100L;
long yExtent = static_cast <long>(DocSize.cy)*m_Scale*yLogPixels/100L;

1010

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1010



pDC->SetViewportExt(static_cast<int>(xExtent),
static_cast<int>(-yExtent)); // Set viewport extent

}

The override of the base class function is unusual here in that you have left the call to
CScrollView::OnPrepareDC() in and added the modifications after it rather than where the comment
in the default code suggests. If the class was derived from CView, you would replace the call to the base
class version because it does nothing, but in the case of CScrollView this isn’t the case. You need the
base class function to set some attributes before you set the mapping mode. Don’t make the mistake of
calling the base class function at the end of the override version though — if you do, scaling won’t work.

After setting the mapping mode and obtaining the document extent, you set the window extent with the
y extent negative. This is just to be consistent with the MM_LOENGLISH mode that you were using previ-
ously — remember that the origin is at the top, so y values in the client area are negative with this map-
ping mode.

The CDC member function GetDeviceCaps() supplies information about the device that the device
context is associated with. You can get various kinds of information about the device, depending on the
argument you pass to the function. In this case, the arguments LOGPIXELSX and LOGPIXELSY return the
number of pixels per logical inch in the x and y directions. These values are equivalent to 100 units in
your logical coordinates.

You use these values to calculate the x and y values for the viewport extent, which you store in the local
variables xExtent and yExtent. The document extent along an axis in logical units divided by 100 gives
the document extent in inches. If this is multiplied by the number of logical pixels per inch for the device,
you get the equivalent number of pixels for the extent. If you then use this value as the viewport extent, you
get the elements displayed at a scale of 1 to 1. If you simplify the equations for converting between device
and logical coordinates by assuming the window origin and the viewport origin are both (0,0), they become:

If you multiply the viewport extent values by the scale (stored in m_Scale), the elements are drawn
according to the value of m_Scale. This logic is exactly represented by the expressions for the x and 
y viewport extents in your code. The simplified equations with the scale included are:

You should be able to see from this that a given pair of device coordinates varies in proportion to the
scale value. The coordinates at a scale of 3 are three times the coordinates at a scale of 1. Of course, as
well as making elements larger, increasing the scale also moves them away from the origin.

y D e v i c e = y L o g i c a l * 
y W i n d o w E x t 

y V i e w p o r t E x t * m _ S c a l e 

x D e v i c e = x L o g i c a l * 
x W i n d o w E x t 

x V i e w p o r t E x t * m _ S c a l e 

y D e v i c e = y L o g i c a l * 
y W i n d o w E x t 
y V i e w p o r t E x t 

x D e v i c e = x L o g i c a l * 
x W i n d o w E x t 
x V i e w p o r t E x t 

1011

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1011



That’s all you need to scale the view. Unfortunately, at the moment the scrolling won’t work with scaling,
so you need to see what you can do about that.

Implementing Scrolling with Scaling
CScrollView just won’t work with the MM_ANISOTROPIC mapping mode so clearly you must use another
mapping mode to set up the scrollbars. The easiest way to do this is to use MM_TEXT, because in this case
the logical coordinates are the same as the client coordinates — pixels, in other words. All you need to do,
then, is to figure out how many pixels are equivalent to the logical document extent for the scale at which
you are drawing, which is easier than you might think. You can add a function to CSketcherView to take
care of the scrollbars and implement everything in there. Right-click the CSketcherView class name in
Class View and add a public function ResetScrollSizes() with a void return type and no parame-
ters. Add the code to the implementation, as follows:

void CSketcherView::ResetScrollSizes(void)
{
CClientDC aDC(this);
OnPrepareDC(&aDC);                             // Set up the device context
CSize DocSize = GetDocument()->GetDocSize();   // Get the document size
aDC.LPtoDP(&DocSize);                          // Get the size in pixels
SetScrollSizes(MM_TEXT, DocSize);              // Set up the scrollbars

}

After creating a local CClientDC object for the view, you call OnPrepareDC() to set up the
MM_ANISOTROPIC mapping mode. Because this takes account of the scaling, the LPtoDP() member of
the aDC object converts the document size stored in the local variable DocSize to the correct number 
of pixels for the current logical document size and scale. The total document size in pixels defines how
large the scrollbars must be in MM_TEXT mode — remember MM_TEXT logical coordinates are in pixels.
You can then get the SetScrollSizes() member of CScrollView to set up the scrollbars based on 
this by specifying MM_TEXT as the mapping mode.

It may seem strange that you can change the mapping mode in this way, but it’s important to keep in
mind that the mapping mode is nothing more than a definition of how logical coordinates are to be con-
verted to device coordinates. Whatever mode (and therefore coordinate conversion algorithm) you’ve set
up applies to all subsequent device context functions until you change it, and you can change it whenever
you want. When you set a new mode, subsequent device context function calls just use the conversion
algorithm defined by the new mode. You figure how big the document is in pixels with MM_ANISOTROPIC
because this is the only way you can get the scaling into the process, and then switch to MM_TEXT to set 
up the scrollbars because you need units for this in pixels for it to work properly. Simple really, when 
you know how.

Setting Up the Scrollbars
You must set up the scrollbars initially for the view in the OnInitialUpdate() member of
CSketcherView. Change the previous implementation of the function to:

void CSketcherView::OnInitialUpdate()
{
ResetScrollSizes();                  // Set up the scrollbars
CScrollView::OnInitialUpdate();

}

1012

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1012



All you do is call the ResetScrollSizes() function that you just added to the view. This takes care of
everything — well, almost. The CScrollView object needs an initial extent to be set for OnPrepareDC()
to work properly, so you need to add one statement to the CSketcherView constructor:

CSketcherView::CSketcherView()
: m_FirstPoint(CPoint(0,0))            // Set 1st recorded point to 0,0
, m_SecondPoint(CPoint(0,0))           // Set 2nd recorded point to 0,0
, m_pTempElement(NULL)                 // Set temporary element pointer to 0
, m_pSelected(NULL)                    // No element selected initially
, m_MoveMode(FALSE)                    // Set move mode off
, m_CursorPos(CPoint(0,0))             // Initialize as zero
, m_FirstPos(CPoint(0,0))              // Initialize as zero
, m_Scale(1)                           // Set scale to 1:1
{

SetScrollSizes(MM_TEXT, CSize(0,0));     // Set arbitrary scrollers
}

The additional statement just calls SetScrollSizes() with an arbitrary extent to get the scrollbars ini-
tialized before the view is drawn. When the view is drawn for the first time, the ResetScrollSizes()
function call in OnInitialUpdate()sets up the scrollbars properly.

Of course, each time the view scale changes, you need to update the scrollbars before the view is redrawn.
You can take care of this in the OnViewScale() handler in the CSketcherView class:

void CSketcherView::OnViewScale()
{

CScaleDialog aDlg;                   // Create a dialog object
aDlg.m_Scale = m_Scale;              // Pass the view scale to the dialog
if(aDlg.DoModal() == IDOK)
{

m_Scale = aDlg.m_Scale;            // Get the new scale
ResetScrollSizes();                // Adjust scrolling to the new scale
InvalidateRect(0);                 // Invalidate the whole window 

}
}

Using the ResetScrollSizes() function, taking care of the scrollbars isn’t complicated. Everything is
covered by the one additional line of code.

Now you can build the project and run the application. You’ll see that the scrollbars work just as they
should. Note that each view maintains its own scale factor, independently of the other views.

Working with Status Bars
With each view now being scaled independently, it becomes necessary to have some indication of what
the current scale in a view is. A convenient way to do this would be to display the scale in the status bar
that was created by default in the Sketcher application. By default the status bar appears at the bottom 
of the application window, below the horizontal scrollbar, although you can arrange for it to be at the
top of the client area. The status bar is divided into segments called panes; the status bar in Sketcher has
four panes. The one on the left contains the text Ready, and the other three are the recessed areas on the
right that are used to record when CAPS lock, NUM lock, and SCROLL lock are in effect.

1013

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1013



It’s possible for you to write to the status bar that the Application Wizard supplied by default, but you
need to get access to the m_wndStatusBar member of the CMainFrame object for the application as this
represents it. As it’s a protected member of the class, you must add a public member function to mod-
ify the status bar from outside the class. You could add the following public function member to the
CMainFrame class to do this:

void CMainFrame::SetPaneText(int Pane, LPCTSTR Text)
{

m_wndStatusBar.SetPaneText(Pane, Text);
}

The implementation goes in the .cpp file and you must add a declaration for the function to the class
definition. The SetPaneText() function sets the text specified by the second parameter, Text, in the
pane identified by the first parameter, Pane, in the status bar object represented by m_wndStatusBar.
The status bar panes are indexed from the left, starting at 0. Now you can write to the status bar from
anywhere outside the CMainFrame class using this function. For example:

CMainFrame* pFrame = (CMainFrame*)AfxGetApp()->m_pMainWnd;
pFrame->SetPaneText(0, “Goodbye cruel world”);

This code fragment gets a pointer to the main window of the application and outputs the text string you
see to the left-most pane in the status bar. This is fine, but the main application window is no place for
a view scale. You may well have several views in Sketcher, so you really want to associate displaying
the scale with each view. A better approach would be to give each child window its own status bar. The
m_wndStatusBar in CMainFrame is an instance of the CStatusBar class. You can use the same class to
implement your own status bars.

Adding a Status Bar to a Frame
The CStatusBar class defines a control bar with multiple panes in which you can display information.
Objects of type CStatusBar can also provide the same functionality as the Windows common status 
bar control through a member function GetStatusBarCtrl(). There is an MFC class that specifically
encapsulates each of the Windows common controls — the one for the common status bar control is
CStatusBarCtrl. However, using this directly involves quite a bit of work to integrate it with the other
MFC classes, as the raw Windows control doesn’t connect to MFC. Using CStatusBar in our Sketcher
program is easier and safer. The GetStatusBarCtrl() function returns a reference to a CStatusBarCtrl
object that provides all the functionality of the common control, and the CStatusBar object takes care of
the communications to the rest of the MFC.

The first step to utilizing it is to add a data member for the status bar to the definition of CChildFrame,
which is the frame window for a view, so add the following declaration to the public section of the class:

CStatusBar m_StatusBar;              // Status bar object

A little clarification may be required at this point. Status bars should be part of the frame, not part of
the view. You don’t want to be able to scroll the status bars or draw over them. They should just remain
anchored to the bottom of the window. If you added a status bar to the view, it would appear inside the
scrollbars and would be scrolled whenever you scrolled the view. Any drawing over the part of the view
containing the status bar would cause the bar to be redrawn, leading to an annoying flicker. Having the
status bar as part of the frame avoids these problems.

1014

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1014



You should initialize the m_StatusBar data member just before the visible view window is displayed.
So, using the Properties window for the CChildFrame class, add a function to the class that is called in
response to the WM_CREATE message that is sent to the application when the window is to be created.
Add the following code to the OnCreate() handler:

int CChildFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if(CMDIChildWnd::OnCreate(lpCreateStruct) == -1)
return -1;

// Create the status bar
m_StatusBar.Create(this);

// Work out the width of the text we want to display
CRect textRect;
CClientDC aDC(&m_StatusBar);
aDC.SelectObject(m_StatusBar.GetFont());
aDC.DrawText(_T(“View Scale:99”), -1, textRect, DT_SINGLELINE|DT_CALCRECT);

// Setup a part big enough to take the text
int width = textRect.Width();
m_StatusBar.GetStatusBarCtrl().SetParts(1, &width);

// Initialize the text for the status bar
m_StatusBar.GetStatusBarCtrl().SetText(_T(“View Scale:1”), 0, 0);
return 0;

}

The generated code isn’t shaded. There’s a call to the base class version of the OnCreate() function,
which takes care of creating the definition of the view window. It’s important not to delete this function
call; otherwise, the window is not created.

The Create() function in the CStatusBar object creates the status bar. The this pointer for the current
CChildFrame object is passed to the Create() function, setting up a connection between the status bar
and the window that owns it. Take a look at what’s happening in the code that you have added to the
OnCreate() function.

Defining the Status Bar Parts
A CStatusBar object has an associated CStatusBarCtrl object with one or more parts. Parts and panes
in the context of status bars are equivalent terms — CStatusBar refers to panes and CStatusBarCtrl
refers to parts. You can display a separate item of information in each part.

You can define the number of parts and their widths by a call to the SetParts() member of the
CStatusBarCtrl object. This function requires two arguments. The first argument is the number of
parts in the status bar, and the second is an array specifying the right edge of each part in client coordi-
nates. If you omit the call to SetParts(), the status bar has one part by default, which stretches across
the whole bar; you could use this, but it looks untidy. A better approach is to size the part so that the
text to be displayed fits nicely, and this is what you will do in Sketcher.

The first thing you do in the OnCreate() function is to create a temporary CRect object in which you’ll
store the enclosing rectangle for the text that you want to display. You then create a CClientDC object,

1015

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1015



which contains a device context with the same extent as the status bar. This is possible because the status
bar, like all other controls, is just a window.

Next, the font used in the status bar (set up as part of the desktop properties) is selected into the device
context by calling the SelectObject() function. The GetFont() member of m_StatusBar returns a
pointer to a CFont object that represents the current font. Obviously, the particular font used determines
how much space the text that you want to display takes up.

You call the DrawText() member of the CClientDC object to calculate the enclosing rectangle for the
text you want to display. This function has four arguments:

❑ The text string you need drawn. You have passed a string containing the maximum number of
characters you would ever want to display, “View Scale:99”.

❑ The count of the number of characters in the string. You have specified this as -1, which indicates
you are supplying a null-terminated string. In this case the function works out the character count.

❑ Your rectangle, textRect. The enclosing rectangle for the text is stored here in logical coordinates.

❑ One or more flags controlling the operation of the function.

You have specified a combination of two flags; DT_SINGLELINE specifies that the text is to be on a single
line, and DT_CALCRECT specifies that you want the function to calculate the size of the rectangle required
to display the string and store it in the rectangle pointed to by the third argument. The DrawText() func-
tion is normally used to output text, but in this instance the DT_CALCRECT flag stops the function from
actually drawing the string. There are a number of other flags that you can use with this function; you can
find details about them by looking up this function with Help.

The next statement sets up the parts for the status bar:

m_StatusBar.GetStatusBarCtrl().SetParts(1, &width);

The expression m_StatusBar.GetStatusBarCtrl() returns a reference to the CStatusBarCtrl object
that belongs to m_StatusBar. The reference returned is used to call the SetParts() function for the
object. The first argument to SetParts() defines the number of parts for the status bar — which is 1 in
this case. The second argument is typically the address of an array of type int containing the x coordi-
nate of the right hand edge of each part in client coordinates. The array has one element for each part in
the status bar. Because you have only one part, you pass the address of the single variable, width, which
contains the width of the rectangle you stored in textRect. This is in client coordinates because the
device context uses MM_TEXT by default.

Finally, you set the initial text in the status bar with a call to the SetText() member of CStatusBarCtrl.
The first argument is the written text string, the second is the index position of the part that contains the
text string, and the third argument specifies the appearance of the part on the screen. The third argument
can be any of those shown in the following table.

1016

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1016



In your code, you specify the text with a border so that it appears recessed into the status bar. You could
try the other options to see how they look.

Updating the Status Bar
If you build and run the code now, the status bars appears, but they show only a scale factor of 1, no matter
what scale factor is actually being used — not very useful. What you need to do is to add code somewhere
that changes the text each time a different scale is chosen. This means modifying the OnViewScale()
handler in CSketcherView to change the status bar for the frame. Only four additional lines of code are
required:

void CSketcherView::OnViewScale()
{

CScaleDialog aDlg;                   // Create a dialog object
aDlg.m_Scale = m_Scale;              // Pass the view scale to the dialog
if(aDlg.DoModal() == IDOK)
{

m_Scale = aDlg.m_Scale;            // Get the new scale

// Get the frame window for this view
CChildFrame* viewFrame = static_cast<CChildFrame*>(GetParentFrame());

// Build the message string
CString StatusMsg(“View Scale:”);
StatusMsg += static_cast<char>(‘0’ + m_Scale);

// Write the string to the status bar
viewFrame->m_StatusBar.GetStatusBarCtrl().SetText(StatusMsg, 0, 0);

ResetScrollSizes();                // Adjust scrolling to the new scale
InvalidateRect(0);                 // Invalidate the whole window 

}
}

Because you refer to the CChildFrame object here, you must add an #include directive for ChildFrm.h
to the beginning of SketcherView.cpp after the existing #include directives.

Style Code Appearance

0 The text has a border that appears recessed into the status bar.

SBT_NOBORDERS The text is drawn without borders.

SBT_OWNERDRAW The text is drawn by the parent window.

SBT_POPOUT The text has a border that appears to stand out from the status bar.

1017

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1017



The first line calls the GetParentFrame() member of CSketcherView that’s inherited from the
CScrollView class. This returns a pointer to a CFrameWnd object to correspond to the frame window, 
so it has to be cast to CChildFrame* for it to be of any use to you.

The next two lines build the message that displays in the status bar. The CString class is used simply
because it is more flexible than using a char array. I will discuss CString objects in greater depth a bit
later when you add a new element type to Sketcher. You get the character for the scale value by adding
the value of m_Scale (which will be from 1 to 8) to the character ‘0’. This generates a character from ‘1’
to ‘8’.

Finally, you use the pointer to the child frame to get at the m_StatusBar member that you added earlier.
You can then get its status bar control and use the SetText() member of the control to change the text
that it displays. The rest of the OnViewScale() function remains unchanged.

That’s all you need for the status bar. If you build Sketcher again, you should have multiple, scrolled
windows, each at different scales, with the scale displayed in a status bar in each view.

Using a List Box
Of course, you don’t have to use a spin button to set the scale. You could also use a list box, for example.
The logic for handling a scale factor would be exactly the same, and only the dialog box and the code to
extract the value for the scale factor from it would change. If you want to try this out without messing
up the development of the Sketcher program, you can copy the complete Sketcher project to another
folder and make the modifications to the copy. Deleting part of a Class Wizard managed program can 
be a bit messy, so it’s useful experience for when you really need to do it.

Removing the Scale Dialog
You first need to delete the definition and implementation of CScaleDialog from the new Sketcher
project, as well as the resource for the scale dialog. To do this, go to the Solution Explorer pane, select
ScaleDialog.cpp and press Delete; then select ScaleDialog.h and press Delete to remove them from
the project. In each instance you’ll see a dialog that gives you the option of just removing the files from 
the project or permanently deleting the files; click on the Delete button in the dialog to do that unless you
want to keep the code. Then go to Resource View, expand the Dialog folder, click on IDD_SCALE_DLG and
press the Delete key to remove the dialog resource. Delete the #include directive for ScaleDialog.h
from SketcherView.cpp. At this stage, all references to the original dialog class have been removed from
the project. Are you all done yet? Almost. The IDs for the resources should have been deleted for you. To
verify this, right-click Sketcher.rc in Resource View and select the Resource Symbols menu item from
the pop-up; you can check that IDC_SCALE and IDC_SPIN_SCALE are no longer in the list. Of course, the
OnViewScale() handler in the CSketcherView class still refers to CScaleDialog, so the Sketcher project
won’t compile yet. You’ll fix that when you have added the list box control.

Select the Build > Clean Solution menu item to remove any intermediate files from the project that
may contain references to CScaleDialog. After that’s done, you can start by recreating the dialog resource
for entering a scale value.

1018

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1018



Creating a List Box Control
Right-click Dialog in Resource View and add a new dialog with a suitable ID and caption. You could use
the same ID as before, IDD_SCALE_DLG.

Select the list box button in the list of controls and click on where you want the list box positioned in the
dialog box. You can enlarge the list box and adjust its position in the dialog by dragging it appropriately.
Right-click the list box and select Properties from the pop-up. You can set the ID to something suitable,
such as IDC_SCALELIST as shown in Figure 17-18.

Figure 17-18

The Sort property will be True by default, so make sure you set it to False. This means that strings that
you add to the list box are not automatically sorted. Instead, they’re appended to the end of the list in the
box, and are displayed in the sequence in which you enter them. Because you will be using the position
in the list of the selected item to indicate the scale, it’s important not to have the sequence changed. The
list box has a vertical scrollbar for the list entries by default, and you can accept the defaults for the other
properties. If you want to look into the effects of the other properties, you can click on each of them in
turn to display text in the bottom of the Properties window explaining what the property does.

Now that the dialog is complete, you can save it and you’re ready to create the class for the dialog.

Creating the Dialog Class
Right-click the dialog and select Add Class from the pop-up. Again, you’ll be taken to the dialog to cre-
ate a new class. Give the class an appropriate name, such as the one you used before, CScaleDialog,

1019

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1019



and select CDialog as the base class. If, when you click Finish, you get a message box displayed saying
that ScaleDialog.cpp already exists, you forgot to explicitly delete the .h and .cpp files. Go back and
do that now or rename the files if you want to keep them. Everything should then work as it’s supposed
to. After you’ve completed that, all you need to do is add a public control variable called m_Scale to
the class, corresponding to the list box ID, IDC_SCALELIST. The type should be type int and the limits
should be 0 and 7. Don’t forget to set the Category as Value; otherwise, you won’t be able to enter the
limits. Because you have created it as a control variable, DDX is implemented for the m_Scale data
member and you use the variable to store a zero-based index to one of the eight entries in the list box.

You need to initialize the list box in the OnInitDialog() handler CScaleDialog, so add an override for
this function using the Properties window for the class. Add code as follows:

BOOL CScaleDialog::OnInitDialog()
{
CDialog::OnInitDialog();

CListBox* pListBox = static_cast<CListBox*>(GetDlgItem(IDC_SCALELIST));
pListBox->AddString(_T(“Scale 1”));
pListBox->AddString(_T(“Scale 2”));
pListBox->AddString(_T(“Scale 3”));
pListBox->AddString(_T(“Scale 4”));
pListBox->AddString(_T(“Scale 5”));
pListBox->AddString(_T(“Scale 6”));
pListBox->AddString(_T(“Scale 7”));
pListBox->AddString(_T(“Scale 8”));
pListBox->SetCurSel(m_Scale-1);

return TRUE;  // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE

}

The first line that you have added obtains a pointer to the list box control by calling the GetDlgItem()
member of the dialog class. This is inherited from the MFC class, CWnd. It returns a pointer of type CWnd*,
so you cast this to the type CListBox*, which is a pointer to the MFC class defining a list box.

Using the pointer to the dialog’s CListBox object, you then use the AddString() member repeatedly 
to add the lines defining the list of scale factors. These appear in the list box in the order that you enter
them, so that the dialog is displayed as shown in Figure 17-19.

Each entry in the list is associated with a zero-based index value that is automatically stored in the
m_Scale member of CScaleDialog through the DDX mechanism. Thus, if you select the third entry 
in the list, m_Scale is set to 2.

Figure 17-19

1020

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1020



Displaying the Dialog
The dialog is displayed by the OnViewScale() handler that you added to CSketcherView in the previous
version of Sketcher. You just need to amend this to deal with the new dialog using a list box. The code for it
is as follows:

void CSketcherView::OnViewScale()
{

CScaleDialog aDlg;                   // Create a dialog object
aDlg.m_Scale = m_Scale;              // Pass the view scale to the dialog
if(aDlg.DoModal() == IDOK)
{
m_Scale = 1 + aDlg.m_Scale;        // Get the new scale

// Get the frame that wraps this view
CChildFrame* viewFrame = static_cast<CChildFrame*>(GetParentFrame());

// Build the message string
CString StatusMsg(“View Scale:”);
StatusMsg += static_cast<char>(‘1’ + m_Scale - 1);
// Set the status bar  
viewFrame->m_StatusBar.GetStatusBarCtrl().SetText(StatusMsg, 0, 0);

ResetScrollSizes();                // Adjust scrolling to the new scale
InvalidateRect(0);                 // Invalidate the whole window 

}
}

Because the index value for the entry selected from the list is zero-based, you just need to add 1 to it 
to get the actual scale value to be stored in the view. The code to display this value in the view’s status
bar is exactly as before. The rest of the code to handle scale factors is already complete and requires no
changes. After you’ve added back the #include directive for ScaleDialog.h, you can build and exe-
cute this version of Sketcher to see the list box in action.

Using an Edit Box Control
You could use an edit box control to add annotations in Sketcher. You’ll need a new element type, CText,
that corresponds to a text string, and an extra menu item to set a TEXT mode for creating elements. Because
a text element needs only one reference point, you can create it in the OnLButtonDown() handler in the
view class. You’ll also need a new item in the Element menu to set TEXT mode. You’ll add this text capabil-
ity to Sketcher in the following sequence:

1. Create the dialog box resource and its associated class.

2. Add the new menu item.

3. Add the code to open the dialog for creating an element.

4. Add the support for a CText class.

1021

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1021



Creating an Edit Box Resource
Create a new dialog resource in Resource View by right-clicking the Dialog folder and selecting Insert
Dialog from the pop-up. Change the ID for the new dialog to IDD_TEXT_DLG and the caption text to
Enter Text.

To add an edit box, select the edit box icon from the list of controls palette and then click the position 
in the dialog where you want to place it. You can adjust the size of the edit box by dragging its borders,
and you can alter its position in the dialog by dragging the whole thing around. You can display the
properties for the edit box by right-clicking it and selecting Properties from the pop-up. You could first
change its ID to IDC_EDITTEXT, as shown in Figure 17-20.

Figure 17-20

Some of the properties for this control are of interest at this point. First, select the Multiline property.
Setting the value for this as True creates a multiline edit box where the text you enter can span more
than one line. This enables you to enter a long line of text and still remain visible in its entirety in the
edit box.

The Align text property determines how the text is to be positioned in the multiline edit box. The
value Left is fine here because you’ll be displaying the text as a single line anyway, but you also have
the options for Center and Right.

1022

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1022



If you were to change the value for the Want return property to True, pressing Enter on the keyboard
while entering the text in the control inserts a return character into the text string. This allows you to
analyze the string if you wanted to break it into multiple lines for display. You don’t want this effect, so
leave the property value as False. In this state, pressing Enter has the effect of the default control (which
is the OK button) being selected, so pressing Enter closes the dialog.

If you set the value of the Auto HScroll property as False, there is an automatic spill to the next line
in the edit box when you reach the edge of the control while entering text. However, this is just for visi-
bility in the edit box — it has no effect on the contents of the string. You could also change the value of
the Auto VScroll property to True to allow text to continue beyond the number of lines that are visible
in the control.

When you’ve finished setting the properties for the edit box, close its Properties window. Make sure that
the edit box is first in the tab order by selecting the Format > Tab Order menu item or by pressing
Ctrl+D. You can then test the dialog by selecting the Test Dialog menu item or by pressing Ctrl+T.
The dialog is shown in Figure 17-21.

Figure 17-21

You can even enter text into the dialog in test mode to see how it works. Clicking the OK or Cancel button
closes the dialog.

Creating the Dialog Class
After saving the dialog resource, you can create a suitable dialog class corresponding to the resource,
which you could call CTextDialog. Right-click the dialog in Resource View and select Add Class from
the pop-up to do this. The base class should be CDialog. Next you can add a control variable by right-
clicking the class name in Class View and selecting Add > Add Variable from the pop-up. Select
IDC_EDITTEXT as the control ID and the category as Value. Call the new variable m_TextString and
leave its type as CString — you’ll take a look at this class after you’ve finished the dialog class. You 
can also specify a maximum length for it in the Max chars: edit box, as shown in Figure 17-22.

A length of 100 is more than adequate for your needs. The variable that you have added here is automat-
ically updated from the data entered into the control by the DDX mechanism. You can click Finish to cre-
ate the variable in the CTextDialog class and close the Add Member Variable wizard.

1023

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1023



Figure 17-22

The CString Class
The CString class provides a very convenient and easy-to-use mechanism for handling strings that you
can use just about anywhere a string is required. To be more precise, you can use a CString object in
place of strings of type const char*, which is the usual type for a character string in native C++, or of
type LPCTSTR, which is a type that comes up frequently in Windows API functions.

The CString class provides several overloaded operators, as shown in the following table, that make it
easy to process strings.

Operator Usage

= Copies one string to another, as in:

Str1 = Str2;                    // Copies contents of Str1 to Str2
Str1 = “A normal string”;       // Copies the RHS string to Str1

+ Concatenates two or more strings, as in:

Str1 = Str2 + Str3 + “ more”;  // Forms Str1 from 3 strings

+= Appends a string to an existing CString object.

== Compares two strings for equality, as in:

if(Str1 == Str2)
// do something...

1024

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1024



The variables Str1 and Str2 in the table above are CString objects. CString objects automatically grow
as necessary, such as when you add an additional string to the end of an existing object. For example, in
the statements,

CString Str = “A fool and your money “;
Str += “are soon partners.”;

the first statement declares and initializes the object Str. The second statement appends an additional
string to Str, so the length of Str automatically increases.

Generally, you should avoid creating CString objects on the heap as far as possible. The memory man-
agement necessary for growing them means that operations will be slow.

Adding the Text Menu Item
Adding a new menu item should be easy by now. You just need to open the menu resource with the ID
IDR_SketcherTYPE in Resource View by double-clicking it, and add a new menu item, Text, to the
Element menu. The default ID, ID_ELEMENT_TEXT, that appears in the Properties window for the item
is fine, so you can leave that as it is. You can add a prompt to be displayed on the status bar correspon-
ding to the menu item, and because you’ll also want to add an additional toolbar button corresponding
to this menu item, you can add a tool tip to the end of the prompt line, using \n to separate the prompt
and the tool tip.

Don’t forget the context menu. You can copy the menu item from IDR_SketcherTYPE. Right-click the
Text menu item and select Copy from the pop-up. Open the menu IDR_CURSOR_MENU, extend the no
element menu, right-click the empty item at the bottom, and select Paste. All you then need to do is to
drag the item to the appropriate position — above the separator — and save the resource file.

Add the toolbar button to the IDR_MAINFRAME toolbar and set its ID to the same as that for the menu
item, ID_ELEMENT_TEXT. You can drag the new button so that it’s positioned at the end of the block
defining the other types of element. When you’ve saved the resources, you can add an event handler 
for the new menu item.

In the Class View pane, right-click CSketcherDoc and display its Properties window. Add a COMMAND
handler for the ID_ELEMENT_TEXT ID and add code to it as follows:

void CSketcherDoc::OnElementText()
{
m_Element = TEXT;

}

Operator Usage

<  Tests if one string is less than another.

<= Tests if one string is less than or equal to another.

> Tests if one string is greater than another.

>= Tests if one string is greater than or equal to another.

1025

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1025



Only one line of code is necessary to set the element type in the document to TEXT.

You also need to add a function to check the menu item if it is the current mode, so add an
UPDATE_COMMAND_UI handler corresponding to the ID_ELEMENT_TEXT ID, and implement 
the code for it as follows:

void CSketcherDoc::OnUpdateElementText(CCmdUI* pCmdUI)
{
// Set checked if the current element is text
pCmdUI->SetCheck(m_Element == TEXT);

}

This operates in the same way as the other Element pop-up menu items.

You must also add a line to the OurConstants.h header file:

const unsigned int TEXT = 105U;

You can add this statement at the end of the other element type definitions in the header file. The next
step is to define the CText class for an object of type TEXT.

Defining a Text Element
You can derive the class CText from the CElement class as follows:

// Class defining a text object
class CText: public CElement
{
public:
// Function to display a text element
virtual void Draw(CDC* pDC, CElement* pElement=0);

// Constructor for a text element
CText(CPoint Start, CPoint End, CString aString, COLORREF aColor);
virtual void Move(CSize& aSize);       // Move a text element

protected:
CPoint m_StartPoint;                   // position of a text element
CString m_String;                      // Text to be displayed
CText(){}                              // Default constructor

};

I added this manually, but I’ll leave it to you to decide how you want to do this. This definition should
go at the end of the Elements.h file following the other element types. This class definition declares
the virtual Draw() and Move() functions, as the other element classes do. The data member m_String
of type CString stores the text to be displayed, and m_StartPoint specifies the position of the string 
in the client area of a view.

1026

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1026



Look at the constructor declaration in a little more detail. The CText constructor declaration defines four
parameters that provide the following essential information:

The pen width doesn’t apply to an item of text, because the appearance is determined by the font. Although
you do not need to pass a pen width as an argument to the constructor, the constructor needs to initialize
the m_PenWidth member inherited from the base class because it is used in the computation of the bound-
ing rectangle for the text.

Implementing the CText Class
You have three functions to implement for the CText class:

❑ The constructor for a CText object.

❑ The virtual Draw() function to display it.

❑ The Move() function to support moving a text object by dragging it with the mouse.

I added these to the Elements.cpp file.

The CText Constructor
The constructor for a CText object needs to initialize the class and base class data members:

CText::CText(CPoint Start, CPoint End, CString aString, COLORREF aColor)
{
m_Pen = 1;                           // Set the pen width
m_Color = aColor;                    // Set the color for the text
m_String = aString;                  // Make a copy of the string
m_StartPoint = Start;                // Start point for string

m_EnclosingRect = CRect(Start, End);
m_EnclosingRect.NormalizeRect();

}

This is all standard stuff, just like you’ve seen before for the other elements.

Parameter Defines

CPoint Start The position of the text in logical coordinates.

CPoint End The corner opposite Start that defines the rectangle enclosing the text.

CString aString The text string to be displayed as a CString object.

COLORREF aColor The color of the text.

1027

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1027



Drawing a CText Object
Drawing text in a device context is different to drawing a geometric figure. The implementation of the
Draw() function for a CText object is as follows:

void CText::Draw(CDC* pDC, CElement* pElement)
{
COLORREF Color(m_Color);             // Initialize with element color

if(this==pElement)
Color = SELECT_COLOR;              // Set selected color

// Set the text color and output the text
pDC->SetTextColor(Color);
pDC->TextOut(m_StartPoint.x, m_StartPoint.y, m_String);

}

You don’t need a pen to display text. You just need to specify the text color using the SetTextColor()
function member of the CDC object and then use the TextOut() member to output the text string. This
displays the string using the default font.

Because the TextOut() function doesn’t use a pen, it isn’t affected by setting the drawing mode of the
device context. This means that the raster operations (ROP) method that you use to move the elements
leaves temporary trails behind when applied to text. Remember that you used the SetROP2() function 
to specify the way in which the pen would logically combine with the background. By choosing
R2_NOTXORPEN as the drawing mode, you could cause a previously drawn element to disappear by
redrawing it — it would then revert to the background color and thus become invisible. Fonts aren’t
drawn using a pen, so it won’t work with the text elements. You’ll see how to fix this problem in the 
next chapter.

Moving a CText Object
The Move() function for a CText object is simple:

void CText::Move(CSize& aSize)
{
m_StartPoint += aSize;               // Move the start point
m_EnclosingRect += aSize;            // Move the rectangle

}

All you need to do is alter the point defining the position of the string, and the data member defining the
enclosing rectangle, by the distance specified in the aSize parameter.

Creating a Text Element
After the element type has been set to TEXT, a text object should be created at the cursor position when-
ever you click the left mouse button and enter the text you want to display. You therefore need to open
the dialog that permits text to be entered in the OnLButtonDown() handler. Add the following code to
this handler in the CSketcherView class:

void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)
{
CClientDC aDC(this);           // Create a device context

1028

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1028



OnPrepareDC(&aDC);             // Get origin adjusted
aDC.DPtoLP(&point);            // convert point to Logical
// In moving mode, so drop the element
if(m_MoveMode)
{

m_MoveMode = FALSE;                // Kill move mode
m_pSelected = 0;                   // De-select element
GetDocument()->UpdateAllViews(0);  // Redraw all the views

}
else
{
CSketcherDoc* pDoc = GetDocument();// Get a document pointer
if(pDoc->GetElementType() == TEXT)
{
CTextDialog aDlg;
if(aDlg.DoModal() == IDOK)
{
// Exit OK so create a text element 
CSketcherDoc* pDoc = GetDocument();
CSize TextExtent = aDC.GetTextExtent(aDlg.m_TextString);

// Get bottom right of text rectangle - MM_LOENGLISH
CPoint BottomRt(point.x+TextExtent.cx, point.y-TextExtent.cy);
CText* pTextElement = new CText(point, BottomRt,

aDlg.m_TextString, pDoc->GetElementColor());

// Add the element to the document
pDoc->AddElement(pTextElement);

// Get all views updated
pDoc->UpdateAllViews(0,0,pTextElement);

}
return;

}

m_FirstPoint = point;             // Record the cursor position
SetCapture();                     // Capture subsequent mouse messages

}
}

The code to be added is shaded. It creates a CTextDialog object and then opens the dialog using the
DoModal() function call. The m_TextString member of aDlg is automatically set to the string entered
in the edit box, so you can use this data member to pass the string entered back to the CText constructor
if the OK button is used to close the dialog. The color and pen width are obtained from the document
using the GetElementColor() and GetPenWidth() members that you have used previously. The posi-
tion of the text is the point value holding the cursor position that is passed to the handler.

You also need to calculate the opposite corner of the rectangle that bounds the text. Because the size of the
rectangle for the block of text depends on the font used in a device context, you use the GetTextExtent()
function in the CClientDC object, aDC, to initialize the CSize object, TextExtent, with the width and
height of the text string in logical coordinates.

Calculating the rectangle for the text in this way is a bit of a cheat, which could cause a problem after
you start saving documents in a file because it’s conceivable that a document could be read back into an

1029

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1029



environment where the default font in a device context is larger than that in effect when the rectangle
was calculated. This shouldn’t arise very often, so no need to worry about it here, but as a hint — if you
want to pursue it — you could use an object of the class CFont in the CText definition to define a spe-
cific font to be used. You could then use the characteristics of the font to calculate the enclosing rectangle
for the text string.

You could also use CFont to change the font size so that the text is also zoomed when the scale factor is
increased; however, you also need to devise a way to calculate the bounding rectangle based on the font
size currently being used, which varies with the view scale.

The CText object is created on the heap because the list in the document only maintains pointers to the ele-
ments. You add the new element to the document by calling the AddElement() member of CSketcherDoc,
with the pointer to the new text element as an argument. Finally, UpdateAllViews() is called with the first
argument 0, which specifies that all views are to be updated.

For the program to compile successfully, you need to add a #include directive for TextDialog.h to the
SketcherView.cpp file. You should now be able to produce annotated sketches using multiple scaled
and scrolled views, such as the ones shown in Figure 17-23.

Figure 17-23

Dialogs and Controls in CLR Sketcher
There is a full range of dialogs and controls available for use in a CLR program but the procedure for
adding them to an application is often different from what you have seen in the MFC version of Sketcher.

1030

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1030



Extending CLR Sketcher will allow you to try out some of the ways in which you can use dialogs and
controls in a Windows Forms application. You will not necessarily end up with a GUI for CLR Sketcher
that you would want in practice because you will inevitably duplicate some functions in a way that is
not needed in the application.

Adding a Dialog
It would be useful to add a dialog that you can use to enter pen widths to allow elements to be drawn
with lines of different thicknesses. Your first thought as to how to do this is likely to be the Design win-
dow for the form and indeed, for some predefined dialogs this is the place to start. However, when you
want to create your own dialog from the ground up, the starting point is Solution Explorer.

To add a dialog, you actually add a form to the project that you then modify to make it a dialog window.
In Solution Explorer, right-click your project, click the Add menu item, then click New Item. In the dialog
that displays, select the UI group in the left pane then select Windows Form in the right pane. Enter the
name as PenDialog.cs and click the OK button. The .cs extension identifies that the dialog is for a
C++/CLI program. A new Design window will display showing the dialog. In the Properties window
for the dialog, change the FormBorderStyle property in the Appearance group to FixedDialog and
set the ControlBox, MinimizeBox, and MaximizeBox properties in the Window Style group to false.
Change the value of the Text property to Set Pen Width. You now have a modal dialog for setting the
pen width so next you can add the controls you need to the dialog.

Customizing the Dialog
You’ll use radio buttons to allow a pen width to be chosen and place them within a group box that serves
to keep them in a group where only one radio button can be checked at one time. Drag a GroupBox con-
trol from the Containers group in the Toolbox window on to the dialog you have created. Change the
value of the Text property for the group box to Select Pen Width and change the value of the (name)
property to penWidthGroupBox. Adjust the size of the group box by dragging its border so it fits nicely
within the dialog frame. Drag six RadioButton controls from the Toolbox window to the group box and
arrange them in a rectangular configuration as you did in the MFC Sketcher program. You’ll notice that
alignment guides to help you position the controls display automatically for each RadioButton control
after the first. Change the text properties for the radio button controls to Pen Width 1, Pen Width 2
through to Pen Width 6 and the corresponding (name) property values to penWidthButton1 through
penWidthButton6. Change the value of the Checked property for penWidthButton1 to true.

Next you can add two buttons to the dialog and change their Text properties to OK and Cancel and the
(name) properties to penWidthOK and penWidthCancel. Return to the dialog’s property window and
set the AcceptButton and CancelButton property values to penWidthOK and penWidthCancel by
selecting from the list in the values column. Verify that the DialogResult property values for the but-
tons are OK and Cancel; this will cause the appropriate DialogResult value to be returned when the
dialog is closed by clicking one or other button. You should now have a dialog in the Design window
that looks similar to Figure 17-24.

The code for the dialog class is part of the project and is defined the PenDialog.h header file. However,
there are no instances of the PenDialog class anywhere at the moment so to use the dialog you must create
one. You will create a PenDialog object in the Form1 class so add an #include directive for PenDialog.h
to Form1.h. Add a new private variable of type PenDialog^ to the Form1 class with the name penDialog
and initialize it in the Form1 constructor to gcnew PenDialog().

1031

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1031



Figure 17-24

You need a way to get information about which radio button is checked from the PenDialog object. One
way to do this is to add a public property to the class to make the information available. It can be a read-
only property so you only need to implement get() for the property. The code that the Windows Form
Designer generates is delimited by a #pragma region and a #pragma endregion directive and you
should not modify this manually or add code in here. Add the following code to the PenDialog class
definition immediately after the #pragma endregion directive:

public: property float PenWidth
{
float get()
{
if(penWidthButton1->Checked)
return 1.0f;

if(penWidthButton2->Checked)
return 2.0f;

if(penWidthButton3->Checked)
return 3.0f;

if(penWidthButton4->Checked)
return 4.0f;

if(penWidthButton5->Checked)
return 5.0f;

return 6.0f;
}

}

Now that the dialog is complete and you have a Form1 member that references a dialog object, you need
a mechanism to open the dialog. Another toolbar button on the Form1 window is a good choice.

Displaying the Dialog
You need a bitmap to display on the new toolbar button. Switch to the Resource View and right-click the
Bitmap folder and click Insert Bitmap. Set the Height and Width property values for the bitmap to 16, the
Filename property value to penwidth.bmp and the ID to IDB_PENWIDTH. You can now create a bitmap
of your choosing to represent a line width; I’ll use a symbol looking like a pen drawing a line as in MFC
Sketcher.

In the Design window for Form1.h, add a separator to the toolbar followed by a new toolbar button. Set
the image for the new button to penwidth.bmp, then create a Click event handler for the toolbar button

1032

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1032



by double-clicking the Click event in its Properties window. Change the name of the handler function
to penWidthButton_Click. You can add code to the new event handler to display the pen dialog:

private: System::Void penWidthButton _Click(
System::Object^  sender, System::EventArgs^  e)

{
if(penDialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)
{
// Set the penwidth...

}
}

Calling ShowDialog() for the PenDialog object displays the dialog. Because it is a modal dialog, it remains
visible until a button is clicked to close it. The ShowDialog() function returns a value that is an enumerator
from the System::Windows::Forms::DialogResult enumeration. This enumeration defines the follow-
ing enumerator values:

None, OK, Cancel, Abort, Retry, Ignore, Yes, No

These provide for a variety of buttons being identified to close a dialog and you can set any of these values
from the drop-down list of values for the DialogResult property of a button.

You must fully qualify the DialogResult type name here because the Form1 class has an inherited member
with the name DialogResult.

You need somewhere to record the current pen width in the Form1 class, so add a private penWidth
variable of type float to the class and initialize it to 1.0f in the constructor. You can now replace the
comment in the Click event handler above by:

penWidth = penDialog->PenWidth;

This will set the current pen width to the value returned by the PenWidth property for the dialog.

All that remains is to implement drawing elements with a given pen width.

Setting the Drawing Pen Width
This will involve modifying the constructor in each of the derived element classes. The modifications are
essentially the same in each class, so I’ll just show how the Line class constructor changes and you can
do the rest. There’s something else to consider, too. At present the Bound property that you defined in
the Element base class returns a rectangle that is one pixel larger all round than the bounding rectangle
for an element. Drawing with thicker lines will mess this up. The Bound property should take account 
of the pen width so add a private member of type float to the Element class with the name penWidth
and update the definition of the Bound property to the following:

property System::Drawing::Rectangle Bound
{

System::Drawing::Rectangle get() 
{

int width = safe_cast<int>(penWidth);
return System::Drawing::Rectangle::Inflate(boundRect,width,width);

1033

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1033



}
}

The changes to the Line class constructor to allow for different pen widths are as follows:

Line(Color color, Point start, Point end, float penWidth)
{
this->penWidth = penWidth;
pen = gcnew Pen(color, penWidth);
// Rest of the code as before...

}

The only changes are to add an extra parameter to the Line constructor, to store the pen width in the
inherited penWidth member, and to use the Pen constructor that accepts a second argument of type
float that specifies the pen width. Make the same change to the constructors for the other element
classes.

Because you have changed the parameter list for the element class constructors, you must change the
MouseMove event handler that creates elements:

private: System::Void Form1_MouseMove(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e) {

if(drawing)
{
if(tempElement)

Invalidate(tempElement->Bound);  // The old element region
switch(elementType)
{

case ElementType::LINE:
tempElement = gcnew Line(color, firstPoint, e->Location, penWidth);
break;

case ElementType::RECTANGLE:
tempElement = gcnew Rectangle(color, firstPoint, e->Location, penWidth);
break;

case ElementType::CIRCLE:
tempElement = gcnew Circle(color, firstPoint, e->Location, penWidth);
break;

case ElementType::CURVE:
if(tempElement)

safe_cast<Curve^>(tempElement)->Add(e->Location);
else
tempElement = gcnew Curve(color, firstPoint, e->Location, penWidth);

break;
}
// Rest of the code as before...

}

You should now have CLR Sketcher with pen widths fully working, as Figure 17-25 illustrates.

1034

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1034



Figure 17-25

Using a Combo Box Control
You can add a combo box to the toolbar to provide an alternative means of entering a pen width. This is
an option in the list that displays when you click on the down arrow for the toolbar item that adds new
entries. You can customize this to do what you want.

Set the DropDownStyle property to DropDownList; the effect of this is to only allow values to be
selected from the list. A value of DropDown allows any value to be typed in the combo box. Change 
the (name) to something more relevant such as penWidthComboBox. You want to add a specific set of
items to be displayed in the combo box and the Items property holds these. Select the Items property,
click on (Collection) in the value column and select the ellipsis at the right in the value column to
open the String Collection Editor dialog. You can then enter strings, as shown in Figure 17-26.

Figure 17-26

These are the entries that will be displayed in the drop-down for the combo box and they are indexed
from 0 to 5.

1035

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1035



Because the default size for the combo box is wider than you need, change the value of the Size prop-
erty to 80,25. You can also change the FlatStyle property to System so it will display recessed. You
can also set the ToolTipText property to Select pen width.

At present the combo box will not show anything when it is first displayed but you can fix that in the
Form1 constructor. Add the following line of code to the constructor after the // TODO comment:

penWidthComboBox = SelectedIndex = 0;

The SelectedIndex property determines which of the entries in the Items collection is displayed in the
combo box and because the entries in the combo box Items property collection are indexed from 0, this
causes the first entry to be displayed initially. That will continue to be the entry displayed until you select
a new entry from the combo box, so the combo box will always show the currently selected pen width.

You need to know when an entry from the combo box is selected so you can update the penWidth mem-
ber of the Form1 class. An easy way to do this is to add a handler for the SelectedIndexChanged event
for the ComboBox object so add this handler through the Properties window and implement it like this:

private: System::Void penWidthComboBox_SelectedIndexChanged(
System::Object^  sender, System::EventArgs^  e) 

{
penWidth = safe_cast<float>(penWidthComboBox->SelectedIndex + 1);

}

If you recompile CLR Sketcher and run it again, the combo box will allow you to select a new pen width
but there’s a problem. If you display the pen width dialog by clicking the toolbar button to change the pen
width you’ll see it shows a different pen width selected. Clearly they are operating independently of one
another so you need to synchronize the two controls. When the pen width is changed by the combo box,
the radio buttons in the pen dialog need to be updated and vice versa. You don’t have a way to update the
radio buttons, but adding a set() function for the PenWidth property in the PenDialog class will fix it:

public: property float PenWidth
{
float get()
{
// Code as before...

}

void set(float penWidth)
{
if(penWidth = 1.0f)
penWidthButton1->Checked = true;

else if(penWidth == 2.0f)
penWidthButton2->Checked = true;

else if(penWidth == 3.0f)
penWidthButton3->Checked = true;

else if(penWidth == 4.0f)
penWidthButton4->Checked = true;

else if(penWidth == 5.0f)
penWidthButton5->Checked = true;

else if(penWidth == 6.0f)
penWidthButton6->Checked = true;

}
}

1036

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1036



You only need one extra line in the SelectedIndexChanged event handler for the combo box:

private: System::Void penWidthComboBox_SelectedIndexChanged(
System::Object^  sender, System::EventArgs^  e)

{
penWidth = safe_cast<float>(penWidthComboBox->SelectedIndex + 1);
penDialog->PenWidth = penWidth;

}

The handler function now sets the value of the PenWidth property for the PenDialog object to the cur-
rent value of penWidth. This will cause the Checked property for the appropriate radio button to be set
to true.

private: System::Void penWidthButton_Click(
System::Object^  sender, System::EventArgs^  e)

{
if(penDialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)
{
penWidthComboBox->SelectedIndex = safe_cast<int>(penWidth -1.0f);
penWidthComboBox->Invalidate();

}
}

You set the SelectedIndex property for penWidthComboBox according to the value returned by the
PenWidth property for the penDialog object. You then call Invalidate() for the combo box to get it
redrawn with the new value displayed. You no longer need to set the penWidth member of the Form1
class in this handler because changing the SelectedIndex property for the combo box will result in a
SelectedIndexChanged event and the handler for that will set the value of penWidth.

Creating Text Elements
Drawing text in CLR Sketcher will be similar to MFC Sketcher. Selecting a Text menu item or toolbar
button will set Text as the element drawing mode and in this mode clicking anywhere of the form will
display a modal dialog that allows some text to be entered; closing the dialog with the OK button will
display the text at the cursor position. There are many ramifications to drawing text and in the interest 
of keeping the book to a modest weight, I’ll limit this discussion to the basics.

Add a TEXT enumerator to the ElementType enum class, then add a Text menu item to the Elements
menu and a corresponding toolbar button. Change the value of the (name) property for the menu item
to textToolStripMenuItem and create a Click event handler for it. You can also add a value for the
ToolTipText property for the menu item and the toolbar button. You can create a bitmap for the toolbar
button to indicate text mode and select the Click event handler for the toolbar button to be the Click
event handler for the menu item. You can implement the Click event handler like this:

private: System::Void textToolStripMenuItem_Click(
System::Object^  sender, System::EventArgs^  e)

{
elementType = ElementType::TEXT;

}

The function just sets elementType to the ElementType enumerator that represents text drawing mode.

Don’t forget to add a Text menu item to the context menu, too.

1037

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1037



Drawing Text
The Graphics class defines a DrawString() function for drawing text. There are several overloaded
versions of this function, as described in the following table.

I’ll briefly introduce fonts and brushes before returning to creating Text elements.

Function Description

DrawString(String^ str,
Font^ font,
Brush^ brush,
PointF point)

Draws str at the position point using font
with the color determined by brush. Type
Windows::Drawing::PointF is a point represented
by coordinates of type float. You can use a Point
object as an argument in any of the functions for a
PointF parameter.

DrawString(String^ str,
Font^ font,
Brush^ brush,
float X, float Y)

Draws str at the position (X,Y) using font with
the color determined by brush. You can also use
coordinate arguments of type int when you call 
this function.

DrawString(String^ str,
Font^ font,
Brush^ brush,
RectangleF rect)

Draws str within the rectangle rect using font
with the color determined by brush. Type
Windows::Drawing::RectangleF is a rectangle
with its position width and height specified by 
values of type float. You can use a Rectangle
object as an argument in any of the functions for 
a RectangleF parameter.

DrawString(String^ str,
Font^ font,
Brush^ brush,
PointF point,
StringFormat^ format)

Draws str at the position point using font with
the color determined by brush and the formatting 
of the string specified by format. A StringFormat
object determines the alignment and other format-
ting properties for a string.

DrawString(String^ str,
Font^ font,
Brush^ brush,
float X, float Y,
StringFormat^ format)

Draws str at the position (X,Y) using font with
the color determined by brush and the formatting 
of the string specified by format.

DrawString(String^ str,
Font^ font,
Brush^ brush,
RectangleF rect,
StringFormat^ format)

Draws str within the rectangle rect using font
with the color determined by brush and the format-
ting of the string determined by format.

1038

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1038



Creating Fonts
You specify the font to be used when you draw a string by a System::Drawing::Font object that
defines the typeface, style, and size of the drawn characters. A System::Drawing::FontFamily
defines a group of fonts with a given typeface such as “Arial” or “Times New Roman”. The
System::Drawing::FontStyle enumeration defines possible font styles, which can be any of 
the following: Regular, Bold, Italic, Underline, Strikeout.

You can create create a Font object like this:

FontFamily^ family = gcnew FontFamily(L”Arial”);
System::Drawing::Font^ font = gcnew System::Drawing::Font(family, 10,

FontStyle::Bold,  GraphicsUnit::Point);

You create the FontFamily object by passing the name of the font to the constructor. The arguments to
the Font constructor are the font family, the size of the font, the font style, and an enumerator from the
GraphicUnit enumeration that defines the units for the font size. The possible values are: World,
Display, Pixel, Point, Inch, Document, Millimeter.

Thus the code fragment defines a 10-point bold Arial font. Note that the Font type name is fully quali-
fied in the fragment because a form object in a Windows Forms application inherits a property with the
name Font from the Form base class. The Font property identifies the default font for the form and you
pass this as the font argument to the DrawString() function.

Windows Forms applications support TrueType fonts primarily so it is best not to choose OpenType
fonts. If you attempt to use a font that is not supported, or the font is not installed on your computer, 
the Microsoft Sans Serif font will be used.

Creating Brushes
A System::Drawing::Brush object determines the color used when drawing a string with a given font;
it is also used to specify the color and texture used to fill a shape. You can’t create a Brush object directly
because Brush is an abstract class. You create brushes using the SolidBrush, the TextureBrush, and
the LinearGradientBrush class types that are derived from Brush. A SolidBrush object is a brush of
a single color, a TextureBrush object is a brush that uses an image to fill the interior of a shape and a
LinearGradientBrush is a brush defining a color gradient blend usually between two colors but it is
also possible to define blends between several colors. You will use a SolidBrush object to draw text,
which you create like this:

SolidBrush^ brush = gcnew SolidBrush(Color::Red);

This creates a solid brush that will draw text in red.

Choosing a Font
You can store a reference to the current Font object to be used when creating Text elements by adding a
variable of type System::Drawing::Font^ and with the name textFont to the Form1 class. Initialize

1039

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1039



textFont in the Form1 constructor to Font, which is a form property specifying the default font for the
form. Be sure to do this in the body of the constructor following the // TODO: comment; if you attempt
to initialize in the initialization list the program will fail because Font is not defined at this point.

You can add a toolbar button to allow the user to select a font for entering text, perhaps a button with 
a bitmap representation of F for font. Give the button a suitable value for the (name) property such as
fontToolStripButton and add a Click event handler for it.

The Toolbox window has a standard dialog for choosing a font that will display all the fonts available 
on your system and allow selection of the font style and size. Select the Design window for Form1.h
and drag a FontDialog control from the Toolbox window to the form. The Click event handler for 
the fontToolStripButton can display the font dialog:

private: System::Void fontToolStripButton_Click(
System::Object^  sender, System::EventArgs^  e) 

{
if(fontDialog1->ShowDialog() == System::Windows::Forms::DialogResult::OK)
textFont = fontDialog1->Font;

}

You display the dialog by calling its ShowDialog() function, as you did for the pen dialog. If the function
returns DialogResult::OK, then you know the dialog was closed using the OK button. In this case you
retrieve the chosen font from the Font property for the dialog object and store it in the textFont variable
in the Form1 class object. You can try this out if you want. The font dialog will look like Figure 17-27.

Figure 17-27

You need a class to represent a Text element, so let’s define that next.

1040

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1040



Defining the Text Element Class
The TextElement element type will have Element as a base class like the other element types so you
can call the Draw() function polymorphically. Basic information about the location and color of the text
element will be recorded in the members inherited from the base class, but you need to add extra mem-
bers to store the text and information relating to the font. Here’s the initial definition of the class:

public ref class TextElement : Element
{
private:
String^ text;
SolidBrush^ brush;
Font^ font;

public:
Text(Color color, Point p, String^ text, Font^ font)
{
this->color = color;
brush = gcnew SolidBrush(color);
position = p;
penWidth = 1;
this->text = text;
this->font = font;
int height = font->Height;
int width = height*text->Length;
boundRect = System::Drawing::Rectangle(position, Size(width, height));

}

virtual void Draw(Graphics^ g) override
{
brush->Color = highlighted ? highlightColor : color;
g->TranslateTransform(safe_cast<float>(position.X),

safe_cast<float>(position.Y));
g->DrawString(text, font, brush, position);
g->ResetTransform();

}
};

I chose the TextElement type name rather than just Text to avoid confusion with a member of the Form
class with the name Text. A TextElement object has members to store the text string, and the font and the
brush to be used to draw the text. Even though you don’t use a Pen object in the Text class you must ini-
tialize the inherited penWidth member because it is used to create the enclosing rectangle for the element.

Determining the bounding rectangle for a text element introduces a slight complication in that it depends
on the point size of the font and you have to figure out the width and height from the font size. The height
is easy because the font object has a Height property that makes the height of the font available in pixels.
This is the em height of the font (which is the height of the letter M), so you get a generous estimate of the
width of the rectangle the string will occupy by multiplying the em height by the number of characters in
the string.

1041

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1041



Creating the Text Dialog
You’ll want to enter text from the keyboard when you create a TextElement element, so you need a dialog
to manage this. Go to the Solution Explorer window and add a new form to CLR Sketcher by right-clicking
the project name, and clicking Add > New Item... from the menu. Enter the name as TextDialog.
Change the Text property for the form to Create Text Element and change the properties to make it
a dialog in the way you did for the PenDialog; this involves changing the FormBorderStyle property
to FixedDialog and setting MaximizeBox, MinimizeBox, and ControlBox properties to false.

The next step is to add buttons to close the dialog. Add an OK button and a Cancel button to the text
dialog with the DialogResult property values set appropriately. Change the (name) property values 
to textOKButton and textCancelButton respectively. Set the AcceptButton property value for
TextDialog to textOKButton and the CancelButton property value to textCancelButton.

Using a Text Box
A TextBox control allows a single line or multiple lines of text to be entered, so it certainly covers what
you want to do here. Add a TextBox to the text dialog by dragging it from the Toolbox window to the
dialog in the Design window. By default a TextBox allows a single line of text to be entered and you 
can stick with that here. When you want to allow multiple lines of input, you click the down arrow to
the right on the TextBox in the Design window and click the checkbox to enable Multiline. The Text
property for the TextBox provides access to the input and makes it available as a String object.

Ideally you want the text dialog to open with the text box for entering the text having the focus. Then you
can enter the text immediately after the dialog opens and press Enter to close it as if you selected the OK
button. The control that has the focus initially is determined by the tab order of the controls on the dialog,
which depends on the value for the TabIndex property for the controls. If you set the TabIndex prop-
erty for the text box to 0 and the OK and Cancel buttons to 2 and 3, this will result in the text box having
the focus when the dialog displays initially. The tab order also defines the sequence in which the focus
changes when you press the Tab key. You can display the tab order for the controls in the Design win-
dow for the dialog by selecting View > Tab Order from the main menu; selecting the menu item again
removes the display of the tab order.

The TextBox1 control will store the string you enter but because this is a private member of the dialog
object, it is not accessible directly. You must add a mechanism to retrieve the string from the dialog object.
Another problem is that the TextBox1 control will retain the text you enter and display it the next time
the dialog is opened. You probably don’t want this to occur, so you need a way to reset the Text property
of TextBox1. You can add a public property to the TextDialog class that will deal with both difficulties.
Add the following code to the TextDialog class definition following the #pragma endregion directive:

public: property String^ TextString
{
String^ get() {return textBox1->Text; }
void set(String^ text) { textBox1->Text = text; }

}

The get() function for the TextString property makes the string you enter available and the set()
function enables you to reset it.

1042

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1042



You need some extra data members in the Form1 class to help you create text elements. Add a member
with the name text of type String^ to store the string for a TextElement element. Add an #include
directive for TextDialog.h to Form1.h, then add a textDialog member of type TextDialog^. You
can initialize it to gcnew TextDialog() in the initialization list for the Form1 class constructor.

Displaying the Dialog and Creating a Text Element
Creating an element that is text is different from the geometric elements and to understand the sequence
of events in the code, let’s describe the interactive process. Text element mode is in effect when you select
the Text menu item or toolbar button. To create an element, you click at the position on the form where
you want the top-left corner of the text string to be. This will display the text dialog and you type the text
you want in the text box and press Enter to close the dialog. The MouseMove handler is not involved in the
process at all. Clicking the mouse to define the position of the element embodies the whole process. This
implies you must display the dialog and create the text element in the MouseDown event handler. Here’s
the code to do that:

private: System::Void Form1_MouseDown(System::Object^  sender,
System::Windows::Forms::MouseEventArgs^  e) {

if(e->Button == System::Windows::Forms::MouseButtons::Left)
{

if(mode == Mode::Normal)
drawing = true;

firstPoint = e->Location;
if(elementType == ElementType::TEXT && mode == Mode::Normal)
{
textDialog->TextString = L””;        // Reset the text box string       
if(textDialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)
{
text = textDialog->TextString; 
tempElement = gcnew TextElement(color, firstPoint, text, textFont);
sketch->Add(tempElement);
Invalidate(tempElement->Bound);    // The text element region
tempElement = nullptr;
Update();

}
drawing = false;

}
}

}

You only create text elements when the elementType member of the form has the value
ElementType::TEXT and mode is Mode::Normal; the second condition is essential to avoid displaying 
the dialog when you are in move mode. When the if condition is true, the first action is to reset the Text
property for the TextBox1 control to an empty string by setting this as the value for the TextString prop-
erty for the dialog. You then display the dialog by calling ShowDialog() in the if condition expression. 
If the ShowDialog() function returns DialogResult::OK, you retrieve the string from the dialog, create
the TextElement object, and add it to the sketch. You then invalidate the region occupied by the new ele-
ment and call Update() to display it. You also reset tempElement to nullptr when you are done with it.
Finally you set drawing to false to prevent the MouseMove handler from attempting to create an element.

1043

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1043



If you recompile Sketcher you should be able to create text elements using a font of your choice. Not only
that, but you can move and delete them, too. Figure 17-28 shows Sketcher displaying text elements.

Figure 17-28

Summary
In this chapter, you’ve seen several different dialogs using a variety of controls. Although you haven’t
created dialogs involving several different controls at once, the mechanism for handling them is the
same as you have seen because each control can operate independently of the others.

The most important points relating to MFC applications that you’ve seen in this chapter are:

❑ A dialog involves two components: a resource defining the dialog box and its controls, and a
class that is used to display and manage the dialog.

❑ Information can be extracted from controls in a dialog using the DDX mechanism. The data can
be validated using the DDV mechanism. To use DDX/DDV you need only to use the Add the
Control Variable option for the Add Member Variable wizard to define variables in the dialog
class associated with the controls.

❑ A modal dialog retains the focus in the application until the dialog box is closed. As long as a
modal dialog is displayed, all other windows in an application are inactive.

❑ A modeless dialog allows the focus to switch from the dialog box to other windows in the appli-
cation and back again. A modeless dialog can remain displayed as long as the application is exe-
cuting, if required.

❑ Common Controls are a set of standard Windows controls that are supported by MFC and the
resource editing capabilities of Developer Studio.

❑ Although controls are usually associated with a dialog, you can add controls to any window.

1044

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1044



You also learned about the following points in the context of programming for the CLR:

❑ You add a form to a Windows Forms application using the Solutions Explorer pane; you right-
click the project name and select Add > New Item... from the menu.

❑ You can convert a form into a modal dialog window by changing the value of the
FormBorderStyle property to FixedDialog, and changing the values of the MaximizeBox,
MinimizeBox, and ControlBox properties to false.

❑ You populate a dialog with controls by dragging them from the Toolbox window on to the 
dialog in the Design pane.

❑ You display a dialog by calling its ShowDialog() function.

❑ The value that you set for the DialogResult property for a button in a dialog determines the
value returned by the ShowDialog() function when that button is used to close the dialog.

❑ The Toolbox has several complete standard dialogs available including a dialog for choosing 
a font.

❑ You can draw a string on a form by calling the DrawString() function for the Graphics
object that encapsulates the drawing surface of a form. A Font object argument to the function
determines the typeface, style, and size of the characters drawn and a Brush object argument
determines the color.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Implement the scale dialog in MFC Sketcher using radio buttons.

2. Implement the pen width dialog in MFC Sketcher using a list box.

3. Implement the pen width dialog in MFC Sketcher as a combo box with the drop list type
selected on the Styles tab in the properties box. (The drop list type allows the user to select 
from a drop-down list but not to key alternative entries in the list.)

1045

Chapter 17: Working with Dialogs and Controls

25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1045



25905c17.qxd:WroxPro  2/21/08  9:20 AM  Page 1046



18
Storing and Printing

Documents

With what you have accomplished so far in the Sketcher program, you can create a reasonably
comprehensive document with views at various scales, but the information is transient because
you have no means of saving a document. In this chapter, you’ll remedy that by seeing how you
can store a document on disk. You’ll also investigate how you can output a document to a printer.

In this chapter, you’ll learn about:

❑ Serialization and how it works

❑ How to make objects of a class serializable

❑ The role of a CArchive object in serialization

❑ How to implement serialization in your own classes

❑ How to implement serialization in the Sketcher application

❑ How printing works with MFC

❑ What view class functions you can use to support printing

❑ What a CPrintInfo object contains and how it’s used in the printing process

❑ How to implement multipage printing in the Sketcher application

Understanding Serialization
A document in an MFC-based program is not a simple entity — it’s a class object that can be very
complicated. It typically contains a variety of objects, each of which may contain other objects, each
of which may contain still more objects… and that structure may continue for a number of levels.

You want to be able to save a document in a file, but writing a class object to a file represents some-
thing of a problem because it isn’t the same as a basic data item like an integer or a character string.

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1047



A basic data item consists of a known number of bytes, so to write it to a file only requires that the appro-
priate number of bytes be written. Conversely, if you know a value of type int was written to a file, to get
it back you just read the appropriate number of bytes.

Writing objects is different. Even if you write away all the data members of an object, that’s not enough to be
able to get the original object back. Class objects contain function members as well as data members, and all
the members, both data and functions, have access specifiers; therefore, to record objects in an external file,
the information written to the file must contain complete specifications of all the class structures involved.
The read process must also be clever enough to synthesize the original objects completely from the data in
the file. MFC supports a mechanism called serialization to help you to implement input from and output to
disk of your class objects with a minimum of time and trouble.

The basic idea behind serialization is that any class that’s serializable must take care of storing and retriev-
ing itself. This means that for your classes to be serializable — in the case of the Sketcher application, this
will include the CElement class and the shape classes you have derived from it — they must be able to
write themselves to a file. This implies that for a class to be serializable, all the class types that are used to
declare data members of the class must be serializable too.

Serializing a Document
This all sounds rather tricky, but the basic capability for serializing your document was built into the appli-
cation by the Application Wizard right at the outset. The handlers for the File > Save, File > Save As,
and File > Open menu items all assume that you want serialization implemented for your document,
and already contain the code to support it. Take a look at the parts of the definition and implementation of
CSketcherDoc that relate to creating a document using serialization.

Serialization in the Document Class Definition
The code in the definition of CSketcherDoc that enables serialization of a document object is shown
shaded in the following fragment:

class CSketcherDoc : public CDocument
{
protected: // create from serialization only

CSketcherDoc();
DECLARE_DYNCREATE(CSketcherDoc)

// Rest of the class...

// Overrides
public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);

// Rest of the class...

};

1048

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1048



There are three things here that relate to serializing a document object:

1. The DECLARE_DYNCREATE() macro.

2. The Serialize() member function.

3. The default class constructor.

DECLARE_DYNCREATE() is a macro that enables objects of the CSketcherDoc class to be created dynami-
cally by the application framework during the serialization input process. It’s matched by a complemen-
tary macro, IMPLEMENT_DYNCREATE(), in the class implementation. These macros apply only to classes
derived from CObject, but as you will see shortly, they aren’t the only pair of macros that can be used in
this context. For any class that you want to serialize, CObject must be a direct or indirect base because 
it adds the functionality that enables serialization to work. This is why the CElement class was derived
from CObject. Almost all MFC classes are derived from CObject and, as such, are serializable.

The Hierarchy Chart in the Microsoft Foundation Class Reference for Visual C++ 2008 shows those
classes, which aren’t derived from CObject. Note that CArchive is in this list.

The class definition also includes a declaration for a virtual function Serialize(). Every class that’s
serializable must include this function. It’s called to perform both input and output serialization opera-
tions on the data members of the class. The object of type CArchive that’s passed as an argument to this
function determines whether the operation that is to occur is input or output. You’ll explore this in more
detail when considering the implementation of serialization for the document class.

Note that the class explicitly defines a default constructor. This is also essential for serialization to work
because the default constructor is used by the framework to synthesize an object when reading from a
file, and the synthesized object is then filled out with the data from the file to set the values of the data
members of the object.

Serialization in the Document Class Implementation
There are two bits of the file containing the implementation of CSketcherDoc that relate to serialization.
The first is the macro IMPLEMENT_DYNCREATE() that complements the DECLARE_DYNCREATE() macro:

// SketcherDoc.cpp : implementation of the CSketcherDoc class
//

#include “stdafx.h”
#include “Sketcher.h”
#include “PenDialog.h”

#include “SketcherDoc.h”

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CSketcherDoc

1049

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1049



IMPLEMENT_DYNCREATE(CSketcherDoc, CDocument)

// Message maps and the rest of the file...

All this macro does is define the base class for CSketcherDoc as CDocument. This is required for the
proper dynamic creation of a CSketcherDoc object, including members inherited from the base class.

The Serialize() Function
The class implementation also includes the definition of the Serialize() function:

void CSketcherDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

// TODO: add storing code here
}
else
{

// TODO: add loading code here
}

}

This function serializes the data members of the class. The argument passed to the function is a reference
to an object of the CArchive class, ar. The IsStoring() member of this class object returns TRUE if the
operation is to store data members in a file and FALSE if the operation is to read back data members from
a previously stored document.

Because the Application Wizard has no knowledge of what data your document contains, the process 
of writing and reading this information is up to you, as indicated by the comments. To understand how
this is done, look a little more closely at the CArchive class.

The CArchive Class
The CArchive class is the engine that drives the serialization mechanism. It provides an MFC-based equiva-
lent of the stream operations in C++ that you used for reading from the keyboard and writing to the screen
in the console program examples. An object of the MFC class CArchive provides a mechanism for stream-
ing your objects out to a file, or recovering them again as an input stream, automatically reconstituting the
objects of your class in the process.

A CArchive object has a CFile object associated with it which provides disk input/output capability
for binary files, and provides the actual connection to the physical file. Within the serialization process,
the CFile object takes care of all the specifics of the file input and output operations, and the CArchive
object deals with the logic of structuring the object data to be written or reconstructing the objects from
the information read. You need to worry about the details of the associated CFile object only if you are
constructing your own CArchive object. With the document in Sketcher, the framework has already
taken care of it and passes the CArchive object that it constructs, ar, to the Serialize() function in
CSketcherDoc. You’ll be able to use the same object in each of the Serialize() functions you add to
the shape classes when you implement serialization for them.

1050

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1050



The CArchive class overloads the extraction and insertion operators (>> and <<) for input and output oper-
ations respectively on objects of classes derived from CObject, plus a range of basic data types. These over-
loaded operators work with the object types and primitive types shown in the following table.

For basic data types in your objects, you use the insertion and extraction operators to serialize the data.
To read or write an object of a serializable class which you have derived from CObject, you can either
call the Serialize() function for the object, or use the extraction or insertion operator. Whichever way
you choose must be used consistently for both input and output, so you should not output an object
using the insertion operator and then read it back using the Serialize() function, or vice versa.

Type Definition

bool Boolean value, true or false

float Standard single precision floating point

double Standard double precision floating point

BYTE 8-bit unsigned integer

char 8-bit character

wchar_t 16-bit character

int and short 16-bit signed integer

LONG and long 32-bit signed integer

LONGLONG 64-bit signed integer

ULONGLONG 64-bit unsigned integer

WORD and unsigned int 16-bit unsigned integer

DWORD and unsigned int 32-bit unsigned integer

CObject* Pointer to CObject

CString A CString object defining a string

SIZE and CSize An object defining a size as a cx, cy pair

POINT and CPoint An object defining a point as an x, y pair

RECT and CRect An object defining a rectangle by its upper-left and lower-right corners

CObject* Pointer to CObject

1051

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1051



Where you don’t know the type of an object when you read it, as in the case of the pointers in the list 
of shapes in our document, for example, you must only use the Serialize() function. This brings the
virtual function mechanism into play, so the appropriate Serialize() function for the type of object
pointed to is determined at run time.

A CArchive object is constructed either for storing objects or for retrieving objects. The CArchive function
IsStoring()returns TRUE if the object is for output, and FALSE if the object is for input. You saw this used
in the if statement in the Serialize() member of the CSketcherDoc class.

There are many other member functions of the CArchive class which are concerned with the detailed
mechanics of the serialization process, but you don’t usually need to know about them to use serializa-
tion in your programs.

Functionality of CObject-Based Classes
There are three levels of functionality available in your classes when they’re derived from the MFC class
CObject. The level you get in your class is determined by which of three different macros you use in the
definition of your class:

Each of these macros requires that a complementary macro, named with the prefix IMPLEMENT_ instead of
DECLARE_, be placed in the file containing the class implementation. As the table indicates, the macros
provide progressively more functionality, so I’ll concentrate on the third macro, DECLARE_SERIAL(),
because it provides everything that the preceding macros do and more. This is the macro you should use
to enable serialization in your own classes. It requires that the macro IMPLEMENT_SERIAL()be added to
the file containing the class implementation.

You may be wondering why the document class uses DECLARE_DYNCREATE() and not DECLARE_SERIAL().
The DECLARE_DYNCREATE() macro provides the capability for dynamic creation of the objects of the class
in which it appears. The DECLARE_SERIAL() macro provides the capability for serialization of the class,
plus the dynamic creation of objects of the class, so it incorporates the effects of DECLARE_DYNCREATE().
Your document class doesn’t need serialization because the framework only has to synthesize the docu-
ment object and then restore the values of its data members; however, the data members of a document 
do need to be serializable because this is the process used to store and retrieve them.

The Macros Adding Serialization to a Class
With the DECLARE_SERIAL() macro in the definition of your CObject-based class, you get access to
the serialization support provided by CObject. This includes special new and delete operators that

Macro Functionality

DECLARE_DYNAMIC() Support for runtime class information

DECLARE_DYNCREATE() Support for runtime class information and dynamic object creation

DECLARE_SERIAL() Support for runtime class information, dynamic object creation, and
serialization of objects

1052

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1052



incorporate memory leak detection in debug mode. You don’t need to do anything to use this because it
works automatically.

The macro requires the class name to be specified as an argument, so for serialization of the CElement
class, you would add the following line to the class definition:

DECLARE_SERIAL(CElement)

There’s no semicolon required here because this is a macro, not a C++ statement.

It doesn’t matter where you put the macro within the class definition, but if you always put it as the
first line, you’ll always be able to verify that it’s there, even when the class definition involves a lot of
lines of code.

The IMPLEMENT_SERIAL() macro, which you place in the implementation file for the class, requires three
arguments to be specified. The first argument is the name of the class, the second is the name of the direct
base class, and the third argument is an unsigned 32-bit integer identifying a schema number, or version
number, for your program. This schema number allows the serialization process to guard against problems
that can arise if you write objects with one version of a program and read them with another, in which the
classes may be different.

For example, you could add the following line to the implementation of the CElement class:

IMPLEMENT_SERIAL(CElement, CObject, 1)

If you subsequently modified the class definition, you would change the schema number to something
different, such as 2. If the program attempts to read data that was written with a different schema num-
ber from that in the currently active program, an exception is thrown. The best place for this macro is as
the first line following the #include directives and any initial comments in the .cpp file.

Where CObject is an indirect base of a class, as in the case of the CLine class, for example, each class 
in the hierarchy must have the serialization macros added for serialization to work in the top level class.
For serialization in CLine to work, the macros must also be added to CElement.

How Serialization Works
The overall process of serializing a document is illustrated in a simplified form in Figure 18-1.

The Serialize() function in the document object calls the Serialize() function (or uses an overloaded
insertion operator) for each of its data members. Where a member is a class object, the Serialize() func-
tion for that object serializes each of its data members in turn until ultimately basic data types are written to
the file. Because most classes in MFC ultimately derive from CObject, they contain serialization support,
so you can almost always serialize objects of MFC classes.

The data that you’ll deal with in the Serialize() member functions of your classes and the application
document object are, in each case, just the data members. The structure of the classes that are involved
and any other data necessary to reconstitute your original objects is automatically taken care of by the
CArchive object.

1053

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1053



Figure 18-1

Where you derive multiple levels of classes from CObject, the Serialize() function in a class must
call the Serialize() member of its direct base class to ensure that the direct base class data members
are serialized. Note that serialization doesn’t support multiple inheritance, so there can only be one base
class for each class defined in a hierarchy.

How to Implement Serialization for a Class
From the previous discussion, I can summarize the steps that you need to take to add serialization to 
a class:

1. Make sure that the class is derived directly or indirectly from CObject.

2. Add the DECLARE_SERIAL() macro to the class definition (and to the direct base class if the
direct base is not CObject).

3. Declare the Serialize() function as a member function of your class.

4. Add the IMPLEMENT_SERIAL() macro to the file containing the class implementation.

5. Implement the Serialize() function for your class.

Now take a look at how you can implement serialization for documents in the Sketcher program.

FILE

Document Output Using Serialization

Document
Object

Internal
Object

Internal
Object

Serialize()

Serialize() Serialize()

Serialize()Serialize()

<<<<

Serialize() Serialize()

Basic Data
Type

Basic Data
Type

1054

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1054



Applying Serialization
To implement serialization in the Sketcher application, you must implement the Serialize() function
in CSketcherDoc so that it deals with all of the data members of that class. You need to add serialization
to each of the classes which specify objects that may be included in a document. Before you start adding
serialization to your application classes, you should make some small changes to the program to record
when a user changes a sketch document. This isn’t absolutely necessary, but it is highly desirable because
it enables the program to guard against the document being closed without saving changes.

Recording Document Changes
There’s already a mechanism for noting when a document changes; it uses an inherited member of
CSketcherDoc, SetModifiedFlag(). By calling this function consistently whenever the document
changes, you record the fact that the document has been altered in a data member of the document class
object. This causes a prompt to be automatically displayed when you try to exit the application without
saving the modified document. The argument to the SetModifiedFlag() function is a value of type BOOL,
and the default value is TRUE. If you have occasion to specify that the document was unchanged, you can
call this function with the argument FALSE, although circumstances where this is necessary are rare.

There are only three occasions when you alter a document object:

❑ When you call the AddElement() member of CSketcherDoc to add a new element.

❑ When you call the DeleteElement() member of CSketcherDoc to delete an element.

❑ When you move an element.

You can handle these three situations easily. All you need to do is add a call to SetModifiedFlag()
to each of the functions involved in these operations. The definition of AddElement() appears in the
CSketcherDoc class definition. You can extend this to:

void AddElement(CElement* pElement)    // Add an element to the list
{

m_ElementList.AddTail(pElement);
SetModifiedFlag();                   // Set the modified flag

}

You can get to the definition of DeleteElement() in CSketcherDoc by clicking the function name in
the Class View pane. You should add one line to it, as follows:

void CSketcherDoc::DeleteElement(CElement* pElement)
{

if(pElement)
{

// If the element pointer is valid,
// find the pointer in the list and delete it
SetModifiedFlag();                 // Set the modified flag
POSITION aPosition = m_ElementList.Find(pElement);
m_ElementList.RemoveAt(aPosition);
delete pElement;                   // Delete the element from the heap

}
}

1055

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1055



Note that you must only set the flag if pElement is not null, so you can’t just stick the function call 
anywhere.

In a view object, moving an element occurs in the MoveElement() member called by the handler for the
WM_MOUSEMOVE message, but you only change the document when the left mouse button is pressed. If
there’s a right-button click, the element is put back to its original position, so you only need to add the call
to the SetModifiedFlag() function for the document to the OnLButtonDown() function, as follows:

void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)
{
CClientDC aDC(this);                 // Create a device context
OnPrepareDC(&aDC);                   // Get origin adjusted
aDC.DPtoLP(&point);                  // convert point to Logical

if(m_MoveMode)
{
// In moving mode, so drop the element
m_MoveMode = FALSE;                // Kill move mode
m_pSelected = 0;                   // De-select element
GetDocument()->UpdateAllViews(0);  // Redraw all the views
GetDocument()->SetModifiedFlag();  // Set the modified flag

}
// Rest of the function as before...

}

You call the inherited GetDocument() member of the view class to get access to a pointer to the docu-
ment object and then use this pointer to call the SetModifiedFlag() function. You now have all the
places where you change the document covered.

If you build and run Sketcher, and modify a document or add elements to it, you’ll now get a prompt to
save the document when you exit the program. Of course, the File > Save menu option doesn’t do
anything yet except clear the modified flag and save an empty file to disk. You must implement seriali-
zation to get the document written away to disk properly, and that’s the next step.

Serializing the Document
The first step is the implementation of the Serialize() function for the CSketcherDoc class. Within
this function, you must add code to serialize the data members of CSketcherDoc. The data members
that you have declared in the class are as follows:

class CSketcherDoc : public CDocument
{
protected: // create from serialization only

CSketcherDoc();
DECLARE_DYNCREATE(CSketcherDoc)

// Attributes
public:

1056

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1056



protected:
COLORREF m_Color;                                // Current drawing color
unsigned int m_Element;                          // Current element type
CTypedPtrList<CObList, CElement*> m_ElementList; // Element list
int m_PenWidth;                                  // Current pen width
CSize m_DocSize;                                 // Document size

// Rest of the class...
};

Note that you don’t need to add any of the preceding code at this point as it’s there already. All that’s
necessary is to insert the statements to store and retrieve these five data members in the Serialize()
member of the class. You can do this with the following code:

void CSketcherDoc::Serialize(CArchive& ar)
{
m_ElementList.Serialize(ar);         // Serialize the element list

if (ar.IsStoring())
{
ar << m_Color                      // Store the current color

<< m_Element                    // the current element type,
<< m_PenWidth                   // and the current pen width
<< m_DocSize;                   // and the current document size

}
else
{
ar >> m_Color                      // Retrieve the current color

>> m_Element                    // the current element type,
>> m_PenWidth                   // and the current pen width
>> m_DocSize;                   // and the current document size

}
}

For four of the data members, you just use the extraction and insertion operators that are overloaded 
in the CArchive class. This works for the data member m_Color, even though its type is COLORREF,
because type COLORREF is the same as type long. You can’t use the extraction and insertion operators for
m_ElementList, because its type isn’t supported by the operators, but as long as the CTypedPtrList
class is defined from the collection class template using CObList, as you have done in the declaration 
of m_ElementList, the class automatically supports serialization. You can, therefore, just call the
Serialize() function for the object.

You don’t need to place calls to the Serialize() member of the object m_ElementList in the if-else
statement because the kind of operation performed is determined automatically by the CArchive argu-
ment, ar. The single statement calling the Serialize() member of m_ElementList takes care of both
input and output.

That’s all you need for serializing the document class data members, but serializing the element list,
m_ElementList, causes the Serialize() functions for the element classes to be called to store and
retrieve the elements themselves, so you also need to implement serialization for those classes.

1057

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1057



Serializing the Element Classes
All the shape classes are serializable because you derived them from their base class CElement, which 
in turn is derived from CObject. The reason that you specified CObject as the base for CElement was
solely to get support for serialization. You can now add support for serialization to each of the shape
classes by adding the appropriate macros to the class definitions and implementations, and adding the
code to the Serialize() function member of each class to serialize its data members. You can start 
with the base class, CElement, where you need to modify the class definition as follows:

class CElement: public CObject
{
DECLARE_SERIAL(CElement)

protected:
COLORREF m_Color;                    // Color of an element
CRect m_EnclosingRect;               // Rectangle enclosing an element
int m_Pen;                           // Pen width

public:
virtual ~CElement(){}                // Virtual destructor

// Virtual draw operation
virtual void Draw(CDC* pDC, CElement* pElement=0){}
virtual void Move(CSize& aSize){}    // Move an element
CRect GetBoundRect();                // Get the bounding rectangle for an element

virtual void Serialize(CArchive& ar);// Serialize function for the class

protected:
CElement(void);                      // Here to prevent it being called

};

You add the DECLARE_SERIAL() macro and a declaration for the virtual function Serialize().

You already have the default constructor that was created by the Application Wizard. You changed it to
protected in the class, although it doesn’t matter what its access specification is as long as it appears
explicitly in the class definition. It can be public, protected, or private, and serialization still works.
If you forget to include a default constructor in a class, though, you’ll get an error message when the
IMPLEMENT_SERIAL() macro is compiled.

You should add the DECLARE_SERIAL() macro to each of the derived classes CLine, CRectangle,
CCircle, CCurve, and CText, with the relevant class name as the argument. You should also add a 
declaration for the Serialize() function as a public member of each class.

In the file Elements.cpp, you must add the following macro at the beginning:

IMPLEMENT_SERIAL(CElement, CObject, VERSION_NUMBER)

You can define the constant VERSION_NUMBER in the OurConstants.h file by adding the lines:

// Program version number for use in serialization
const UINT VERSION_NUMBER = 1;

1058

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1058



You can then use the same constant when you add the macro for each of the other shape classes. For
instance, for the CLine class you should add the line:

IMPLEMENT_SERIAL(CLine, CElement, VERSION_NUMBER)

and similarly for the other shape classes. When you modify any of the classes relating to the document,
all you need to do is change the definition of VERSION_NUMBER in the OurConstants.h file, and the new
version number applies in all your Serialize() functions. You can put all the IMPLEMENT_SERIAL()
statements at the beginning of the file if you like. The complete set is:

IMPLEMENT_SERIAL(CElement, CObject, VERSION_NUMBER)
IMPLEMENT_SERIAL(CLine, CElement, VERSION_NUMBER)
IMPLEMENT_SERIAL(CRectangle, CElement, VERSION_NUMBER)
IMPLEMENT_SERIAL(CCircle, CElement, VERSION_NUMBER)
IMPLEMENT_SERIAL(CCurve, CElement, VERSION_NUMBER)
IMPLEMENT_SERIAL(CText, CElement, VERSION_NUMBER)

The Serialize() Functions for the Shape Classes
You can now implement the Serialize() member function for each of the shape classes. Start with the
CElement class:

void CElement::Serialize(CArchive& ar)
{
CObject::Serialize(ar);              // Call the base class function

if (ar.IsStoring())
{
ar << m_Color                     // Store the color,

<< m_EnclosingRect             // and the enclosing rectangle,
<< m_Pen;                      // and the pen width

}
else
{
ar >> m_Color                      // Retrieve the color,

>> m_EnclosingRect              // and the enclosing rectangle,
>> m_Pen;                       // and the pen width

}
}

This function is of the same form as the one supplied for you in the CSketcherDoc class. All of the data
members defined in CElement are supported by the overloaded extraction and insertion operators, and
so everything is done using those operators. Note that you must call the Serialize() member for the
CObject class to ensure that the inherited data members are serialized.

For the CLine class, you can code the function as:

void CLine::Serialize(CArchive& ar)
{
CElement::Serialize(ar);             // Call the base class function

if (ar.IsStoring())
{

1059

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1059



ar << m_StartPoint                 // Store the line start point,
<< m_EndPoint;                  // and the end point

}
else
{
ar >> m_StartPoint                 // Retrieve the line start point,

>> m_EndPoint;                  // and the end point
}

}

Again, the data members are all supported by the extraction and insertion operators of the CArchive
object ar. You call the Serialize() member of the base class CElement to serialize its data members,
and this calls the Serialize() member of CObject. You can see how the serialization process cascades
through the class hierarchy.

The Serialize() function member of the CRectangle class is simple:

void CRectangle::Serialize(CArchive& ar)
{
CElement::Serialize(ar);             // Call the base class function

}

This calls the direct base class function because the class has no additional data members.

The CCircle class doesn’t have additional data members beyond those inherited from CElement either,
so its Serialize() function also just calls the base class function:

void CCircle::Serialize(CArchive& ar)
{
CElement::Serialize(ar);             // Call the base class function

}

For the CCurve class, you have surprisingly little work to do. You can code the Serialize() function as
follows:

void CCurve::Serialize(CArchive& ar)
{
CElement::Serialize(ar);             // Call the base class function
m_PointList.Serialize(ar);           // Serialize the list of points

}

After calling the base class Serialize() function, you just call the Serialize() function for the CList
object, m_PointList. Objects of any of the CList, CArray, and CMap classes can be serialized in this way
because, once again, these classes are all derived from CObject.

The last class for which you need to add an implementation of Serialize() to Elements.cpp is
CText:

void CText::Serialize(CArchive& ar)
{

1060

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1060



CElement::Serialize(ar);             // Call the base class function

if (ar.IsStoring())
{
ar << m_StartPoint                 // Store the start point

<< m_String;                    // and the text string
}
else
{
ar >> m_StartPoint                 // Retrieve the start point

>> m_String;                    // and the text string
}

}

After calling the base class function, you serialize the two data members using the insertion and extrac-
tion operators for ar. The CString class, although not derived from CObject, is still fully supported by
CArchive with these overloaded operators.

Exercising Serialization
That’s all you have to do to implement the storing and retrieving of documents in the Sketcher program!
The save and restore menu options in the file menu are now fully operational without adding any more
code. If you build and run Sketcher after incorporating the changes I’ve discussed in this chapter, you’ll
be able to save and restore files and be automatically prompted to save a modified document when you
try to close it or exit from the program, as shown in Figure 18-2.

Figure 18-2

The prompting works because the SetModifiedFlag() calls that you added everywhere you update the
document. If you click the Yes button in the screen shown in Figure 18-2, you’ll see the File > Save As
dialog box shown in Figure 18-3.

1061

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1061



Figure 18-3

This is the standard dialog box for this menu item under Windows. It’s all fully working, supported by
code supplied by the framework. The file name for the document has been generated from that assigned
when the document was first opened, and the file extension is automatically defined as .ske. The appli-
cation now has full support for file operations on documents. Easy, wasn’t it?

Moving Text
Now is a good time for me to digress briefly to go back and fix a problem that arose in the last chapter.
Remember that whenever you try to move a text element, it leaves a trail behind it until the text is posi-
tioned on the document again. This is caused by the reliance on ROP drawing in the MoveElement()
member of the view:

void CSketcherView::MoveElement(CClientDC& aDC, CPoint& point)
{
CSize Distance = point - m_CursorPos;   // Get move distance
m_CursorPos = point;                 // Set current point as 1st for next time

// If there is an element, selected, move it
if(m_pSelected)
{
aDC.SetROP2(R2_NOTXORPEN);
m_pSelected->Draw(&aDC,m_pSelected); // Draw the element to erase it
m_pSelected->Move(Distance);         // Now move the element
m_pSelected->Draw(&aDC,m_pSelected); // Draw the moved element

}
}

As previously mentioned, setting the drawing mode of the device context to R2_NOTXORPEN won’t remove
the trail left by moving the text. You could get around this by using a method of invalidating the rectangles
that are affected by the moving elements so that they redraw themselves. This can cause some annoying

1062

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1062



flicker when an element is moving fast, however. A better solution is to use the invalidation method only
for the text elements, and the original ROP method for all the other elements, but how do you know which
class the selected element belongs to? This is surprisingly simple: you can use an if statement, as follows:

if (m_pSelected->IsKindOf(RUNTIME_CLASS(CText)))
{
// Code here will only be executed if the selected element is of class CText

}

This uses the RUNTIME_CLASS macro to get a pointer to an object of type CRuntimeClass, then passes
this pointer to the IsKindOf() member function of m_pSelected. This returns a non-zero result if
m_pSelected is of class CText, and returns zero otherwise. The only proviso is that the class you’re
checking for must be declared using DECLARE_DYNCREATE or DECLARE_SERIAL macros, which is why 
I left this fix until now.

There is another way of determining the class type using a facility that is built in to ISO/ANSI C++. The
typeid() operator returns a reference to an object of type type_info that encapsulates a pointer to the
name of the runtime type of the object or expression that you place between the parentheses. Because
you can compare type_info objects using the == operator (or the != operator), you could test whether
m_pSelected is of type CText like this:

if (typeid(m_pSelected) == typid(CText))
{
// Code here will only be executed if the selected element is of class CText

}

If you want to use a typeid() operator, you must add an #include directive for the <typinfo>
ISO/ANSI C++ header. Of course, there is no requirement for the types to be declared using the MFC
macros noted for the previous method, although you must ensure that the /GR compiler option that
enables runtime type information is specified.

The final code for MoveElement() using the MFC RUNTIME_CLASS macro is as follows:

void CSketcherView::MoveElement(CClientDC& aDC, CPoint& point)
{

CSize Distance = point - m_CursorPos;   // Get move distance
m_CursorPos = point;          // Set current point as 1st for next time

// If there is an element, selected, move it
if(m_pSelected)
{
// If the element is text use this method...
if(m_pSelected->IsKindOf(RUNTIME_CLASS(CText)))
{
CRect OldRect=m_pSelected->GetBoundRect(); // Get old bound rect
m_pSelected->Move(Distance);               // Move the element
CRect NewRect=m_pSelected->GetBoundRect(); // Get new bound rect
OldRect.UnionRect(&OldRect,&NewRect);      // Combine the bound rects
aDC.LPtoDP(OldRect);                       // Convert to client coords
OldRect.NormalizeRect();                   // Normalize combined area
InvalidateRect(&OldRect);                  // Invalidate combined area
UpdateWindow();                            // Redraw immediately

1063

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1063



m_pSelected->Draw(&aDC,m_pSelected);  // Draw highlighted

return;
}

// ...otherwise, use this method
aDC.SetROP2(R2_NOTXORPEN);
m_pSelected->Draw(&aDC,m_pSelected);    // Draw the element to erase it
m_pSelected->Move(Distance);            // Now move the element
m_pSelected->Draw(&aDC,m_pSelected);    // Draw the moved element

}
}

You can see that the code for invalidating the rectangles that you must use for moving the text is much
less elegant than the ROP code that you use for all the other elements. It works, though, as you’ll see for
yourself if you make this modification and then build and run the application. If you would like to try
the typeid() mechanism for testing the type, just change the condition in the if statement and add the
#include directive for <typeinfo> to SketcherView.cpp.

Printing a Document
Now take a look at printing the document. You already have a basic printing capability implemented 
in the Sketcher program, courtesy of the Application Wizard and the framework. The File > Print,
File > Print Setup, and File > Print Preview menu items all work. Selecting the File >
Print Preview menu item displays a window showing the current Sketcher document on a page, 
as shown in Figure 18-4.

Figure 18-4

Whatever is in the current document is placed on a single sheet of paper at the current view scale. If the
document’s extent is beyond the boundary of the paper, the section of the document off the paper won’t
be printed. If you select the Print button, this page is sent to your printer.

As a basic capability which you get for free, it’s quite impressive, but it’s not adequate for most pur-
poses. A typical document in our program may well not fit on a page, so you would either want to scale

1064

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1064



the document to fit, or perhaps more conveniently, print the whole document over as many pages as nec-
essary. You can add your own print processing code to extend the capability of the facilities provided by
the framework, but to implement this you first need to understand how printing has been implemented
in MFC.

The Printing Process
Printing a document is controlled by the current view. The process is inevitably a bit messy because print-
ing is inherently a messy business, and it potentially involves you in implementing your own versions of
quite a number of inherited functions in your view class.

Figure 18-5 shows the logic of the process and the functions involved.

Figure 18-5 shows how the sequence of events is controlled by the framework and how printing a docu-
ment involves calling five inherited members of your view class, which you may need to override. The
CDC member functions shown on the left side of the diagram communicate with the printer device driver
and are called automatically by the framework.

Figure 18-5

Th
e 

Fr
am

ew
or

k

View Members

CDC::StartDoc()

CDC::StartPage()

CDC::EndPage()

CDC::EndDoc()

OnPreparePrinting()

OnBeginPrinting()

• Calculate page count
• Call DoPreparePrinting()

loop while there are more pages

• Print headers/footers
• Print current page

• Change viewpoint origin
• Set DC attributes

• Allocate GDI resources

• De-Allocate GDI resources

OnPrepareDC()

OnPrint()

OnEndPrinting()

1

2

4

6

9
8

7

5

3

1065

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1065



The typical role of each of the functions in the current view during a print operation is specified in the
notes alongside it. The sequence in which they are called is indicated by the numbers on the arrows. In
practice, you don’t necessarily need to implement all of these functions, only those that you want to for
your particular printing requirements. Typically, you’ll want at least to implement your own versions of
OnPreparePrinting(), OnPrepareDC(), and OnPrint(). You’ll see an example of how these functions
can be implemented in the context of the Sketcher program a little later in this chapter.

The output of data to a printer is done in the same way as outputting data to the display — through a
device context. The GDI calls that you use to output text or graphics are device-independent, so they
work just as well for a printer as they do for a display. The only difference is the device that the CDC
object applies to.

The CDC functions in Figure 18-5 communicate with the device driver for the printer. If the document to
be printed requires more than one printed page, the process loops back to call the OnPrepareDC() func-
tion for each successive new page, as determined by the EndPage() function.

All the functions in your view class that are involved in the printing process are passed a pointer to an
object of type CPrintInfo as an argument. This object provides a link between all the functions that
manage the printing process, so take a look at the CPrintInfo class in more detail.

The CPrintInfo Class
A CPrintInfo object has a fundamental role in the printing process because it stores information about
the print job being executed and details of its status at any time. It also provides functions for accessing
and manipulating this data. This object is the means by which information is passed from one view func-
tion to another during printing, and between the framework and your view functions.

An object of the CPrintInfo class is created whenever you select the File > Print or File > Print
Preview menu options. After being used by each of the functions in the current view that are involved
in the printing process, it’s automatically deleted when the print operation ends.

All the data members of CPrintInfo are public. They are shown in the following table.

Member Usage

m_pPD A pointer to the CPrintDialog object that displays the Print dialog box.

m_bDirect This is set to TRUE by the framework if the print operation is to
bypass the Print dialog box; otherwise, FALSE.

m_bPreview A member of type BOOL that has the value TRUE if File > Print
Preview was selected; otherwise, FALSE.

m_bContinuePrinting A member of type BOOL. If this is set to TRUE, the framework contin-
ues the printing loop shown in the diagram. If it’s set to FALSE, the
printing loop ends. You only need to set this variable if you don’t
pass a page count for the print operation to the CPrintInfo object
(using the SetMaxPage() member function). In this case, you’ll be
responsible for signaling when you’re finished by setting this vari-
able to FALSE.

1066

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1066



A CPrintInfo object has the public member functions shown in the following table.

When you’re printing a document consisting of several pages, you need to figure out how many printed
pages the document occupies, and store this information in the CPrintInfo object to make it available to
the framework. You can do this in your version of the OnPreparePrinting() member of the current view.

To set the number of the first page in the document, you need to call the function SetMinPage() in the
CPrintInfo object, which accepts the page number as an argument of type UINT. There’s no return
value. To set the number of the last page in the document, you call the function SetMaxPage(), which

Function Description

SetMinPage(UINT nMinPage) The argument specifies the number of the first page of the 
document. There is no return value.

SetMaxPage(UINT nMaxPage) The argument specifies the number of the last page of the 
document. There is no return value.

GetMinPage() const Returns the number of the first page of the document as 
type UINT.

GetMaxPage() const Returns the number of the last page of the document as 
type UINT.

GetFromPage() const Returns the number of the first page of the document to be
printed as type UINT. This value is set through the print 
dialog.

GetToPage() const Returns the number of the last page of the document to be
printed as type UINT. This value is set through the print 
dialog.

Member Usage

m_nCurPage A value of type UINT that stores the page number of the current
page. Pages are usually numbered starting from 1.

m_nNumPreviewPages A value of type UINT that specifies the number of pages displayed in
the Print Preview window. This can be 1 or 2.

m_lpUserData This is of type LPVOID and stores a pointer to an object that you 
create. This allows you to create an object to store additional infor-
mation about the printing operation and associate it with the
CPrintInfo object.

m_rectDraw A CRect object that defines the usable area of the page in logical
coordinates.

m_strPageDesc A CString object containing a format string used by the framework
to display page numbers during print preview.

1067

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1067



also accepts the page number as an argument of type UINT and doesn’t return a value. If you later want to
retrieve these values, you can call the GetMinPage() and GetMaxPage() functions for the CPrintInfo
object.

The page numbers that you supply are stored in the CPrintDialog object pointed to by the m_pPD mem-
ber of CPrintInfo, and displayed in the dialog box that pops up when you select File > Print...
from the menu. The user is then able to specify the numbers of the first and last pages that are printed,
which you can retrieve by calling the GetFromPage() and GetToPage() members of the CPrintInfo
object. In each case, the values returned are of type UINT. The dialog automatically verifies that the num-
bers of the first and last pages to be printed are within the range you supplied by specifying the minimum
and maximum pages of the document.

You now know what functions you can implement in the view class to manage printing for yourself,
with the framework doing most of the work. You also know what information is available through the
CPrintInfo object passed to the functions concerned with printing. You’ll get a much clearer under-
standing of the detailed mechanics of printing if you implement a basic multipage print capability for
Sketcher documents.

Implementing Multipage Printing
You use the MM_LOENGLISH mapping mode in the Sketcher program to set things up and then switch to
MM_ANISOTROPIC. This means that the shapes and the view extent are measured in terms of hundredths
of an inch. Of course, with the unit of size a fixed physical measure, ideally you want to print objects at
their actual size.

With the document size specified as 3000 by 3000 units, you can create documents up to 30 inches square,
which spreads over quite a few sheets of paper if you fill the whole area. It requires a little more effort to
work out the number of pages necessary to print a sketch than with a typical text document because in
most instances, you’ll need a two-dimensional array of pages to print a complete sketch document.

To avoid overcomplicating the problem, assume that you’re printing a normal sheet of paper (either A4
size or 8 1⁄2 by 11 inches) and in portrait orientation (which means the long edge is vertical). With either
paper size, you’ll print the document in a central portion of the paper measuring 6 inches by 9 inches.
With these assumptions, you don’t need to worry about the actual paper size; you just need to chop the
document into 600 by 900 unit chunks. For a document larger than one page, you’ll divide up the docu-
ment as illustrated in the example in Figure 18-6.

As you can see, you’ll be numbering the pages row-wise, so in this case pages 1 to 4 are in the first row
and pages 5 to 8 are in the second.

Getting the Overall Document Size
To figure out how many pages a particular document occupies, you need to know how big the sketch is,
and for this you want the rectangle that encloses everything in the document. You can do this easily by
adding a function GetDocExtent() to the document class, CSketcherDoc. Add the following declara-
tion to the public interface for CSketcherDoc:

CRect GetDocExtent();      // Get the bounding rectangle for the whole document

1068

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1068



Figure 18-6

The implementation is no great problem. The code for it is:

// Get the rectangle enclosing the entire document
CRect CSketcherDoc::GetDocExtent()
{
CRect DocExtent(0,0,1,1);            // Initial document extent
CRect ElementBound(0,0,0,0);         // Space for element bounding rectangle

POSITION aPosition = m_ElementList.GetHeadPosition();

while(aPosition)                     // Loop through all the elements in the list
{
// Get the bounding rectangle for the element
ElementBound=(m_ElementList.GetNext(aPosition))->GetBoundRect();

// Make coordinates of document extent the outer limits
DocExtent.UnionRect(DocExtent, ElementBound);

}
DocExtent.NormalizeRect();
return DocExtent;

}

You can add this function definition to the SketcherDoc.cpp file, or simply add the code if you used
the Add > Add Function capability from the pop-up in Class View. The process loops through every
element in the document, using the aPosition variable to step through the list and getting the bound-
ing rectangle for each element. The UnionRect() member of the CRect class calculates the smallest rec-
tangle that contains the two rectangles passed as arguments, and puts that value in the CRect object for
which the function is called. Therefore, DocExtent keeps increasing in size until all the elements are
contained within it. Note that you initialize DocExtent with (0,0,1,1) because the UnionRect() function
doesn’t work properly with rectangles that have zero height or width.

Storing Print Data
The OnPreparePrinting() function in the view class is called by the application framework to enable
you to initialize the printing process for your document. The basic initialization that’s required is to

1069

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1069



provide information about how many pages are in the document for the print dialog that displays. You’ll
need to store information about the pages that your document requires so you can use it later in the other
view functions involved in the printing process. You’ll originate this in the OnPreparePrinting() mem-
ber of the view class, too, store it in an object of your own class that you’ll define for this purpose, and
store a pointer to the object in the CPrintInfo object that the framework makes available. This approach
is primarily to show you how this mechanism works; in most cases, you’ll find it easier just to store the
data in your view object, mainly because it makes the notation for referencing the data much simpler.

You’ll need to store the number of pages running the width of the document, m_nWidths, and the num-
ber of rows of pages down the length of the document, m_nLengths. You’ll also store the upper-left cor-
ner of the rectangle enclosing the document data as a CPoint object, m_DocRefPoint, because you’ll
use this when you work out the position of a page to be printed from its page number. You can store the
file name for the document in a CString object, m_DocTitle, so that you can add it as a title to each
page. The definition of the class to accommodate these is:

#pragma once

class CPrintData
{
public:
UINT m_nWidths;                    // Page count for the width of the document
UINT m_nLengths;                   // Page count for the length of the document
CPoint m_DocRefPoint;              // Top left corner of the document contents
CString m_DocTitle;                // The name of the document

};

You can add a new header file with the name PrintData.h to the project by right-clicking the Header
Files folder in the Solution Explorer pane and then selecting Add > New Item from the pop-up. You 
can now enter the class definition in the new file. 

You don’t need an implementation file for this class. The default constructor (which is automatically
generated) is quite adequate here. Because an object of this class is only going to be used transiently, 
you don’t need to use CObject as a base or to consider any other complication.

The printing process starts with a call to the view class member OnPreparePrinting(), so check out
how you should implement that.

Preparing to Print
The Application Wizard added versions of OnPreparePrinting(), OnBeginPrinting(), and
OnEndPrinting() to CSketcherView at the outset. The base code provided for OnPreparePrinting()
calls DoPreparePrinting() in the return statement, as you can see:

BOOL CSketcherView::OnPreparePrinting(CPrintInfo* pInfo)
{

// default preparation
return DoPreparePrinting(pInfo);

}

The DoPreparePrinting() function displays the Print dialog box using information about the number
of pages to be printed that’s defined in the CPrintInfo object. Whenever possible, you should calculate
the number of pages to be printed and store it in the CPrintInfo object before this call occurs. Of course,

1070

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1070



in many circumstances you may need information from the device context for the printer before you can
do this — when you’re printing a document where the number of pages is going to be affected by the size
of font to be used, for example — in which case it won’t be possible to get the page count before you call
OnPreparePrinting(). In this case, you can compute the number of pages in the OnBeginPrinting()
member, which receives a pointer to the device context as an argument. This function is called by the
framework after OnPreparePrinting(), so the information entered in the Print dialog box is available.
This means that you can also take account of the paper size selected by the user in the Print dialog box.

Assume that the page size is large enough to accommodate a 6 inch by 9 inch area to draw the document
data, so you can calculate the number of pages in OnPreparePrinting(). The code for it is:

BOOL CSketcherView::OnPreparePrinting(CPrintInfo* pInfo)
{
pInfo->m_lpUserData = new CPrintData;     // Create a print data object 
CSketcherDoc* pDoc = GetDocument();       // Get a document pointer

// Get the whole document area
CRect DocExtent = pDoc->GetDocExtent();

// Save the reference point for the whole document
((CPrintData*)(pInfo->m_lpUserData))->m_DocRefPoint =

CPoint(DocExtent.left, DocExtent.bottom);

// Get the name of the document file and save it
((CPrintData*)(pInfo->m_lpUserData))->m_DocTitle = pDoc->GetTitle();

// Calculate how many printed page widths of 600 units are required
// to accommodate the width of the document
((CPrintData*)(pInfo->m_lpUserData))->m_nWidths =

static_cast<UINT>(ceil((static_cast<double>(DocExtent.Width()))/600.0));

// Calculate how many printed page lengths of 900 units are required
// to accommodate the document length
((CPrintData*)(pInfo->m_lpUserData))->m_nLengths =

static_cast<UINT>(ceil((static_cast<double>(DocExtent.Height()))/900.0));

// Set the first page number as 1 and
// set the last page number as the total number of pages
pInfo->SetMinPage(1);
pInfo->SetMaxPage((static_cast<CPrintData*>(pInfo->m_lpUserData))->m_nWidths *

(static_cast<CPrintData*>(pInfo->m_lpUserData))->m_nLengths);

return DoPreparePrinting(pInfo);
}

You first create a CPrintData object on the heap and store its address in the pointer m_lpUserData in the
CPrintInfo object passed to the function via the pointer pInfo. After getting a pointer to the document,
you get the rectangle enclosing all of the elements in the document by calling the function GetDocExtent()
that you added to the document class earlier in this chapter. You then store the corner of this rectangle in the
m_DocRefPoint member of the CPrintData object and put the name of the file that contains the document
in m_DocTitle.

Referencing the CPrintData object through the pointer in the CPrintInfo object is rather cumbersome.
You get to the pointer with the expression pInfo->m_lpUserData, but because the pointer is of type void,

1071

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1071



you must add a cast to type CPrintData* to get to the m_DocRefPoint member of the object. The full
expression to access the reference point for the document is:

(static_cast<CPrintData*>(pInfo->m_lpUserData))->m_DocRefPoint

You have to use this approach for all references to members of the CPrintData object, so any expres-
sions using them are festooned with this notation. If you put the data in the view class, you only need
to use the name of the data member. Don’t forget to add an #include directive for PrintData.h to 
the SketcherView.cpp file.

The next two lines of code calculate the number of pages across the width of the document, and the num-
ber of pages required to cover the length. The number of pages to cover the width is computed by divid-
ing the width of the document by the width of the print area of a page, which is 600 units or 6 inches, and
rounding up to the next highest integer using the ceil() library function that is defined in the <cmath>
header. An #include for this header file also needs to be added to SketcherView.cpp. For example,
ceil(2.1) returns 3.0, ceil(2.9) also returns 3.0, and ceil(-2.1) returns -2.0. A similar calcula-
tion to that for the number of pages across the width of a document produces the number to cover the
length. The product of these two values is the total number of pages to be printed, and this is the value
that you’ll supply for the maximum page number.

Cleaning Up After Printing
Because you created the CPrintData object on the heap, you must ensure that it’s deleted when you’re
done with it. You do this by adding code to the OnEndPrinting() function:

void CSketcherView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* pInfo)
{

// Delete our print data object
delete static_cast<CPrintData*>(pInfo->m_lpUserData);

}

That’s all that’s necessary for this function in the Sketcher program, but in some cases you’ll need to do
more. Your one-time final cleanup should be done here. Make sure that you remove the comment delim-
iters (/* */) from the second parameter name; otherwise, your function won’t compile. The default imple-
mentation comments out the parameter names because you may not need to refer to them in your code.
Because you use the pInfo parameter, you must uncomment it; otherwise, the compiler reports it as
undefined.

You don’t need to add anything to the OnBeginPrinting() function in the Sketcher program, but you’d
need to add code to allocate any GDI resources, such as pens, if they were required throughout the print-
ing process. You would then delete these as part of the clean up process in OnEndPrinting().

Preparing the Device Context
At the moment, the Sketcher program calls OnPrepareDC(), which sets up the mapping mode as
MM_ANISOTROPIC to take account of the scaling factor. You must make some additional changes so 
that the device context is properly prepared in the case of printing:

void CSketcherView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{

1072

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1072



int Scale = m_Scale;                 // Store the scale locally
if(pDC->IsPrinting())
Scale = 1;                         // If we are printing, set scale to 1

CScrollView::OnPrepareDC(pDC, pInfo);
CSketcherDoc* pDoc = GetDocument();
pDC->SetMapMode(MM_ANISOTROPIC);     // Set the map mode
CSize DocSize = pDoc->GetDocSize();  // Get the document size

// y extent must be negative because we want MM_LOENGLISH
DocSize.cy = -DocSize.cy;            // Change sign of y
pDC->SetWindowExt(DocSize);          // Now set the window extent

// Get the number of pixels per inch in x and y
int xLogPixels = pDC->GetDeviceCaps(LOGPIXELSX);
int yLogPixels = pDC->GetDeviceCaps(LOGPIXELSY);

// Calculate the viewport extent in x and y
long xExtent = static_cast<long>(DocSize.cx)*Scale*xLogPixels/100L;
long yExtent = static_cast<long>(DocSize.cy)*Scale*yLogPixels/100L;

pDC->SetViewportExt(static_cast<int>(xExtent),
static_cast<int>(-yExtent)); // Set viewport extent

}

This function is called by the framework for output to the printer as well as to the screen. You should make
sure that a scale of 1 is used to set the mapping from logical coordinates to device coordinates when you’re
printing. If you left everything as it was, the output would be at the current view scale, but you’d need to
take account of the scale when calculating how many pages you needed, and how you set the origin for
each page.

You can determine whether you have a printer device context or not by calling the IsPrinting() mem-
ber of the current CDC object, which returns TRUE if you are printing. All you need to do when you have
a printer device context is set the scale to 1. Of course, you must change the statements lower down
which use the scale value, so that they use the local variable Scale rather than the m_Scale member of
the view. The values returned by the calls to GetDeviceCaps() with the arguments LOGPIXELSX and
LOGPIXELSY return the number of logical points per inch in the x and y directions for your printer when
you’re printing, and the equivalent values for your display when you’re drawing to the screen, so this
automatically adapts the viewport extent to suit the device to which you’re sending the output.

Printing the Document
You can write the data to the printer device context in the OnPrint() function. This is called once for each
page to be printed. You need to add an override for this function to CSketcherView, using the Properties
window for the class. Select OnPrint from the list of overrides and then click <Add> OnPrint in the right
column. 

You can obtain the page number of the current page from the m_nCurPage member of the CPrintInfo
object and use this value to work out the coordinates of the position in the document that corresponds 
to the upper-left corner of the current page. The way to do this is best understood using an example, so
imagine that you are printing page seven of an eight-page document, as illustrated in Figure 18-7.

1073

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1073



Figure 18-7

You can get an index to the horizontal position of the page by decrementing the page number by 1 and
taking the remainder after dividing by the number of page widths required for the width of the printed
area of the document. Multiplying the result by 600 produces the x coordinate of the upper-left corner 
of the page, relative to the upper-left corner of the rectangle enclosing the elements in the document.
Similarly, you can determine the index to the vertical position of the document by dividing the current
page number reduced by 1 by the number of page widths required for the horizontal width of the docu-
ment. By multiplying the remainder by 900, you get the relative y coordinate of the upper-left corner of
the page. You can express this in two statements as follows:

int xOrg = (static_cast<CPrintData*>(pInfo->m_lpUserData))->m_DocRefPoint.x +
600*((pInfo->m_nCurPage - 1)%

((static_cast <CPrintData*>(pInfo->m_lpUserData))->m_nWidths));
int yOrg = (static_cast<CPrintData*>(pInfo->m_lpUserData))->m_DocRefPoint.y -

900*((pInfo->m_nCurPage - 1)/
((static_cast <CPrintData*>(pInfo->m_lpUserData))->m_nWidths));

The statements look complicated, but that’s mostly because of the need to access the information stored
in the CPrintData object through the pointer in the CPrintInfo object.

It would be nice to print the file name of the document at the top of each page, but you want to be sure
you don’t print the document data over the file name. You also want to center the printed area on the
page. You can do this by moving the origin of the coordinate system in the printer device context after
you have printed the file name. This is illustrated in Figure 18-8.

Figure 18-8 illustrates the correspondence between the printed page area in the device context and the
page to be printed in the reference frame of the document data. Remember that these are in logical coor-
dinates — the equivalent of MM_LOENGLISH in Sketcher — so y is increasingly negative from top to bot-
tom. The page shows the expressions for the offsets from the page origin for the 600 by 900 area where
you are going to print the page. You want to print the information from the document in the dashed area
shown on the page, so you need to map the xOrg, yOrg point in the document to the position shown in
the printed page, which is displaced from the page origin by the offset values xOffset and yOffset.

1074

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1074



Figure 18-8

By default, the origin in the coordinate system that you use to define elements in the document is mapped
to the origin of the device context, but you can change this. The CDC object provides a SetWindowOrg()
function for this purpose. This enables you to define a point in the document’s logical coordinate system
that you want to correspond to the origin in the device context. It’s important to save the old origin that’s
returned from the SetWindowOrg() function as a CPoint object. You must restore the old origin when
you’ve finished drawing the current page; otherwise, the m_rectDraw member of the CPrintInfo object
is not set up correctly when you come to print the next page.

The point in the document that you want to map to the origin of the page has the coordinates xOrgxOffset,
yOrg+yOffset. This may not be easy to visualize, but remember that by setting the window origin, you’re
defining the point that maps to the viewport origin. If you think about it, you should see that the xOrg, yOrg
point in the document is where you want it on the page.

The complete code for printing a page of the document is:

// Print a page of the document
void CSketcherView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
// Output the document file name

m_rectDraw.right

Document Origin
DocRefPoint

The Document

The Printed Page

This distance is xOffset given by
(m_rectDraw.right - 600)/2

This distance is yOffset given by
- (m_rectDraw.bottom - 600)/2

The page origin in the
document maps to here

File Name

Page 7

Page Origin

600

9
0

0

m
_r

ec
tD

ra
w

.b
ot

to
m

xOrg,yOrg

1075

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1075



pDC->SetTextAlign(TA_CENTER);        // Center the following text
pDC->TextOut(pInfo->m_rectDraw.right/2, -20,

(static_cast<CPrintData*>(pInfo->m_lpUserData))->m_DocTitle);
pDC->SetTextAlign(TA_LEFT);          // Left justify text

// Calculate the origin point for the current page
int xOrg = (static_cast<CPrintData*>(pInfo->m_lpUserData))->m_DocRefPoint.x +

600*((pInfo->m_nCurPage - 1)%
((static_cast<CPrintData*>(pInfo->m_lpUserData))->m_nWidths));

int yOrg = (static_cast<CPrintData*>(pInfo->m_lpUserData))->m_DocRefPoint.y -
900*((pInfo->m_nCurPage - 1)/

((static_cast<CPrintData*>(pInfo->m_lpUserData))->m_nWidths));

// Calculate offsets to center drawing area on page as positive values
int xOffset = (pInfo->m_rectDraw.right - 600)/2;
int yOffset = -(pInfo->m_rectDraw.bottom + 900)/2;

// Change window origin to correspond to current page & save old origin
CPoint OldOrg = pDC->SetWindowOrg(xOrg-xOffset, yOrg+yOffset);

// Define a clip rectangle the size of the printed area
pDC->IntersectClipRect(xOrg,yOrg,xOrg+600,yOrg-900);

OnDraw(pDC);                         // Draw the whole document
pDC->SelectClipRgn(NULL);            // Remove the clip rectangle
pDC->SetWindowOrg(OldOrg);           // Restore old window origin

}

The first step is to output the file name that you squirreled away in the CPrintInfo object. The
SetTextAlign() function member of the CDC object allows you to define the alignment of subsequent
text output in relation to the reference point you supply for the text string in the TextOut() function.
The alignment is determined by the constant passed as an argument to the function. You have three 
possibilities for specifying the alignment of the text, as shown in the following table.

You define the x coordinate of the file name on the page as half the page width, and the y coordinate 
as 20 units, which is 0.2 inches, from the top of the page. After outputting the name of the document 
file as centered text, you reset the text alignment to the default, TA_LEFT, for the text in the document.

Constant Alignment

TA_LEFT The point is at the left of the bounding rectangle for the text, so the text is to
the right of the point specified. This is default alignment.

TA_RIGHT The point is at the right of the bounding rectangle for the text, so the text is to
the left of the point specified.

TA_CENTER The point is at the center of the bounding rectangle for the text.

1076

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1076



The SetTextAlign() function also allows you to change the position of the text vertically by ORing a
second flag with the justification flag. The second flag can be any of those shown in the following table.

The next action in OnPrint() uses the method that I discussed for mapping an area of the document to
the current page. You get the document drawn on the page by calling the OnDraw() function that is used
to display the document in the view. This potentially draws the entire document, but you can restrict
what appears on the page by defining a clip rectangle. A clip rectangle encloses a rectangular area in the
device context within which output appears. Output is suppressed outside of the clip rectangle. It’s also
possible to define irregularly shaped areas for clipping called regions.

The initial default clipping area defined in the print device context is the page boundary. You define a
clip rectangle which corresponds to the 600 by 900 area centered in the page. This ensures that you draw
only in this area, and the file name is not to be overwritten.

After the current page has been drawn, you call SetClipRgn() with a NULL argument to remove the
clip rectangle. If you don’t do this, output of the document title is suppressed on all pages after the first
because it lies outside the clip rectangle that would otherwise remain in effect in the print process until
the next time IntersectClipRect() gets called.

Your final action is to call SetWindowOrg() again to restore the window origin to its original location, 
as discussed earlier in this chapter.

Getting a Printout of the Document
To get your first printed Sketcher document, you just need to build the project and execute the program
(once you’ve fixed any typos). If you try File > Print Preview, you should get something similar to
the window shown in Figure 18-9.

You get print preview functionality completely for free. The framework uses the code that you’ve
supplied for the normal multipage printing operation to produce page images in the Print Preview
window. What you see in the Print Preview window should be exactly the same as appears on the
printed page.

Constant Alignment

TA_TOP Aligns the top of the rectangle bounding the text with the point defining the
position of the text. This is the default.

TA_BOTTOM Aligns the bottom of the rectangle bounding the text with the point defining
the position of the text.

TA_BASELINE Aligns the baseline of the font used for the text with the point defining the
position of the text.

1077

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1077



Figure 18-9

Serialization and Printing in CLR Sketcher
Serialization is the process of writing objects to a stream, and deserialization is the reverse: reconstruct-
ing objects from a stream. The .NET Framework offers several different ways to serialize and deserialize
your C++/CLI class objects. XML serialization serializes objects into an XML stream that conforms to 
a particular XML schema. You can also serialize objects into XML streams that conform to the Simple
Object Access Protocol (SOAP) specification and this is referred to as SOAP serialization. A discussion
of XML and SOAP is beyond the scope of this book, not because it’s difficult — it isn’t — but because 
to cover it adequately requires more pages than I can possibly include in this book. I’ll therefore show
you how to use the third and perhaps simplest form of serialization provided by the .NET Framework,
binary serialization.

You’ll also investigate how you can print sketches from CLR Sketcher. With the help given by the Form
Designer, this is going to be easy.

Understanding Binary Serialization
Before you get into the specifics of serializing a sketch, let’s get an overview of what’s involved in binary
serialization of your class objects. For binary serialization of your class objects to be possible, you have

1078

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1078



to make your classes serializable. You can make a ref class or value class serializable by marking it with
the Serializable attribute, like this:

[Serializable]
public ref class MyClass
{

// Class definition...
};

Of course, in practice there may be a little more to it. For serialization to work with MyClass, all the class
fields must be serializable too, and often there are fields that are not serializable by default, or fields that
it does not make sense to serialize because the data stored will not be valid when it is deserialized, or
fields that you just don’t want serialized for security reasons. In this case special measures are necessary
to take care of the non-serializable class members.

Dealing with Fields That Are Not Serializable
Where a class has members that are not serializable, you can mark them with the NonSerialized attrib-
ute to prevent them from being serialized. For example:

[Serializable]
public ref class MyClass
{

public:
[NonSerialized]
int value;
// Rest of the class definition...

};

Here the serialization process will not attempt to serialize the value member of a MyClass object. For
this to compile, you need a using declaration for the System::Runtime::Serialization namespace.

Although marking a data member as non-serializable avoids the possibility of the serialization process
failing with types you cannot serialize, it does not solve the problem of serializing the objects unless the
non-serialized data can be happily omitted when you come to reconstruct the object when it is deserial-
ized. You will typically want to take some special action in relation to the non-serialized fields.

You use the OnSerializing attribute to mark a class function that you want to be called when the seri-
alization of an object begins. This gives you an opportunity to do something about the non-serialized
fields. For example:

[Serializable]
public ref class MyClass
{

public:
[NonSerialized]
int value;

1079

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1079



[OnSerializing]
void FixNonSerializedData(StreamingContext context)
{

// Code to do the necessary...
)

// Rest of the class definition...
};

When a MyClass object is serialized, the FixNonSerializedData() function will be called for the object
and the code in here will deal with the problem of value not being serialized, perhaps by allowing some
other data to be serialized that will enable value to be reconstructed when the object is deserialized. The
function that you mark with the OnSerializing attribute must have a void return type and a parameter
of type StreamingContext. The StreamingContext object that is passed to the function when it is called
is a struct containing information about the source and destination but you won’t need to use this in CLR
Sketcher.

You can also arrange for a member function to be called when an object is deserialized. You just have to
mark the function with the OnSerialized attribute. For example:

[Serializable]
public ref class MyClass
{
public:
[NonSerialized]
int value;

[OnSerializing]
void FixNonSerializedData(StreamingContext context)
{

// Code to do the necessary...
)

[OnSerialized]
void ReconstructValue(StreamingContext context)
{

// Code to do the necessary...
)

// Rest of the class definition...
};

The ReconstructValue() function will be executed after the deserialization process is complete, so this
function will have the responsibility for setting value appropriately. The function that you mark with the
OnSerialized attribute must also have a void return type and a parameter of type StreamingContext.

To summarize, preparing a class to allow objects of that class type to be serialized involves the following
five steps:

1. Mark the class to be serialized with the Serializable attribute.

1080

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1080



2. Identify any data members that cannot or should not be serialized and mark them with
NonSerialized attributes.

3. Add a public function with a return type of void and a single parameter of type
StreamingContext to deal with the non-serializable fields when an object is serialized and
mark the function with the OnSerializing attribute.

4. Add a public function with a return type of void and a single parameter of type
StreamingContext to deal with the non-serialized fields when an object is deserialized and
mark the function with the OnSerialized attribute.

5. Add a using declaration for the System::Runtime::Serialization namespace to the
header file containing the class.

Serializing an Object
Serializing an object means writing it to a stream, so you first must define the stream that is the destina-
tion for the data defining the object. A stream is represented by a System::IO::Stream class, which is
an abstract ref class type. A stream can be any source or destination for data that is a sequence of bytes; a
file, a TCP/IP socket, and a pipe that allows data to be passed between two processes are all examples of
streams. 

You will usually want to serialize your objects to a file and the System::IO::File class contains static
functions for creating objects that encapsulate files. You use the File::Open() function to create a new
file or open an existing file for reading and/or writing. The Open() function returns a reference of type
FileStream^ to an object that encapsulates the file. Because FileStream is a type that is derived from
Stream, you can store the reference that the Open() function returns in a variable of type Stream^. The
Open() function comes in three overloaded versions, and the version you will be using has the follow-
ing form:

FileStream^ Open( String^ path, FileMode mode)

The path parameter is the path to the file that you want to open and can be a full path to the file, or just
the file name. If you just specify an argument that is just a file name, the file will be assumed to be in the
current directory.

The mode parameter controls whether the file is created if it does not exist, and whether the data can be
overwritten if the file does exist. The mode argument can be any of the FileMode enumeration values
described in the following table.

Continued

FileMode Enumerator Description

CreateNew Requests that a new file specified by path is created. If the file already
exists, an exception of type System::IO::IOException is thrown.
You use this when you are writing a new file.

Truncate Requests that an existing file specified by path is opened and its con-
tents discarded by truncating the size of the file to zero bytes. You use
this when you are writing an existing file.

1081

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1081



Thus you could create a stream encapsulating a file in the current directory that you can write with the
following statement:

Stream^ stream = File::Open(L”sketch.dat”, FileMode::Create);

The file sketch.dat will be created in the current directory if it does not exist; if it exists the contents
will be overwritten.

The static OpenWrite() function in the File class will open the existing file that you specify by the
string argument with write access and return a FileStream^ reference to the stream you use to write
the file.

To serialize an object to a file encapsulated by a FileStream object that you have created, you use an
object of type System::Runtime::Serialization::Formatters::Binary::BinaryFormatter
that you create like this:

BinaryFormatter^ formatter = gcnew BinaryFormatter();

You need a using declaration for System::Runtime::Serialization::Formatters::Binary if this
statement is to compile. The formatter object has a Serialize() function member that you use to seri-
alize an object to a stream. The first argument to the function is a reference to the stream that is the desti-
nation for the data and the second argument is a reference to the object to be serialized to the stream. Thus
you can write a sketch object to stream with the following statement:

formatter->Serialize(stream, sketch);

You read an object from a stream using the Deserialize() function for a BinaryFormatter object:

Sketch sketch = safe_cast<Sketch>(formatter->Deserialize(stream));

The argument to the Deserialize() function is a reference to the stream that is to be read. The function
returns the object read from the stream as type Object^ so you must cast it to the appropriate type.

FileMode Enumerator Description

Create Specifies that if the file specified by path does not exist, it should be
created and if the file does exist it should be overwritten. You use this
when you are writing a file. 

Open Specifies that the existing file specified by path should be opened. 
If the file does not exist, an exception of type
System::IO::FileNotFoundException is thrown. You use this
when you are reading a file.

OpenOrCreate Specifies that the file specified by path should be opened if it exists and
created if it doesn’t. You can use this to read or write a file, depending
on the access argument.

Append The file specified by path is opened if it exists and the file position set
to the end of the file; if the file does not exist, it will be created. You use
this to append data to an existing file or to write a new file.

1082

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1082



Serializing a Sketch
You have to do two things to allow sketches to be serialized in the CLR Sketcher application: Make the
Sketch class serializable and add code to enable the File menu items and toolbar buttons to support
saving and retrieving sketches.

Making the Sketch Class Serializable
Add the Serializable attribute immediately before that Sketch class definition to specify that the
class is serializable:

[Serializable]
public ref class Sketch
{

// Class definition as before...
};

Although this indicates that the class is serializable, in fact it is not. Serialization will fail because the
STL/CLR container classes are not serializable by default. You must specify that the elements class
member is not serializable, like this:

[Serializable]
public ref class Sketch
{

private:
[NonSerialized]
list<Element^>^ elements;

// Rest of the class definition as before...
};

The class really is serializable now, but not in a useful way because none of the elements in the sketch will
get written to the file. You must provide an alternative repository for the elements in the list<Element^>
container that is serializable to get the sketch elements written to the file. Fortunately, a regular C++/CLI
array is serializable and even more fortunately, the list container has a ToArray() function that returns the
entire contents of the container as an array. You can therefore add a public function to the class with the
OnSerializing attribute that will copy the contents of the elements container to an array and that you can
arrange to be called before serialization begins. You can also add a public function with the OnSerialized
attribute that will recreate the elements container when the array containing the elements is deserialized.
Here are the changes to the Sketch class that will accommodate that:

[Serializable]
public ref class Sketch
{

private:
[NonSerialized]
list<Element^>^ elements;
array<Element^>^ elementArray;

public:
Sketch(): elementArray(nullptr)
{
elements = gcnew list<Element^>();
}

1083

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1083



[OnSerializing]
void ListToArray(StreamingContext context)
{
elementArray = elements->to_array();

}

[OnDeserialized]
void ArrayToList(StreamingContext context)
{
elements = gcnew list<Element^>(elementArray);
elementArray = nullptr;

}

// Rest of the class definition as before...
};

You have a new private data member, elementArray, that holds all the elements in the sketch when it is
serialized to a file. You initialize this to nullptr in the constructor. When a Sketch object is serialized,
the ListToArray() function will be called first, and this function transfers the contents of the list con-
tainer to the elementArray array before serialization of the object takes place. The Sketch object con-
taining the elementArray object is then written to the file. When a sketch is read back from the file, 
the Sketch object is recreated containing the elementArray member, after which the ArrayToList()
function is called to restore the contents of the elements container from the array. The array is no longer
required, so you set it to nullptr in the function.

So far, so good but you are not quite there yet. For a sketch to be serializable, all the elements in the
sketch must be serializable too, and there’s the small problem of the Curve class that has an STL/CLR
container as a member. First though, add the Serializable attribute to the Element class and all its
subclasses. 

You can pull the same trick with the container in the Curve class as you did with the Sketch class con-
tainer, so amend the class definition to the following:

[Serializable]
public ref class Curve : Element
{
private:
[NonSerialized]
vector<Point>^ points;
array<Point>^ pointsArray;

public:
Curve(Color color, Point p1, Point p2, float penWidth) : pointsArray(nullptr)
{

this->penWidth = penWidth;
pen = gcnew Pen(color, penWidth);
this->color = color;
points = gcnew vector<Point>();
position = p1;
points->push_back(Point(p2.X-position.X, p2.Y-position.Y));

// Find the minimum and maximum coordinates

1084

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1084



int minX = p1.X < p2.X ? p1.X : p2.X;
int minY = p1.Y < p2.Y ? p1.Y : p2.Y;
int maxX = p1.X > p2.X ? p1.X : p2.X;
int maxY = p1.Y > p2.Y ? p1.Y : p2.Y;
int width = Math::Max(2, maxX - minX);
int height = Math::Max(2, maxY - minY);
boundRect = System::Drawing::Rectangle(minX, minY, width, height);

}

[OnSerializing]
void VectorToArray(StreamingContext context)
{
pointsArray = points->to_array();

}

[OnDeserialized]
void ArrayToVector(StreamingContext context)
{
points = gcnew vector<Point>(pointsArray);
pointsArray = nullptr;

}

// Rest of the class definition as before...
};

The changes are very similar to those in the Sketch class. You have an array member to store the points
defining the curve when serializing an object and two functions that take care of creating an array con-
taining the points before serialization and restoring the points container after deserialization. Don’t for-
get to add a using declaration for the System::Runtime::Serialization namespace to Sketch.h and
Elements.h.

You are not out of the woods yet on serializing elements. If you try to serialize a sketch now, it will fail
because objects of type Pen and Brush (and subclasses of these types) are not serializable. The Element
class has a member of type Pen^ and the TextElement class has a member of type SolidBrush^ so nei-
ther of these classes is serializable at present. The first step to fixing this is to mark these members with
the NonSerialized attribute. You can then add a public function to the Element class to restore the Pen
object when an element is deserialized:

[OnDeserialized]
void CreatePen(StreamingContext context)
{
pen = gcnew Pen(color, penWidth);

}

This function is called for the base class whenever an object of any of the derived class types is deserialized.

You can add a public function to the TextElement class to restore the SolidBrush object when a text
element is deserialized:

[OnDeserialized]
void CreateBrush()
{

1085

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1085



brush = gcnew SolidBrush(color);
}

This recreates the brush when a TextElement object is deserialized. All the classes involved in serializ-
ing and deserializing a sketch should now be OK, so it’s time to implement the event handlers for the
menu items.

Implementing File Operations for a Sketch
The menu items and toolbar buttons for file operations are already in place in CLR Sketcher. If you double-
click the Click event property in the Properties window for the File > Save, File > Save As... and
File > Open menu items, you’ll put the event handlers in place for all of them. Then just select the appro-
priate event handler from the drop-down list of values for the Click event for each of the toolbar buttons.
All you have to do now is supply the code to make them do what you want. 

Creating Dialogs for File Operations
The Toolbox has standard dialogs for opening and saving files and you can use both of these. Drag an
OpenFileDialog and a SaveFileDialog from the Toolbox to the Design window for Form1. You can
change the (name) property values to saveFileDialog and openFileDialog. Change the values for
the Title properties for both dialogs to whatever you want displayed in the title bar. You can also
change the FileName property in the openFileDialog to sketch; this is the default file name that will
be displayed when the dialog is first used. It’s a good idea to define a folder that will hold your sketches
so create one now; you could use something like C:\CLR Sketches. You can specify the default directory
as the value for the InitialDirectory property for both dialogs. Both dialogs have a Filter property
that specifies the filters for the list of files that are displayed by the dialogs. You can set the value for the
Filter property for both dialogs to “CLR Sketches|*.ske| All files|*.*”. The default value of 1
for the FilterIndex property determines that the first file filter applies by default. If you want the sec-
ond file filter to apply, set the value for FilterIndex to 2. Verify that the values for the ValidateNames
and OverwritePrompt properties for the saveFileDialog have default values of true; this results in
the user being prompted when an existing sketch is about to be overwritten.

Saving a Sketch
You need a BinaryFormatter object to save a sketch and a good place to keep it is in the Form1 class.
Add a using declaration for the System::Runtime::Serialization::Formatters::Binary name-
space to Form1.h and add a new private member, formatter, of type BinaryFormatter^ to the
Form1 class. You can initialize it to gcnew BinaryFormatter() in the initialization list for the Form1
class constructor. 

Before you get into implementing the event handler for the File > Save menu item, let’s consider
what the logic is going to be. When you click the File > Save menu item, what happens depends on
whether the current sketch has been saved before. If the sketch has never been saved, you want the file
save dialog to be displayed; if the sketch has been saved previously, you just want to write the sketch 
to the file without displaying the dialog. To allow this to work, you need a way to record whether or not
the sketch has been saved. One way to do this is to add a public member of type bool with the name
Saved to the Sketch class. You can initialize it to false in the Sketch class constructor and set it to
true the first time the sketch is saved.

Before you implement the Click event handler, add a using declaration for the System.IO namespace to
the Form1.h header file. Add a private String^ member, sketchFilepath, to the Form1 class to store

1086

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1086



the file path for a sketch; initialize this to nullptr in the Form1 constructor. You can add the following
code to implement the Click event handler for save operations:

private: System::Void saveToolStripMenuItem_Click(
System::Object^  sender, System::EventArgs^  e) 

{
Stream^ stream;
if(!sketch->Saved)
{ // Sketch not saved so display the dialog
if(saveFileDialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)
{
if((stream = File::Open(saveFileDialog->FileName, FileMode::Create))

!= nullptr)
{
formatter->Serialize(stream, sketch);
stream->Close();
sketchFilepath = saveFileDialog->FileName;
sketch->Saved = true;

}
}

}
else
{  // Sketch saved previously so just save the sketch...

stream = File::OpenWrite(sketchFilepath);            
formatter->Serialize(stream, sketch);
stream->Close();

}
}

There are two courses of action depending on whether or not the sketch has been saved previously. 

If the sketch hasn’t been saved before, you open the save dialog. If the OK button closes the dialog you call
the static Open() function to create a FileStream object for the file using the file name provided by the
FileName property for the dialog object. You serialize the sketch to the file by calling the Serialize()
function for the BinaryFormatter object and close the stream. You save the file path for use next time
around and set the Saved member of the Sketch object to true.

The else clause belonging to the first if statement specifies what happens when the sketch has been
saved previously. You obtain a reference to a FileStream object that you can use to serialize the sketch
by calling the static OpenWrite() function that is defined in the File class. You then serialize the sketch
in the same way as before. Finally you call Close() for the stream to close the stream and release the
resources.

Retrieving a Sketch from a File
The Click handler for the File > Open menu item deals with reading a sketch from a file. You can
implement it like this:

private: System::Void openToolStripMenuItem_Click(
System::Object^  sender, System::EventArgs^  e)

{
if(openFileDialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)

1087

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1087



{
Stream^ stream;
if((stream = openFileDialog->OpenFile()) != nullptr)
{
sketch = safe_cast<Sketch^>(formatter->Deserialize(stream));
stream->Close();
sketch->Saved = true;
sketchFilepath = openFileDialog->FileName;
Invalidate();

}
}

}

The OpenFileDialog class provides an OpenFile() function that returns a reference to the stream encap-
sulating the file selected in the dialog. You deserialize the sketch from the file by calling the Deserialize()
function for the formatter object and close the stream. The sketch is obviously in a file so you set the Saved
member of the sketch to true. You store the file name in sketchFilepath for use by subsequent save oper-
ations and call Invalidate() to get the form repainted to display the sketch you have just loaded. 

Implementing the Save As Operation
For the Save As operation you always display a save dialog to allow a new file name to be entered. You
can implement the Click event handler for the File > Save As... menu item like this:

private: System::Void saveAsToolStripMenuItem_Click(
System::Object^  sender, System::EventArgs^  e)

{
if(saveFileDialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)
{
Stream^ stream = File::Open(saveFileDialog->FileName, FileMode::Create);         
if(stream != nullptr)
{
formatter->Serialize(stream, sketch);
stream->Close();
sketchFilepath = saveFileDialog->FileName;
sketch->Saved = true;

}
}

}

This is basically a simplified version of the save operation. You display the dialog; if the OK button closed
the dialog you create a Stream object for the file that was selected and deserialize it. You then close the
stream, save the file path information, and set the Saved member of the sketch object to true.

You now have a version of CLR Sketcher with saving and retrieving operational.

1088

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1088



Printing a Sketch
You have a head start to printing a sketch because the Toolbox provides five components that support
printing operations including a page setup dialog and print and print preview dialogs. To print a sketch
you create an instance of the PrintDocument component, implement a PrintPage event handler for the
PrintDocument, and call the Print function for the PrintDocument object to actually print the sketch.
Of course, you also need to create Click event handlers for the menu items that are involved and display
a few dialogs along the way, but let’s start with the PrintDocument component.

Using the PrintDocument Component
Drag a PrintDocument component from the Toolbox window to the form in the Design window. This
adds a PrintDocument member to the Form1 class. If you display the Properties window for the
PrintDocument object, you can change the value of its (name) property to printDocument. Click the
Events button and double-click the PrintPage event to create a handler for it. The PrintPageEventArgs^
parameter has a Graphics property that supplies a Graphics object that you can use to draw the sketch
ready for printing, like this:

private: System::Void printDocument_PrintPage(
System::Object^  sender, System::Drawing::Printing::PrintPageEventArgs^  e)

{
sketch->Draw(e->Graphics);

}

It couldn’t be much easier really, could it?

Implementing the Print Operation
You need a print dialog to allow the user to select the printer and initiate printing, so drag a PrintDialog
component from the Toolbox window to the form and change the (name) property value to printDialog.
To associate the printDocument object with the dialog, select printDocument as the value of the Document
property from the drop-down in the value column. Add a Click event handler for the File > Print menu
item, and set this handler as the handler for the toolbar button for printing. All you have to do now is add
code to the handler to display the dialog to allow printing:

private: System::Void printToolStripMenuItem_Click(
System::Object^  sender, System::EventArgs^  e)

{
if(printDialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)
printDocument->Print();

}

You display the dialog and if the value returned from ShowDialog() is DialogResult::OK, you call
the Print() function for the printDocument object to print the sketch. That’s it! You added two lines 
of code here plus one line of code in the PrintPage event handler and a basic printing capability for
sketches is working.

1089

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1089



Displaying the print dialog allows the user to choose the printer and change preferences for the print job
before printing starts. Of course, you don’t have to display the dialog to print the sketch. If you wanted
to print the sketch immediately without displaying the dialog, you could just call the Print() function
for the PrintDocument object.

Summary
In this chapter, you learned how to get a document stored on disk in a form that allows you to read it
back and reconstruct its constituent objects using the serialization processes supported by MFC and 
the CLR. To implement serialization for MFC classes defining document data, you must:

1. Derive your class directly or indirectly from CObject.

2. Specify the DECLARE_SERIAL() macro in your class implementation.

3. Specify the IMPLEMENT_SERIAL() macro in your class definition.

4. Implement a default constructor in your class.

5. Declare the Serialize() function in your class.

6. Implement the Serialize() function in your class to serialize all the data members.

The serialization process uses a CArchive object to perform the input and output. You use the CArchive
object passed to the Serialize() function to serialize the data members of the class.

To implement serialization for C++/CLI classes you must:

1. Mark the classes to be serialized with the Serializable attribute.

2. Identify any data members that cannot or should not be serialized and mark them with
NonSerialized attributes.

3. Add a public function with a return type of void and a single parameter of type
StreamingContext to each class that has non-serializable fields. Implement the function 
to deal with the non-serializable fields when an object is serialized and mark the function 
with the OnSerializing attribute.

4. Add a public function with a return type of void and a single parameter of type
StreamingContext to each class that has non-serializable fields. Implement the function 
to deal with the non-serialized fields when an object is deserialized and mark the function 
with the OnSerialized attribute.

5. Add a using declaration for the System::Runtime::Serialization namespace to each
header file containing classes you are making serializable.

You have also seen how MFC and the CLR support output to a printer. To add to the basic printing capa-
bility provided by default with the MFC, you can implement your own versions of the view class func-
tions involved in printing a document. The principal roles of each of these functions are shown in the
following table.

1090

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1090



Information relating to the printing process is stored in an object of type CPrintInfo that’s created by
the framework. You can store additional information in the view, or in another object of your own. If you
use your own class object, you can keep track of it by storing a pointer to it in the CPrintInfo object.

To implement printing in a Windows Forms application, add a PrintDocument component to the form
and implement the handler for the PrintPage event to print the form. Add a PrintDialog component
to the form and display it in the Click handler for the menu item/toolbar button that initiates printing.
When the print dialog is closed using the OK button, call the Print() function for the PrintDocument
object to print the form.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Add some code to the OnPrint() function so that the page number is printed at the bottom of
each page of the document in the form ‘Page n’. If you use the features of the CString class,
you can do this with just three extra lines!

2. As a further enhancement to the CText class, change the implementation so that scaling works
properly. (Hint — look up the CreatePointFont() function in the online help.)

3. Modify CLR Sketcher so that it displays the sketch file name in the title bar for the application.

4. Modify CLR Sketcher to implement the File > New menu item. Don’t forget to build in the logic
so you don’t discard an existing sketch that has not been saved in its present state. There is a little
bit of work to this. (Hint: You will need to record in Sketch class when the sketch has been changed
since it was last saved. Exploring the documentation for the System::Windows::MessageBox
class will be helpful, too.)

Function Role

OnPreparePrinting() Determine the number of pages in the document and call the
DoPreparePrinting() member of the view.

OnBeginPrinting() Allocate the resources required in the printer device context that are
needed throughout the printing process, and determine the number of
pages in the document, where this is dependent on information from
the device context.

OnPrepareDC() Set attributes in the printer device context as necessary.

OnPrint() Print the document.

OnEndPrinting() Delete any GDI resources created in OnBeginPrinting() and do any
other necessary cleanup.

1091

Chapter 18: Storing and Printing Documents

25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1091



25905c18.qxd:WroxPro  2/21/08  9:21 AM  Page 1092



19
Writing Your Own DLLs

Chapter 9 discussed how a C++/CLI class library is stored in a .dll file. Dynamic link libraries
(DLLs) are also used extensively with native C++ applications. A complete discussion of DLLs in
native C++ applications is outside the scope of a beginner’s book, but they are important enough
to justify including an introductory chapter on them. In this chapter, you will learn about:

❑ DLLs and how they work

❑ When you should consider implementing a DLL

❑ What varieties of DLL are possible and what they are used for

❑ How you can extend MFC using a DLL

❑ How to define what is accessible in a DLL

❑ How to access the contents of a DLL in your programs

Understanding DLLs
Almost all programming languages support libraries of standard code modules for commonly used
functions. In native C++ you’ve been using lots of functions that are stored in standard libraries, such
as the ceil() function that you used in the previous chapter, which is declared in the <cmath>
header. The code for this function is stored in a library file with the extension .lib, and when the
executable module for the Sketcher program was created, the linker retrieved the code for this stan-
dard function from the library file and integrated a copy of it into the .exe file for the Sketcher pro-
gram. If you write another program and use the same function, it will also have its own copy of the
ceil() function. The ceil() function is statically linked to each application and is an integral part
of each executable module, as illustrated in Figure 19-1.

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1093



Figure 19-1

Although this is a very convenient way of using a standard function with minimal effort on your part, 
it does have its disadvantages as a way for several concurrently executing programs to make use of the
same function in the Windows environment. A statically linked standard function being used by more
than one program concurrently is duplicated in memory for each program using it. This may not seem
to matter much for the ceil() function, but some functions — input and output, for instance — are
invariably common to most programs and are likely to occupy sizable chunks of memory. Having these
statically linked would be extremely inefficient.

Copy added to each program during linkedit
Library
function

Library
function

Library
function

Library
function

ProgramA.exe

Static Library

ProgramB.exe ProgramC.exe

1094

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1094



Another consideration is that a standard function from a static library may be linked into hundreds of
programs in your system, so identical copies of the code for them will be occupying disk space in the
.exe file for each program. For these reasons, an additional library facility is supported by Windows for
standard functions. It’s called a dynamic link library, and it’s usually abbreviated to DLL. This allows
one copy of a function to be shared among several concurrently executing programs and avoids the need to
incorporate a copy of the code for a library function into the executable module for a program that uses it.

How DLLs Work
A dynamic link library is a file containing a collection of modules that can be used by any number of differ-
ent programs. The file usually has the extension .dll, but this isn’t obligatory. When naming a DLL, you
can assign any extension that you like, but this can affect how they’re handled by Windows. Windows auto-
matically loads dynamic link libraries that have the extension .dll. If they have some other extension, you
will need to load them explicitly by adding code to do this to your program. Windows itself uses the exten-
sion .exe for some of its DLLs. You have likely seen the extensions .vbx (Visual Basic Extension) and .ocx
(OLE Custom Extension), which are applied to DLLs containing specific kinds of controls.

You might imagine that you have a choice about whether or not you use dynamic link libraries in your
program, but you don’t. The Win32 API is used by every Windows program, and the API is implemented
in a set of DLLs. DLLs are fundamental to Windows programming.

Connecting a function in a DLL to a program is achieved differently from the process used with a statically
linked library, where the code is incorporated once and for all when the program is linked to generate the
executable module. A function in a DLL is connected only to a program that uses it when the application is
run, and this is done on each occasion the program is executed, as Figure 19-2 illustrates.

Figure 19-2 shows the sequence of events when three programs that use a function in a DLL are started
successively and then all execute concurrently. No code from the DLL is included in the executable mod-
ule of any of the programs. When one of the programs is executed, the program is loaded into memory,
and if the DLL it uses isn’t already present, it too is loaded separately. The appropriate links between the
program and the DLL are then established. If, when a program is loaded, the DLL is already there, all
that needs to be done is to link the program to the required function in the DLL.

Note particularly that when your program calls a function in a DLL, Windows will automatically load
the DLL into memory. Any program subsequently loaded into memory that uses the same DLL can use
any of the capabilities provided by the same copy of the DLL because Windows recognizes that the library
is already in memory and just establishes the links between it and the program. Windows keeps track of
how many programs are using each DLL that is resident in memory so that the library remains in mem-
ory as long as at least one program is still using it. When a DLL is no longer used by any executing pro-
gram, Windows automatically deletes it from memory.

MFC is provided in the form of a number of DLLs that your program can link to dynamically, as well as
a library that your program can link to statically. By default, the Application Wizard generates programs
that link dynamically to the DLL form of MFC.

1095

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1095



Figure 19-2

Having a function stored in a DLL introduces the possibility of changing the function without affecting the
programs that use it. As long as the interface to the function in the DLL remains the same, the programs
can use a new version of the function quite happily, without the need for recompiling or re-linking them.
Unfortunately, this also has a downside: It’s easy to end up using the wrong version of a DLL with a pro-
gram. This can be a particular problem with applications that install DLLs in the Windows System folder.
Some commercial applications arbitrarily write the DLLs associated with the program to this folder with-
out regard to the possibility of a DLL with the same name being overwritten. This can interfere with other
applications that you have already installed and, in the worst case, can render them inoperable.

Function

ProgramA

1. ProgramA loaded

4. ProgramB loaded

2. .dll loaded

6. ProgramC loaded

Computer Memory

5. linkage to dll function

3. linkage to dll function

7. linkage to dll function

ProgramB ProgramC Library.dll

Library.dll

ProgramC.exe

ProgramB.exe

ProgramA.exe

1096

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1096



Runtime Dynamic Linking
The DLL that you’ll create in this chapter is automatically loaded into memory when the program that uses
it is loaded into memory for execution. This is referred to as load-time dynamic linking, or early binding,
because the links to the functions used are established as soon as the program and DLL have been loaded
into memory. This kind of operation was illustrated in Figure 19-2; however, this isn’t the only choice avail-
able. It’s also possible to cause a DLL to be loaded after execution of a program has started. This is called
runtime dynamic linking or late binding. The sequence of operations that occurs with this is illustrated in
Figure 19-3.

Figure 19-3

Function

Program

1. Program is loaded
 but no DLL is loaded.
 The program may use
 any one of the three DLLs.

3. Library2.dll loaded
 at the request of the
 program.

2. At this point the program
 determines that Library2.dll
 is required and causes it 
 to be loaded

4. The program obtains the 
 address of a function
 from the DLL and uses it
 to call the function

Computer Memory

Library2.dll

Library1.dll

Library2.dll

Library3.dll

Program.exe

1097

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1097



Runtime dynamic linking enables a program to defer linking of a DLL until it’s certain that the functions
in a DLL are required. This allows you to write a program that can choose to load one or more of a num-
ber of DLLs based upon input to the program so that only those functions that are necessary are actually
loaded into memory. In some circumstances, this can drastically reduce the amount of memory required
to run a program.

A program implemented to use runtime dynamic linking calls the Windows API function LoadLibrary()
to load the DLL when it’s required. The address of a function within the DLL can then be obtained using a
function GetProcAddress(). When the program no longer has a need to use the DLL, it can detach itself
from the DLL by calling the FreeLibrary() function. If no other program is using the DLL, it will be
deleted from memory. I won’t be going into further details of how this works in this book.

Contents of a DLL
A dynamic link library isn’t limited to storing code for functions. You can also put resources into a DLL,
including such things as bitmaps and fonts. The Solitaire game that comes with Windows uses a dynamic
link library called Cards.dll, which contains all the bitmap images of the cards and functions to manip-
ulate them. If you wanted to write your own card game, you could conceivably use this DLL as a base and
save yourself the trouble of creating all the bitmaps needed to represent the cards. Of course, to use it, you
would need to know specifically which functions and resources are included in the DLL.

You can also define static global variables in a DLL, including C++ class objects, so that these can be
accessed by programs using it. The constructors for global static class objects are called automatically
when such objects are created. You should note that each program using a DLL gets its own copy of any
static global objects defined in the DLL, even though they may not necessarily be used by a program.
For global class objects, this involves the overhead of calling a constructor for each. You should, there-
fore, avoid introducing such objects into a DLL unless they are absolutely essential.

The DLL Interface
You can’t access just anything that’s contained in a DLL. Only items specifically identified as exported
from a DLL are visible to the outside world. Functions, classes, global static variables, and resources can
all be exported from a DLL, and those that are make up the interface to it. Anything that isn’t exported
can’t be accessed from the outside. You’ll see how to export items from a DLL later in this chapter.

The DllMain() Function
Even though a DLL isn’t executable as an independent program, it does contain a special variety of the
main() function, called DllMain(). This is called by Windows when the DLL is first loaded into mem-
ory to allow the DLL to do any necessary initialization before its contents are used. Windows will also
call DllMain() just before it removes the DLL from memory to enable the DLL to clean up after itself if
necessary. There are also other circumstances where DllMain() is called, but these situations are outside
the scope of this book.

DLL Varieties
There are three different kinds of DLL that you can build with Visual C++ 2008 using MFC: an MFC
extension DLL, a regular DLL with MFC statically linked, and a regular DLL with MFC dynamically
linked.

1098

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1098



MFC Extension DLL
You build this kind of DLL whenever it’s going to include classes derived from the MFC. Your derived
classes in the DLL effectively extend the MFC. The MFC must be accessible in the environment where
your DLL is used, so all the MFC classes are available together with your derived classes — hence the
name “MFC extension DLL.” However, deriving your own classes from the MFC isn’t the only reason 
to use an MFC extension DLL. If you’re writing a DLL that includes functions that pass pointers to MFC
class objects to functions in a program using it or that receive such pointers from functions in the program,
you must create it as an MFC extension DLL.

Accesses to classes in the MFC by an extension DLL are always resolved dynamically by linking to the
shared version of MFC that is itself implemented in DLLs. An extension DLL is created using the shared
DLL version of the MFC, so when you use an extension DLL, the shared version of MFC must be avail-
able. An MFC extension DLL can be used by a normal Application Wizard-generated application. It
requires the option Use MFC in a Shared Dll to be selected under the General set of properties for the
project, which you access through the Project > Properties menu option. This is the default selec-
tion with an Application Wizard-generated program. Because of the fundamental nature of the shared
version of the MFC in an extension DLL, an MFC extension DLL can’t be used by programs that are
statically linked to MFC.

Regular DLL — Statically Linked to MFC
This is a DLL that uses MFC classes linked statically. Use of the DLL doesn’t require MFC to be available
in the environment in which it is used, because the code for all the classes it uses is incorporated into the
DLL. This bulks up the size of the DLL, but the big advantage is that this kind of DLL can be used by any
Win32 program, regardless of whether or not it uses MFC.

Regular DLL — Dynamically Linked to MFC
This is a DLL that uses dynamically linked classes from MFC but doesn’t add classes of its own. This
kind of DLL can be used by any Win32 program regardless of whether it uses MFC itself, but use of the
DLL does require the MFC to be available in the environment.

You can use the Application Wizard to build all three types of DLL that use MFC. You can also create a proj-
ect for a DLL that doesn’t involve MFC at all, by creating a Win32 project type using the Win32 Project
template and selecting DLL in the application settings for the project.

Deciding What to Put in a DLL
How do you decide when you should use a DLL? In most cases, the use of a DLL provides a solution to
a particular kind of programming problem, so if you have the problem, a DLL can be the answer. The
common denominator is often sharing code among a number of programs, but there are other instances
where a DLL provides advantages. The kinds of circumstance where putting code or resources in a DLL
provides a very convenient and efficient approach include the following:

❑ You have a set of functions or resources on which you want to standardize and which you will use
in several different programs. The DLL is a particularly good solution for managing these, espe-
cially if some of the programs using your standard facilities are likely to be executing concurrently.

1099

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1099



❑ You have a complex application that involves several programs and a lot of code but that has
sets of functions or resources that may be shared among several of the programs in the applica-
tion. Using a DLL for common functionality or common resources enables you to manage and
develop these with a great deal of independence from the program modules that use them and
can simplify program maintenance.

❑ You have developed a set of standard application-oriented classes derived from MFC that you
anticipate using in several programs. By packaging the implementation of these classes in an
extension DLL, you can make using them in several programs very straightforward, and in
the process provide the possibility of being able to improve the internals of the classes with-
out affecting the applications that use them.

❑ You have developed a brilliant set of functions that provide an easy-to-use but amazingly pow-
erful tool kit for an application area that just about everybody wants to dabble in. You can read-
ily package your functions in a regular DLL and distribute them in this form.

There are also other circumstances where you may choose to use DLLs, such as when you want to be able
to dynamically load and unload libraries, or to select different modules at run time. You could even use
them to ease the development and updating of your applications generally.

The best way of understanding how to use a DLL is to create one and try it out. Let’s do that now.

Writing DLLs
There are two aspects to writing a DLL that you’ll look at: how you actually write a DLL and how you
define what’s to be accessible in the DLL to programs that use it. As a practical example of writing a
DLL, you’ll create an extension DLL to add a set of application classes to the MFC. You’ll then extend
this DLL by adding variables available to programs using it.

Writing and Using an Extension DLL
You can create an MFC extension DLL to contain the shape classes for the Sketcher application. Although
this will not bring any major advantages to the program, it demonstrates how you can write an extension
DLL without involving you in the overhead of entering a lot of new code.

The starting point is Application Wizard, so create a new project by pressing Ctrl+Shift+N and choosing
the project type as MFC and the template as MFC DLL, as shown in Figure 19-4.

This selection identifies that you are creating a project for an MFC-based DLL with the name
ExtDLLExample. Click the OK button and select Application Settings in the next window that is 
displayed. The window looks as shown in Figure 19-5.

Here, you can see three radio buttons corresponding to the three types of MFC-based DLL that I discussed
earlier. You should choose the third option, as shown in the figure.

The two checkboxes below the first group of three radio buttons allow you to include code to support
Automation and Windows Sockets in the DLL. These are both advanced capabilities within a Windows
program, so you don’t need either of them here. Automation provides the potential for hosting objects

1100

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1100



created and managed by one application inside another. Windows Sockets provides classes and func-
tionality to enable your program to communicate over a network, but you won’t be getting into this as
it’s beyond the scope of the book. You can click the Finish button and complete creation of the project.

When you first created the Sketcher application, you opted out of using Unicode. If the DLL is to work
with Sketcher it must be consistent with this. Click the Project > Properties... menu item and
select General in the Configuration Properties branch in the left pane of the dialog. Change the value of
the Character Set option to “Use Multibyte Character Set” from the drop-down list in the value column.

Figure 19-4

Figure 19-5

1101

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1101



Now that the MFC DLL wizard has done its stuff, you can look into the code that has been generated on
your behalf. If you look at the contents of the project in the Solution Explorer pane, you’ll see that the
MFC DLL wizard has generated several files, including a .txt file that contains a description of the other
files. You can read what they’re all for in the .txt file, but the two shown in the following table are the
ones of immediate interest in implementing our DLL.

When your DLL is loaded, the first thing that happens is that DllMain() is executed, so perhaps you
should take a look at that first.

Understanding DllMain()
If you look at the contents of dllmain.cpp, you will see that the MFC DLL wizard has generated a version
of DllMain() for you, as shown here:

extern “C” int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{

// Remove this if you use lpReserved
UNREFERENCED_PARAMETER(lpReserved);

if (dwReason == DLL_PROCESS_ATTACH)
{

TRACE0(“EXTDLLEXAMPLE.DLL Initializing!\n”);

// Extension DLL one-time initialization
if (!AfxInitExtensionModule(ExtDLLExampleDLL, hInstance))

return 0;

// Insert this DLL into the resource chain
// NOTE: If this Extension DLL is being implicitly linked to by
//  an MFC Regular DLL (such as an ActiveX Control)
//  instead of an MFC application, then you will want to
//  remove this line from DllMain and put it in a separate
//  function exported from this Extension DLL.  The Regular DLL
//  that uses this Extension DLL should then explicitly call that
//  function to initialize this Extension DLL.  Otherwise,
//  the CDynLinkLibrary object will not be attached to the
//  Regular DLL’s resource chain, and serious problems will

Filename Contents

dllmain.cpp This contains the function DllMain() and is the primary source file for
the DLL.

ExtDLLExample.def The information in this file is used during compilation. It contains the
name of the DLL, and you can also add to it the definitions of those
items in the DLL that are to be accessible to a program using the DLL.
You’ll use an alternative and somewhat easier way of identifying such
items in the example.

1102

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1102



//  result.

new CDynLinkLibrary(ExtDLLExampleDLL);
}
else if (dwReason == DLL_PROCESS_DETACH)
{

TRACE0(“EXTDLLEXAMPLE.DLL Terminating!\n”);
// Terminate the library before destructors are called
AfxTermExtensionModule(ExtDLLExampleDLL);

}
return 1;   // ok

}

There are three arguments passed to DllMain() when it is called. The first argument, hInstance, is a han-
dle that has been created by Windows to identify the DLL. Every task under Windows has an instance han-
dle which identifies it uniquely. The second argument, dwReason, indicates the reason why DllMain() is
being called. You can see this argument being tested in the if statements in DllMain(). The first if tests
for the value DLL_PROCESS_ATTACH, which indicates that a program is about to use the DLL, and the sec-
ond if tests for the value DLL_PROCESS_DETACH, which indicates that a program has finished using the
DLL. The third argument is a pointer that’s reserved for use by Windows, so you can ignore it.

When the DLL is first used by a program, it’s loaded into memory, and the DllMain() function is 
executed with the argument dwReason set to DLL_PROCESS_ATTACH. This results in the Windows API
function AfxInitExtensionModule() being called to initialize the DLL and an object of the class
CDynLinkLibrary created on the heap. Windows uses objects of this class to manage extension DLLs. 
If you need to add initialization of your own, you can add it to the end of this block. Any cleanup you
require for your DLL can be added to the block for the second if statement.

Adding Classes to the Extension DLL
You’ll use the DLL to contain the implementation of the Sketcher shape classes, so move the files
Elements.h and Elements.cpp from the folder containing the source for Sketcher to the folder con-
taining the DLL. Be sure that you move rather than copy the files. Because the DLL is going to supply 
the shape classes for Sketcher, you don’t want to leave them in the source code for Sketcher.

You’ll also need to remove Elements.cpp from the Sketcher project. To do this, open the Sketcher proj-
ect, highlight Elements.cpp in the Solution Explorer pane by clicking the file, and then press Delete. If
you don’t do this, the compiler complains that it can’t find the file when you try to compile the project.
Follow the same procedure to get rid of Elements.h from the Header Files folder in the Solution
Explorer pane.

The shape classes use the constants that you have defined in the file OurConstants.h, so copy this file
from the Sketcher project folder to the folder containing the DLL. Note that the variable VERSION_NUMBER
is used exclusively by the IMPLEMENT_SERIAL() macros in the shape classes, so you could delete it from
the OurConstants.h file used in the Sketcher program.

You now need to add Elements.cpp containing the implementation of our shape classes to the extension
DLL project, so open the ExtDLLExample project, select the menu option Project > Add Existing
Item and choose the file Elements.cpp from the list box in the dialog box, as shown in Figure 19-6.

1103

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1103



Figure 19-6

The project should also include the files containing the definitions of the shape classes and your con-
stants, so repeat the process for Elements.h and OurConstants.h to add these to the project. You can
add multiple files in a single step by holding down the Ctrl key while you select from the list of files in
the Add Existing Item dialog box. You should eventually see all the files in the Solution Explorer pane
and all the shape classes displayed in the Class View pane for the project.

Exporting Classes from the Extension DLL
The names of the classes defined in the DLL that are to be accessible in programs that use it must be
identified in some way so that the appropriate links can be established between a program and the DLL.
As you saw earlier, one way of doing this is by adding information to the .def file for the DLL. This
involves adding what are called decorated names to the DLL and associating the decorated name with a
unique identifying numeric value called an ordinal. A decorated name for an object is a name generated
by the compiler, which adds an additional string to the name you gave to the object. This additional string
provides information about the type of the object or, in the case of a function for example, information
about the types of the parameters to the function. Among other things, it ensures that everything has a
unique identifier and enables the linker to distinguish overloaded functions from each other.

Obtaining decorated names and assigning ordinals to export items from a DLL is a lot of work and
isn’t the best or the easiest approach with Windows. A much easier way to identify the classes that you
want to export from the DLL is to modify the class definitions in Elements.h to include the keyword
AFX_EXT_CLASS before each class name, as shown in the following for the CLine class:

// Class defining a line object
class AFX_EXT_CLASS CLine: public CElement
{
DECLARE_SERIAL(CLine)

public:
virtual void Draw(CDC* pDC, CElement* pElement=0); // Function to display a line

1104

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1104



virtual void Move(CSize& aSize);                   // Function to move an element

// Constructor for a line object
CLine(CPoint Start, CPoint End, COLORREF aColor, int PenWidth);

virtual void Serialize(CArchive& ar);// Serialize function for CLine

protected:
CPoint m_StartPoint;                 // Start point of line
CPoint m_EndPoint;                   // End point of line

CLine(void);                         // Default constructor - should not be used
};

The AFX_EXT_CLASS keyword indicates that the class is to be exported from the DLL. This has the effect
of making the complete class available to any program using the DLL and automatically allows access 
to any of the data and functions in the public interface of the class. The collection of things in a DLL that
are accessible by a program using it is referred to as the interface to the DLL. The process of making an
object part of the interface to a DLL is referred to as exporting the object.

You need to add the keyword AFX_EXT_CLASS to all of the other shape classes, including the base class
CElement. Why is it necessary to export CElement from the DLL? After all, programs create only objects
of the classes derived from CElement, and not objects of the class CElement itself. The reason is that
you have declared public members of CElement which form part of the interface to the derived shape
classes, and which are almost certainly going to be required by programs using the DLL. If you don’t
export the CElement class, functions such as GetBoundRect()will not be available.

The final modification needed is to add the directive:

#include <afxtempl.h>

to stdafx.h in the DLL project so that the definition of CList is available.

You have done everything necessary to add the shape classes to the DLL. All that remains is for you
compile and link the project to create the DLL.

Building a DLL
You build the DLL in exactly the same way as you build any other project — by using the Build > Build
Solution menu option or selecting the corresponding toolbar button. The output produced is somewhat
different, though. You can see the files that are produced in the debug subfolder of the project folder for a
Debug build, or in the release subfolder for a Release build. The executable code for the DLL is contained
in the file ExtDLLExample.dll. This file needs to be available to execute a program that uses the DLL. The
file ExtDLLExample.lib is an import library file that contains the definitions of the items that are exported
from the DLL, and it must be available to the linker when a program using the DLL is linked.

If you find the DLL build fails because Elements.cpp contains an #include directive for
Sketcher.h, just remove it. On my system the Class Wizard added this #include directive 
when creating the code for the CElement class, but it is not required.

1105

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1105



Using the Extension DLL in Sketcher
You now have no information in the Sketcher program on the shape classes because you moved the files
containing the class definitions and implementations to the DLL project. However, the compiler still
needs to know where the shape classes are coming from in order to compile the code for the program.
The Sketcher program needs to include a header file that defines the classes that are to be imported from
the DLL. It must also identify the classes as external to the project by using the AFX_EXT_CLASS macro
in the class definitions in exactly the same way as for exporting the classes from the DLL. You can there-
fore just copy the file Elements.h from the DLL project to the folder containing the Sketcher source
because it contains exactly what is required to import the classes into Sketcher. It would be a good idea
to identify this file as specifying the imports from the DLL in the Sketcher source code. You could do this
by changing its name to DllImports.h, in which case you’ll need to change the #include directives
that are already in the Sketcher program for Elements.h to refer to the new file name (these occur in
Sketcher.cpp, SketcherDoc.h, and SketcherView.cpp). You should also add the DllImports.h
file to the project by right-clicking the Header Files folder in the Solution Explorer pane and selecting
Add > Existing Item from the context menu.

When you rebuild the Sketcher application, the linker needs to have the ExtDLLExample.lib file identi-
fied as a dependency for the project because this file contains information about the contents of the DLL.
Right-click Sketcher in the Solution Explorer pane and select Properties from the pop-up. You can then
expand the Linker folder and select Input in the left pane of the Properties window. You can then enter
the name of the .lib file as an additional dependency as shown in Figure 19-7.

Figure 19-7

Figure 19-7 shows the entry for the debug version of Sketcher. The .lib file for the DLL is in the Debug
folder within the DLL project folder. If you create a release version of Sketcher, you’ll also need the release
version of the DLL available to the linker and its .lib file, so you’ll have to enter the fully qualified name
of the .lib file for the release version of the DLL, corresponding to the release version of Sketcher. The

1106

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1106



file to which the properties apply is selected in the Configuration drop-down list box in the Properties
window. You have only one external dependency, but you can enter several when this is necessary by
clicking the button to the right of the text box for input. Because the full path to the .lib file has been
entered here, the linker will know not only that ExtDLLExample.lib is an external dependency but also
where it is.

Be aware that if the complete path to the.lib file contains spaces (as in the example here), you’ll need
to enclose it within quotation marks for the linker to recognize it correctly.

You can now build the Sketcher application once more, and everything should compile and link as
usual. However, if you try to execute the program, you see the message box shown in Figure 19-8.

Figure 19-8

This is one of the less cryptic error messages — it’s fairly clear what’s gone wrong. To enable Windows
to load a DLL for a program, it’s usual to place the DLL in your \WINNT\System folder. If it’s not in this
folder, Windows searches the folder containing the executable Sketcher.exe. If it isn’t there you get the
error message. Because you probably don’t want to clutter up your \WINNT\System folder unnecessar-
ily, you can copy ExtDllExample.dll from the debug folder of the DLL project to the debug folder for
Sketcher. Sketcher should execute exactly as before, except that now it uses the shape classes in the DLL
you have created.

Files Required to Use a DLL
From what you have just seen in the context of using the DLL you created in the Sketcher program, you
can conclude that three files must be available to use a DLL in a program, as shown in the following
table.

If you plan to distribute program code in the form of a DLL for use by other programmers, you need 
to distribute all three files in the package. For applications that already use the DLL, just the .dll is
required along with the .exe file.

Extension Contents

.h Defines those items that are exported from a DLL and enables the compiler to deal
properly with references to such items in the source code of a program using the DLL.
The .h file needs to be added to the source code for the program using the DLL.

.lib Defines the items exported by a DLL in a form, which enables the linker to deal
with references to exported items when linking a program that uses a DLL.

.dll Contains the executable code for the DLL, which is loaded by Windows when a
program using the DLL is executed.

1107

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1107



Exporting Variables and Functions from a DLL
You’ve seen how you can export classes from an extension DLL using the AFX_EXT_CLASS keyword.
You can also export objects of classes that are defined in a DLL, as well as ordinary variables and func-
tions. These can be exported from any kind of DLL by using the attribute dllexport to identify them.
By using dllexport to identify class objects, variables, or functions that are to be exported from a DLL,
you avoid getting involved in the complications of modifying the .def file and, as a consequence, you
make defining the interface to the DLL a straightforward matter.

Don’t be misled into thinking that the approach you’re taking to exporting things from your DLL makes
the .def file method redundant. The .def file approach is more complicated — which is why you’re
taking the easy way out — but it offers distinct advantages in many situations over the approach you’re
taking. This is particularly true in the context of products that are distributed widely, and are likely to 
be developed over time. One major plus is that a .def file enables you to define the ordinals that corre-
spond to your exported functions. This allows you to add more exported functions later and assign new
ordinals to them, so the ordinals for the original set of functions remain the same. This means that some-
one using a new version of the DLL with a program built to use the old version doesn’t have to relink
their application.

You must use the dllexport attribute in conjunction with the keyword _declspec when you identify
an item to be exported. For example, the statement

_declspec(dllexport) double aValue = 1.5;

defines the variable aValue of type double with an initial value of 1.5 and identifies it as a variable that
is to be available to programs using the DLL. To export a function from a DLL, you use the dllexport
attribute in a similar manner. For example:

_declspec(dllexport) CString FindWinner(CString* Teams);

This statement exports the function FindWinner() from the DLL.

To avoid the slightly cumbersome notation for specifying the dllexport attribute, you can simplify it
by using a preprocessor directive:

#define DllExport _declspec(dllexport)

With this definition, you can rewrite the two previous examples as:

DllExport double aValue = 1.5;
DllExport CString FindWinner(CString* Teams);

This notation is much more economical, as well as easier to read, so you may want to adopt this approach
when coding your DLLs.

Obviously, only symbols that represent objects with global scope can be exported from a DLL. Variables
and class objects that are local to a function in a DLL cease to exist when execution of a function is com-
pleted, in just the same way as in a function in a normal program. Attempting to export such symbols
results in a compile-time error.

1108

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1108



Importing Symbols into a Program
The dllexport attribute identifies the symbols in a DLL that form part of the interface. If you want to use
these in a program, you must make sure that they are correspondingly identified as being imported from
the DLL. This is done by using the dllimport keyword in declarations for the symbols to be imported in
a .h file. You can simplify the notation by using the same technique you applied to the dllexport attrib-
ute. Define DllImport with the directive:

#define DllImport _declspec(dllimport)

You can now import the aValue variable and the FindWinner() function into a program with the
declarations:

DllImport double aValue;
DllImport CString FindWinner(CString* Teams);

These statements would appear in a .h file that would be included into the .cpp files in the program
that referenced these symbols.

Implementing the Export of Symbols from a DLL
You could extend the extension DLL for Sketcher to make the symbols defining shape types and colors
available in the interface to it. You can then remove the definitions that you have in the Sketcher program
and import the definitions of these symbols from the extension DLL.

You can modify the source code for the DLL first to add the symbols for shape element types and colors
to its interface. To export the element types and colors, they must be global variables. As global variables,
it would be better if they appeared in a .cpp file, rather than a .h file, so move the definitions of these out
of the OurConstants.h file to the beginning of Elements.cpp in the DLL source. You can then apply the
dllexport attribute to their definitions in the Elements.cpp file, as follows:

// Definitions of constants and identification of symbols to be exported

#define DllExport __declspec(dllexport)

// Element type definitions
// Each type value must be unique
DllExport extern const unsigned int LINE = 101U;
DllExport extern const unsigned int RECTANGLE = 102U;
DllExport extern const unsigned int CIRCLE = 103U;
DllExport extern const unsigned int CURVE = 104U;
DllExport extern const unsigned int TEXT = 105U;
///////////////////////////////////

// Color values for drawing
DllExport extern const COLORREF BLACK = RGB(0,0,0);
DllExport extern const COLORREF RED = RGB(255,0,0);
DllExport extern const COLORREF GREEN = RGB(0,255,0);
DllExport extern const COLORREF BLUE = RGB(0,0,255);
DllExport extern const COLORREF SELECT_COLOR = RGB(255,0,180);
///////////////////////////////////

1109

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1109



Add these to the beginning of Elements.cpp, after the #include directives. You first define the symbol
DllExport to simplify the specification of the variables to be exported, as you saw earlier. You then assign
the attribute dllexport to each of the element types and colors.

Notice that the extern specifier has also been added to the definitions of these variables. The reason for
this is the effect of the const modifier, which indicates to the compiler that the values are constants and
shouldn’t be modified in the program, which was what you wanted. However, by default the const
keyword also specifies the variables as having internal linkage, so they are local to the file in which they
appear. You want to export these variables to another program so you have to add the extern modifier
to override the default linkage specification due to the const modifier and ensure that they have exter-
nal linkage. Symbols that are assigned external linkage are global and so can be exported. Of course, if the
variables didn’t have the const modifier applied to them, you wouldn’t need to add extern because they
would be global automatically as long as they appeared at global scope.

The OurConstants.h file now contains only one definition:

// Definitions of constants
#pragma once

// Define the program version number for use in serialization
UINT VERSION_NUMBER = 1;

Of course, this is still required because it is used in the IMPLEMENT_SERIAL() macros in Elements.cpp.
You can now build the DLL once again, so it’s ready to use in the Sketcher program. Don’t forget to copy
the latest version of the .dll file to the Sketcher project Debug folder.

Using Exported Symbols
To make the symbols exported from the DLL available in the Sketcher program, you need to specify them
as imported from the DLL. You can do this by adding the identification of the imported symbols to the file
DllImports.h, which contains the definitions for the imported classes. In this way, you’ll have one file
specifying all the items imported from the DLL. The statements that appear in this file are as follows:

// Variables defined in the shape DLL ExtDLLExample.dll
#pragma once

#define DllImport __declspec( dllimport )

// Import element type declarations
// Each type value must be unique
DllImport extern const unsigned int LINE;
DllImport extern const unsigned int RECTANGLE;
DllImport extern const unsigned int CIRCLE;
DllImport extern const unsigned int CURVE;
DllImport extern const unsigned int TEXT;
///////////////////////////////////

// Import color values for drawing
DllImport extern const COLORREF BLACK;
DllImport extern const COLORREF RED;

1110

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1110



DllImport extern const COLORREF GREEN;
DllImport extern const COLORREF BLUE;
DllImport extern const COLORREF SELECT_COLOR;
///////////////////////////////////

// Plus the definitions for the shape classes...

This defines and uses the DllImport symbol to simplify these declarations, in the way that you saw ear-
lier. This means that the OurConstants.h file in the Sketcher project is now redundant, so you can delete
it, along with the #include for it in Sketcher.h and SketcherView.cpp.

It looks as though you’ve done everything necessary to use the new version of the DLL with Sketcher,
but you haven’t. If you try to recompile Sketcher, you’ll get error messages for the switch statement in
the CreateElement() member of CSketcherView.

The values in the case statements must be constant, but although you have given the element type vari-
ables the attribute const, the compiler has no access to these values because they are defined in the DLL,
not in the Sketcher program. The compiler, therefore, can’t determine what these constant case values
are, and flags an error. The simplest way round this problem is to replace the switch statement in the
CreateElement() function by a series of if statements, as follows:

// Create an element of the current type
CElement* CSketcherView::CreateElement()
{

// Get a pointer to the document for this view
CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);                       // Verify the pointer is good

// Now select the element using the type stored in the document
unsigned int ElementType = pDoc->GetElementType();
COLORREF ElementColor = pDoc->GetElementColor(); 
int PenWidth = pDoc->GetPenWidth();
if(ElementType == RECTANGLE)
return new CRectangle(m_FirstPoint, m_SecondPoint, ElementColor, PenWidth);

if(ElementType == CIRCLE)
return new CCircle(m_FirstPoint, m_SecondPoint, ElementColor, PenWidth);

if(ElementType == CURVE)
return new CCurve(m_FirstPoint, m_SecondPoint, ElementColor, PenWidth);

else
// Always default to a line
return new CLine(m_FirstPoint, m_SecondPoint, ElementColor, PenWidth);

}

You’ve added local variables to store the current element type and color and the pen width that are retrieved
from the document object. The element type is tested against the element types imported from the DLL in
the series of if statements. This does exactly the same job as the switch statement, but has no requirement
for the element type constants to be known explicitly. If you now build Sketcher with these changes added,
it executes using the DLL, using the exported symbols as well as the exported shape classes.

1111

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1111



Summary
In this chapter, you’ve learned the basics of how to construct and use a dynamic link library. The most
important points you have looked at in this context are:

❑ Dynamic link libraries provide a means of linking to standard functions dynamically when a
program executes, rather than incorporating them into the executable module for a program.

❑ An Application Wizard-generated program links to a version of MFC stored in DLLs by default.

❑ A single copy of a DLL in memory can be used by several programs executing concurrently.

❑ An extension DLL is so called because it extends the set of classes in MFC. An extension DLL
must be used if you want to export MFC-based classes or objects of MFC classes from a DLL. 
An extension DLL can also export ordinary functions and global variables.

❑ A regular DLL can be used if you want to export only ordinary functions or global variables that
aren’t instances of MFC classes.

❑ You can export classes from an extension DLL by using the keyword AFX_EXT_CLASS preceding
the class name in the DLL.

❑ You can export ordinary functions and global variables from a DLL by assigning the dllexport
attribute to them using the _declspec keyword.

❑ You can import the classes exported from an extension DLL by using the .h file from the DLL
that contains the class definitions using the AFX_EXT_CLASS keyword.

❑ You can import ordinary functions and global variables that are exported from a DLL by assign-
ing the dllimport attribute to their declarations in your program by using the _declspec
keyword.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercise
from www.wrox.com.

1. This is the last time you’ll be amending this version of the Sketcher program, so try this. Using
the DLL we’ve just created, implement a Sketcher document viewer — in other words, a pro-
gram that simply opens a document created by Sketcher and displays the whole thing in a win-
dow at once. You needn’t worry about editing, scrolling, or printing, but you will have to work
out the scaling required to make a big picture fit in a little window!

1112

Chapter 19: Writing Your Own DLLs

25905c19.qxd:WroxPro  2/21/08  9:22 AM  Page 1112



20
Connecting to Data Sources

In this chapter, I will show you to how you can interface to a database using Visual C++ and the
MFC and access the data from it. This is by no means a comprehensive discussion of the possibili-
ties, because a full discussion of database application development using Visual C++ would occupy 
a very substantial book in its own right. In this chapter, however, you will look at how you can
read from a database, and in the next chapter you will explore the basics of how you can update 
a database. Of course, you can access data sources in CLR applications, and you’ll look at this in
Chapter 23.

In this chapter, you will learn about:

❑ SQL and how it is used

❑ How to retrieve data using the SQL SELECT operation

❑ What database services are supported by MFC

❑ What a recordset object is, and how it links to a relational database table

❑ How a recordset object can retrieve information from a database

❑ How a record view can display information from a recordset

❑ How to create a project for a database program

❑ How to add recordsets to your program

❑ How to handle multiple record views

Database Basics
This is not the place for a detailed dissertation on database technology, but I do need to make sure
that we have a common understanding of database terminology. Databases come in a variety of
flavors but the majority are relational databases these days. It is relational databases that I will be
talking about throughout this chapter.

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1113



In a relational database, your data is organized into one or more tables. You can think of a database table
as a spreadsheet table, made up of rows and columns. Each row contains information about a single item,
and each column contains the information about the same characteristic from every item.

A record is equivalent to a row in the spreadsheet. Each record consists of elements of data that make up
that record. These elements of data are known as fields. A field is a cell in the table identified by the col-
umn heading. The term field can also represent the whole column.

You can best see the structure of a table with the diagram shown in Figure 20-1.

Figure 20-1

Here you can see that this table is being used to store information on a line of products. Unsurprisingly
then, the table is called Products Table. Each record in the table, represented by a row in the diagram,
contains the data for one product. The description of a product is separated into fields in the table, with
each field storing information about one aspect of a product: Product Name, Unit Price, and so on.

Although the fields in this table store only relatively simple information (character strings or numeric
values), the type of data you decide to put in a particular field can be virtually anything you want. You
could store times, dates, pictures, or even binary objects in a database.

A table usually has at least one field that can be used to identify each record uniquely and in the example
above the Product ID is a likely candidate. A field in a table that serves to identify each record within the
table is called a key; a key that uniquely identifies each record in a table is referred to as a primary key. In
some cases, a table may have no single field that uniquely identifies each record. In this circumstance, two
or more key fields may be used, in which case the combination of fields represents the primary key.

Products Table

   
   

   

               Category ID          

          Product ID   

                     Nam
e   

                      Unit Price   

10001
10002
10003
10004
10005
10006
10007

coffee
bread
cake
tea

oranges
apples
milk

1.50
0.50
0.30
1.20
0.05
0.15
0.30

1
2
2
1
3
3
1

                     Product 

Each row defines a
relation which consists
of a set of related fields

Each table column
identifies a field in a row

1114

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1114



The relational aspect of a database, and the importance of keys, comes into play when you store related
information in separate tables. You define relationships between the tables, using keys, and use the rela-
tionships to find associated information stored in your database. Note that the tables themselves don’t
know about relationships, just as the table doesn’t understand the bits of data stored in it. It is the program
that accesses the data that must use the information in the tables to pull together related data, whether that
program is Access, SQL Server, or your own program written in C++. These are known collectively as rela-
tional database management systems or RDBMSs.

A real-world, well-designed relational database usually consists of a large number of tables. Each table
usually has only a few fields and many records. The reason for only having a few fields in each table is to
increase query performance. Without going into the details of database optimization, have faith that it’s
much faster to query many tables with a few fields each than to query a single table with many fields.

I can extend the example shown in the previous diagram to illustrate a relational database with two
tables: Products and Categories from the Northwind database as Figure 20-2 shows.

Figure 20-2

As you can see from the diagram, the Category ID field is used to relate the information stored in the two
tables. Category ID uniquely identifies a category record in the Categories table, so it is a primary key for
that table. In the Products Table, the Category ID field is used to relate a product record to a category, so
the field is termed a foreign key for that table; foreign keys need not be unique and often aren’t.

Relational databases can be created and manipulated in numerous ways. There are a large number of
RDBMSs on the market that provide a wide range of facilities for creating and manipulating database
information. Obviously, it’s possible for you to add and delete records in a database table, and to update
the fields in a record, although typically there are controls within the RDBMS to limit such activities,
based on the authorization level of the user. As well as accessing information from a single table in a

Products Table Categories Table

1
2
3

beverage
Baked goods

Fruit
   

   

                Category ID      

   
   

   

               Category ID          

          Product ID   

                     Nam
e   

                      Unit Price   

10001
10002
10003
10004
10005
10006
10007

coffee
bread
cake
tea

oranges
apples
milk

1.50
0.50
0.30
1.20
0.05
0.15
0.30

1
2
2
1
3
3
1

                     Product 

                     Nam
e   

                     Category

The data in this field can
be used to obtain the
category name from the
Categories table.

1115

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1115



database, you can combine records from two or more tables into a new table, based on their relation-
ships, and retrieve information from that. Combining tables in this way is called a table join. To pro-
gram all these kinds of operations for a relational database, you can use a language known as SQL,
which is supported by most RDBMSs and programming languages.

A Little SQL
SQL (often pronounced “sequel”) stands for Structured Query Language. It’s a relatively simple language,
designed specifically for accessing and modifying information in relational databases. It was originally
developed at IBM in a mainframe environment, but is now used throughout the computing world. SQL
doesn’t actually exist as a software package by itself — it’s usually hosted by some other environment,
whether that’s an RDBMS or as a library implemented for a programming language, such as Visual
Basic.NET, Java or C++. The environment hosting SQL provides for mundane things such as regular 
I/O and talking to the operating system, while SQL is used to query the database.

MFC support for databases uses SQL to specify queries and other operations on database tables. These
operations are provided by a set of specialized classes. You’ll see how to use some of these in the example
that you write later in this chapter.

SQL has statements to retrieve, sort, and update records from a table, to add and delete records and fields,
to join tables and to compute totals, as well as a lot of other capabilities for creating and managing data-
base tables. I won’t be going into all the possible programming options available in SQL, but I’ll discuss
the details sufficiently to enable you to understand what’s happening in the examples that you write,
even though you may not have seen any SQL before.

When you use SQL in an MFC-based program, you won’t need to write complete SQL statements for the
most part because the framework takes care of assembling a complete statement and supplying it to the
database engine you’re using. Nevertheless, I’ll discuss how typical SQL statements are written in their
entirety, so that you get a feel for how the language statements are structured.

SQL statements are usually but not necessarily written with a terminating semicolon (just like C++ state-
ments), and by convention keywords in the language are written in capital letters. Take a look at a few
examples of SQL statements and see how they work.

Retrieving Data Using SQL
To retrieve data, you use the SELECT statement. In fact, it’s surprising how much of what you want to do
with a database is covered by the SELECT statement, which operates on one or more tables in your data-
base. The result of executing a SELECT statement is always a recordset, a collection of data produced using
the information from the tables you supply in the detail of the statement. The data in the recordset is organ-
ized in the form of a table, with named columns that are from the tables you specified in the SELECT state-
ment, and rows or records that are selected, based on conditions specified in the SELECT statement. The
recordset generated by a SELECT statement might have only one record, or might even be empty.

Perhaps the simplest retrieval operation on a database is to access all the records in a single table, so given
that the database includes a table called Products, you can obtain all the records in this table with the fol-
lowing SQL statement:

SELECT * FROM Products;

1116

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1116



The * indicates that you want all the fields in the database. The parameter following the keyword FROM
defines the table from which the fields are to be selected. The records that are returned by the SELECT
statement are not constrained in any way, so you’ll get all of them. A little later you’ll see how to con-
strain the records that are selected.

If you wanted all the records but needed to retrieve only specific fields in each record, you could specify
these by using the field names separated by commas in place of the asterisk in the previous example.
Here’s an example of a statement that would do this:

SELECT ProductID,UnitPrice FROM Products;

This statement selects all the records from the Products table, but only the ProductID and UnitPrice
fields for each record. This produces a table with just the two fields specified here.

The field names that I’ve used here don’t contain spaces, but they could. Where a name contains spaces,
standard SQL says that it has to be written between double quotes. If the fields had the names Product
ID and Unit Price, you would write the SELECT statement as:

SELECT “Product ID”,”Unit Price” FROM Products;

Using double quotes with names, as I have done here, is a bit inconvenient in the C++ context, as you need
to be able to pass SQL statements as strings. In C++, double quotes are already used as character string
delimiters, so there would be confusion if you tried to enclose the names of database objects (tables or
fields) in double quotes. For this reason, when you reference database table or field names that include
spaces in the Visual C++ environment, you should enclose them within square brackets rather than double
quotes. Thus, you would write the field names from the example as [Product ID] and [Unit Price].
You will see this notation in action in the database program that you’ll write later in this chapter.

Choosing Records
Unlike fields, records in a table do not have names. The only way to choose particular records is by apply-
ing some condition or restriction on the contents of one or more of the fields in a record, so that only
records meeting the condition are selected. This is done by adding a WHERE clause to the SELECT state-
ment. The parameter following the WHERE keyword defines the condition to be used to select records.

You could select the records in the Products table that have a particular value for the Category ID field
with the statement:

SELECT * FROM Products WHERE [Category ID] = 1;

This selects just those records where the Category ID field has the value 1, so from the table I illustrated
earlier, you would get the records for coffee, tea, and milk. Note that a single equals sign is used to specify
a check for equality in SQL, not == as you would use in C++.

You can use other comparison operators, such as <, >, <= and >=, to specify the condition in a WHERE
clause. You can also combine logical expressions with AND and OR. To place a further restriction on the
records selected in the last example, you could write:

SELECT * FROM Products WHERE [Category ID] = 1 AND [Unit Price] > 0.5;

In this case, the resulting table just contains two records because milk would be out as it’s too cheap. Only
records with a Category ID of 1 and a Unit Price value greater than 0.5 are selected by this statement.

1117

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1117



Joining Tables Using SQL
You can also use the SELECT statement to join tables together, although it’s a little more complicated than
you might imagine. Suppose you have two tables: Products with three records and three fields, and Orders
with three records and four fields. These are illustrated in Figure 20-3.

Figure 20-3

Here, you have a meager product set in the Products table, consisting of just coffee, bread, and cake, and
you have three orders as shown in the Orders table — but you haven’t managed to sell any coffee.

You could join these tables together with the SELECT statement:

SELECT * FROM Products,Orders;

This statement creates a recordset using the records from both the tables specified. The recordset has
seven fields — three from the Products table and four from the Orders table — but how many records
does it have? The answer is illustrated in Figure 20-4.

The recordset produced by the SELECT statement has nine records that are produced by combining each
record from the Products table with every record from the Orders table, so all possible combinations are
included. This may not be exactly what is required or what you expected. Arbitrarily including all combina-
tions of records from one table with another is of limited value. The meaning of a record containing details
of the bread product and an order for cake is hard to fathom. You could also end up with an incredibly big
table in a real situation. If you combine a table containing 100 products with one containing 500 orders and
you do not constrain the join operation, the resulting table will contain 50,000 records!

To get a useful join, you usually need to add a WHERE clause to the SELECT statement. With the tables we
have been using, one condition that would make sense would be to only allow records where the Product
ID from one table matched the same field in the other table. This would combine each record from the
Products table with the records from the Orders table that related to that product. The statement to do this is:

SELECT * FROM Products,Orders 
WHERE Products.[Product ID] = Orders.[Product ID];

Notice how a specific field for a particular table is identified here. You add the table name as a prefix and
separate it from the field name with a period. This qualification of the field name is essential where the
same field name is used in both tables. Without the table name, there’s no way to know which of the two
fields you mean. With this SELECT statement and the same table contents used previously, you’ll get the
recordset shown in Figure 20-5.

Products Table Orders Table

10001
10002
10003

coffee
bread
cake

1.50
0.50
0.30

          Product ID   

                     Nam
e   

                     Product 

   

                   Unit Price   

20001
20002
20003

10002
10003
10002

VEAD
TOMS
VEAD

50
40
30

   
                   Order ID          

   
                   Quantity         

   
                   Product ID       

   
   

                Custom
er ID       

1118

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1118



Figure 20-4

Figure 20-5

   
                   Order ID          

                   Product ID   

                     Nam
e   

                     Product 

                      Unit Price   

   
                   Quantity         

   
                   Product ID       

   
   

                Custom
er ID       10002

10002
10003

bread
bread
cake

0.50
0.50
0.30

20001
20003
20002

10002
10002
10003

VEAD
VEAD
TOMS

50
30
40

Products Table Orders Table

Result of Join Operation with the condition:
Products."Product ID" = Orders."Product ID"

10001
10002
10003

coffee
bread
cake

0.50
0.50
0.30

          Product ID   

                     Nam
e   

                     Product 

   

                   Unit Price   

20001
20002
20003

10002
10003
10002

VEAD
TOMS
VEAD

50
40
30

   
                   Order ID          

   
                   Quantity         

   
                   Product ID       

   
   

                Custom
er ID       

   
                   Order ID          

                   Product ID   

                     Nam
e   

                     Product 

   

                   Unit Price   

   
                   Quantity         

   
                   Product ID       

   
   

                Custom
er ID       10001

10001
10001
10002
10002
10002
10003
10003
10003

coffee
coffee
coffee
bread
bread
bread
cake
cake
cake

1.50
1.50
1.50
0.50
0.50
0.50
0.30
0.30
0.30

20001
20002
20003
20001
20002
20003
20001
20002
20003

10002
10003
10002
10002
10003
10002
10002
10003
10002

VEAD
TOMS
VEAD
VEAD
TOMS
VEAD
VEAD
TOMS
VEAD

50
40
30
50
40
30
50
40
30

Products Table Orders Table

Result of Join Operation

10001
10002
10003

coffee
bread
cake

1.50
0.50
0.30

          Product ID   

                     Nam
e   

                     Product 

   

                   Unit Price   

20001
20002
20003

10002
10003
10002

VEAD
TOMS
VEAD

50
40
30

   
                   Order ID          

   
                   Quantity         

   
                   Product ID       

   
   

                Custom
er ID       

1119

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1119



Of course, this may still be unsatisfactory because you have two fields containing the Product ID, but
you could easily remove this by specifying the field names you want, instead of the * in the SELECT state-
ment. The columns with the same column name, however, would be distinguished by being qualified by
the names of the original table when they appear in the recordset.

Sorting Records
When you retrieve data from a database using the SELECT statement, you will often want the records
sorted in a particular order. With the previous example, the tables shown are already ordered, but in
practice this is not necessarily the case. You might want to see the output of the last example sorted in a
different way, depending on the circumstances. At one time, it might be convenient to have the records
ordered by Customer ID, and on another occasion perhaps ordered by Quantity within Product ID.
The ORDER BY clause added to the SELECT statement will do this for you. For example, you could refine
the last SELECT statement by adding an ORDER BY clause:

SELECT * FROM Products,Orders 
WHERE Products.[Product ID] = Orders.[Product ID]
ORDER BY [Customer ID];

The result of this is the same records that you obtained with the last example but with the records arranged
so that the Customer ID field is in ascending sequence. Because the kind of data stored in a given field is
known, the records are ordered according to the data type applicable to the field. In this case the order is
alphabetical.

If you wanted to sort on two fields, Customer ID and Product ID say, and you wanted the records
arranged in descending sequence, you would write:

SELECT * FROM Products,Orders
WHERE Products.[Product ID] = Orders.[Product ID]
ORDER BY [Customer ID] DESC, Products.[Product ID] DESC;

You must use the qualified name, Products.[Product ID], in the ORDER BY clause to avoid ambiguity,
as you do in the WHERE clause. The DESC keyword at the end of each field in the ORDER BY statement speci-
fies descending sequence for the sort operation. There is a complementary keyword, ASC, for ascending
sequence, although this is usually omitted because it is the default condition.

This is by no means all there is to SQL or even all there is to the SELECT statement, but it’s enough to get
you through the database example that you will write.

Database Suppor t in MFC
You have a choice when you use MFC for database application development, because two principle
approaches are supported:

❑ OLE DB: Provides a way to access local and remote databases using COM, also referred to as
ActiveX. OLE DB is used by ActiveX Data Objects (ADO), which provides an efficient way of
accessing local and remote databases without the overhead implicit in the MFC.

❑ ODBC: Open DataBase Connectivity, better known as ODBC, defines a standard function ori-
ented interface for data access supported by a variety of database product vendors. I will be
using ODBC to illustrate database application techniques in this chapter and the next.

1120

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1120



To use OLE DB and ADO you need a good, deep knowledge of COM (ActiveX), so I will concentrate on
ODBC, for which you just need some insight into SQL. When you are familiar with COM, ADO is well
worth investigating if you want to get deep into database applications, as it is much more efficient than
using ODBC.

ODBC is a system-independent interface to a database environment that requires an ODBC driver to be
provided for each database system from which you want to manipulate data and there are ODBC drivers
available for most databases. ODBC defines a set of function calls for database operations that are system-
neutral, so using it is essentially function-call oriented. You can use a database with ODBC only if you
have the DLL that contains the driver to work with that database application’s file format. The purpose of
the driver is to interface the standard set of system-independent calls for database operations that will be
used in your program to the specifics of a particular database implementation.

MFC Classes Supporting ODBC
MFC support for ODBC is implemented through the five classes shown in the following table.

You can best understand how database operations with MFC work by creating an example. I’ll explain
how you can apply the ODBC approach to accessing a sample database called Northwind Traders. The
Northwind Traders database has the merit that it is easy to work with, but also contains a considerable
variety of tables that are populated by realistic numbers of records. This gives you a lot of scope for exper-
imentation, as well as providing some feel for how well your code will work in practice. It’s easy to be
lulled into a false sense of security by running your program against a test database where the numbers of
tables and records within a table are trivial. It can be quite a surprise to find out how long transactions can
take in a real-world context. One cautionary note about the Northwind database — you should not regard
this as a good example of a database design, particularly with regard to security. It’s very useful as a vehi-
cle for understanding the mechanics of accessing a database though.

To develop and run the examples in this chapter and the next you need to have the Northwind Traders
database installed; therefore, you’ll need a database environment on your PC capable of supporting the

CDatabase An object of this class represents a connection to your database. This connec-
tion must exist before you can carry out any operations on the database. 

CRecordset An object of a class derived from this class represents the result of an SQL
SELECT operation — which is a set of records. The object makes one record
from the set available at a time and provides functions for you to move
backwards or forwards through the set.

CRecordView An object of a class derived from this class is used to display current infor-
mation from an associated recordset object. The view is essentially a dialog
box, and the CRecordset object uses dialog data exchange (DDX) to access
the data from the recordset. 

CFieldExchange This class provides for the exchange of data between the database and a
recordset object. You would use this class directly only if you were imple-
menting data exchange for custom data types.

CDBException Objects of this class represent exceptions that occur within ODBC database
operations.

1121

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1121



Northwind database. There are versions available at the time of writing for SQL Server Express, SQL
Server 2000, and Microsoft Access. You can locate these by visiting www.microsoft.com/downloads/
details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034. You’ll find documentation on
how to install the various versions available on the respective download page. The examples show the
use of the Microsoft Access version of the Northwind Traders database, but the code is essentially the
same whichever database system you are using.

If you don’t have Microsoft Access installed but you still want to try the example in this chapter you can
download a trial version by clicking Download a Free Trial at http://office.microsoft.com/
en-us/access/default.aspx.

Creating a Database Application
For the example, I’ll show how to use three related tables in the Northwind database.

In the first step, you’ll create a program to display records from the Products table in the database. You
will then add code to allow you to examine all the orders for a given product using two other tables.
Finally, you’ll access the Customers table to enable the customer details for an order to be displayed.
Before you can start with the code, you need to identify the database to the operating system.

Registering an ODBC Database
Before you can use an ODBC database, it needs to be registered. You do this through the Control Panel
that you access from the Windows Start menu. In the Control Panel, select the Administrative Tools icon
then select Data Sources (ODBC) from the list. You should see the dialog box shown in Figure 20-6.

This shows all the data sources that have been registered. You have the possibility of registering a data-
base as a User DSN accessible only to you, as a System DSN accessible to all users on the machine, or as
a File DSN that will be available generally, possibly over a network. I’ll describe how you register the
database as a User DSN.

Figure 20-6

1122

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1122



When you then click the Add button in the ODBC Data Source Administrator dialog, you will see the
Create New Data Source dialog box shown in Figure 20-7.

Figure 20-7

Here you must select from the list of ODBC drivers the one that you are going to use — Microsoft Access
Driver (*.mdb) (or if you are using SQL Server, the driver for that). This should have been installed auto-
matically with the typical setup when you installed Windows XP or Windows Vista. If you don’t see the
driver you want, you need to go back to Windows setup to install it. When you have selected the driver,
click the Finish button. This takes you to yet another dialog box, as shown in Figure 20-8.

Figure 20-8

Enter the name of the database file as the Data Source Name, which is typically Northwind. You’ll use
this name to identify the database when you generate the application using an Application Wizard. You
should now click the Select button to go to the final dialog box, which is the Select Database dialog, in
which you can select the file in whichever directory it now sits. This last dialog to select the database is
shown in Figure 20-9.

1123

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1123



Figure 20-9

Finally, click three successive OK buttons, and you have registered the database. If this is not the same
on your PC you will need to resort to Help for your operating system, or just experiment with the ODBC
option on the Control Panel. The truth is in there.

When you have succeeded, you can now go ahead with your database application and, as ever, the start-
ing point is the New > Project menu item in Visual C++ 2008, or you can just press Ctrl+Shift+N.

Generating an MFC ODBC Program
Create a new MFC project with the MFC Application template in the usual way and give it a suitable name,
such as DBSample. After you click OK, select the Application Type set of options and choose the SDI inter-
face for document support because that will be sufficient for your needs. The document is somewhat inci-
dental to operations in a database application because most things are managed by recordset and record
view objects. As you’ll see, the main use of the document is to store recordset objects, so you won’t need
more than one document.

Select the Database Support set of options. You have a choice as to whether you include file support with
the Database View option. File support refers to serializing the document, which is not normally neces-
sary, because any database input and output that you require is taken care of using the recordset objects
in your application. Choose the option without file support, as shown in Figure 20-10.

When you select either of the database options, the other checkboxes, radio buttons, and the Data Source
button are activated. Select the ODBC radio button and then click the Data Source button to specify the
database that your application is going to use. This displays the dialog box shown in Figure 20-11.

If the Northwind database was registered as a user database, it appears on the Machine Data Source tab,
as in Figure 20-11. When you have selected the database and clicked the OK button, a Login dialog box
for the database is displayed. You then can enter the login name and password to open the database. When
you click the OK button, you’ll see the dialog box shown in Figure 20-12 in which you have to select the
database objects to which you need access.

Expand the Tables node in the dialog and click on the Products table. You could select as many of the
tables as you want by clicking on each of the tables with the Ctrl key held down, but here you’ll need

1124

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1124



only the Products table. Then click the OK button to close the dialog. You have now specified the opera-
tion for the recordset class that the Application Wizard generates as:

SELECT * FROM Products;

The use of * for all fields is determined by the framework. It just uses the table name or names you chose
here to form the SQL operation that is applied for the recordset.

The MFC Application Wizard dialog box also shows a choice between Snapshot and Dynaset for the
type of recordset your project uses. There is a significant difference between these options, so the next
section looks at what they mean.

Figure 20-10

Figure 20-11

1125

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1125



Figure 20-12

Snapshot versus Dynaset Recordsets
Your recordset object will provide you with the result of a SELECT operation on the database. In the case
of a snapshot recordset, the query is executed once, and the result is stored in memory. Your recordset
object can then make available to you any of the records in the table that result from the query, so a snap-
shot is essentially static in nature. Any changes that might occur in the database due to other users updat-
ing the database are not reflected in the data you obtained with your snapshot recordset. If you need to
see changes that may have been made, you’ll need to re-run the SELECT statement.

With the dynaset option, your recordset object automatically refreshes the current record from the data-
base when you move from one record to another in the table generated by the query for the recordset. As
a consequence, the record available in the recordset reflects the up-to-date status of the database when you
accessed the record, not when you first opened the recordset. Be aware that the refresh occurs only when
your recordset object accesses a record. If the data in the current record is modified by another user, this is
not apparent in your recordset object unless you move to another record and then return to the original
record. A dynaset recordset uses an index to the database tables involved to generate the contents of each
record dynamically. Because you have no other users accessing the Northwind database, you can choose
the Snapshot option for your example.

After Snapshot has been chosen, you can click the Generated Classes option to display the classes in
your application. The dialog box is shown in Figure 20-13.

Here you can change the class names and the corresponding file names assigned by the wizard to some-
thing more suitable, if you want. I changed CDBSampleView class name to CProductView, the header file
name from DBSampleView.h to ProductView.h and the source file name from DBSampleView.cpp to
ProductView.cpp. In addition to the changes shown for the CDBSampleView and CProductView classes
and the corresponding changes to the names of the .h and .cpp files for the class, you could also change
the CDBSampleSet class name to CProductSet, and the associated .h and .cpp file names to be consis-
tent with the class name. After that is done, click Finish and generate the project.

1126

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1126



Figure 20-13

Understanding the Program Structure
The basic structure of the program is as you have seen before, with an application class CDBSampleApp,
a frame window class CMainFrame, a document class CDBSampleDoc, and a view class CProductView.
A document template object is responsible for creating and relating the frame window, document, and
view objects. This is done in a standard manner in the InitInstance() member of the application
object. The document class is standard, except that the MFC Application Wizard has added a data mem-
ber, m_DBSampleSet, which is an object of the CProductSet class type. As a consequence, a recordset
object is automatically created when the document object is created in the InitInstance() function
member of the application object. The significant departures from a non-database program arise in the
detail of the CRecordset class, and in the CRecordView class, so take a look at those.

Understanding Recordsets
You can look at the definition of the CProductSet class that the Application Wizard has generated piece-
meal and see how each piece works. I’ll show the bits under discussion as shaded in the code fragments.

Recordset Creation
The first segment of the class definition that is of interest is:

class CProductSet : public CRecordset
{
public:

CProductSet(CDatabase* pDatabase = NULL);
DECLARE_DYNAMIC(CProductSet)

// Plus more of the class definition...

// Overrides

1127

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1127



// Wizard generated virtual function overrides
public:
virtual CString GetDefaultConnect();    // Default connection string
virtual CString GetDefaultSQL();        // default SQL for Recordset
virtual void DoFieldExchange(CFieldExchange* pFX);// RFX support

// Plus some more standard stuff

};

The class has CRecordset as a base class and provides the functionality for retrieving data from the data-
base. The constructor for the class accepts a pointer to a CDatabase object that is set to NULL as a default.
The parameter to the constructor allows a CProductSet object to be created for a CDatabase object that
already exists, which allows an existing connection to a database to be reused. Opening a connection to a
database is a lengthy business, so it’s advantageous to re-use a database connection when you can.

If no pointer is passed to the constructor, as is the case for the m_DBSampleSet member of the document
class CDBSampleDoc, the framework automatically creates a CDatabase object for you and calls the
GetDefaultConnect() function member of CProductSet to define the connection. The Application
Wizard provides the following implementation of this function:

CString CProductSet::GetDefaultConnect()
{

return _T(
“DSN=Northwind;
DBQ=C:\\Model Access DB\\Northwind.mdb;
DriverId=25;
FIL=MS Access;
MaxBufferSize=2048;
PageTimeout=5;
UID=admin;”);

}

The GetDefaultConnect() function is a pure virtual function in the base class, CRecordset, and so must
always be implemented in a derived recordset class. The value returned from the function is a single string
between double quotes but I have shown it spread over several lines to make the contents of the string
more apparent. The implementation provided by Application Wizard returns the text string shown to the
framework. This identifies the database with its name and path plus values for the other parameters you
can see and enables the framework to create a CDatabase object that establishes the database connection
automatically. The meaning of the arguments in the connection string is as shown in the following table.

Argument Description

DSN The data source name.

DBQ The database qualifier, which in this case is the path to the Access database file.

DriverId The ID of the ODBC driver for the database.

FIL The database file type.

1128

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1128



In practice, it’s usually necessary to supply a password as well as a user ID before access to a database 
is permitted, and it’s unwise to expose the password in the code in plain text form. For this reason the
Application Wizard has inserted the following line preceding the definition of the
GetDefaultConnect() function:

#error Security Issue: The connection string may contain a password

Compilation fails with this directive in the code, so you must comment it out or delete it to compile the
program successfully.

You can make the framework pop up a dialog box for the user to select the database name from the list of
registered database sources by writing the return statement in the GetDefaultConnect() function as:

return _T(“ODBC;”);

You will also be prompted for a user ID and password when this is required for access to the database.

Querying the Database
The CProductSet class includes a data member for each field in the Products table. The Application
Wizard obtains the field names from the database and uses these to name the corresponding data mem-
bers of the class. They appear in the block of code following the Field/Param Data comment in the
CProductSet class definition:

class CProductSet : public CRecordset
{
public:

CProductSet(CDatabase* pDatabase = NULL);
DECLARE_DYNAMIC(CProductSet)

// Field/Param Data
// The string types below (if present) reflect the actual data type of the
// database field - CStringA for ANSI datatypes and CStringW for Unicode
// datatypes. This is to prevent the ODBC driver from performing 
// potentially unnecessary conversions.  
// If you wish, you may change these members to
// CString types and the ODBC driver will perform all necessary 
// conversions.
// (Note: You must use an ODBC driver version that is version 3.5 or 
// greater to support both Unicode and these conversions).

Argument Description

MaxBufferSize The maximum size of the buffer to be used for data transfer.

PageTimeout The length of time in seconds to wait for a connection to the database. It is
important to set this value to an adequate value to avoid connection failures
when accessing a remote database.

UID The user ID for accessing the database.

1129

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1129



long m_ProductID;      // Number automatically assigned to new product.
CStringW m_ProductName;
long m_SupplierID;          // Same entry as in Suppliers table.
long m_CategoryID;          // Same entry as in Categories table.
CStringW m_QuantityPerUnit; // (e.g., 24-count case, 1-liter bottle).
double m_UnitPrice;
int m_UnitsInStock;
int m_UnitsOnOrder;
int m_ReorderLevel;         // Minimum units to maintain in stock.
BOOL m_Discontinued;        // Yes means item is no longer available.

// Overrides
// Wizard generated virtual function overrides
public:
virtual CString GetDefaultConnect();  // Default connection string
virtual CString GetDefaultSQL();      // default SQL for Recordset
virtual void DoFieldExchange(CFieldExchange* pFX);  // RFX support

// Implementation
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

};

The type of each data member is set to correspond with the field type for the corresponding field in the
Products table. You may not want all these fields in practice, but you shouldn’t delete them willy-nilly
in the class definition. As you will see shortly, they are referenced in other places, so you must ensure
that all references to a field are deleted, too. A further caveat is that you must not delete primary keys. If
you do, the recordset won’t work, so you need to be sure which fields are primary keys before chopping
out what you don’t want.

Note that two of the fields have CStringW as the type. You haven’t seen this before, but the CStringW
class type just encapsulates a Unicode string rather than an ASCII string. It is more convenient when
you are accessing the fields to use type CString, so change the type of the m_ProductName and
m_QuantityPerUnit members to CString. This allows the strings to be handled as ASCII strings 
in the example. Clearly, if you are writing internationalized database applications, you would need 
to maintain any CStringW fields as such because they may contain characters that are not within 
the ASCII character set.

The SQL operation that applies to the recordset to populate these data members is specified in the
GetDefaultSQL() function. The implementation that the Application Wizard has supplied for this is:

CString CProductSet::GetDefaultSQL()
{

return _T(“[Products]”);
}

1130

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1130



The string returned is obviously created based on the table that you selected during the creation of the
project. The square brackets have been included to provide for the possibility of the table name contain-
ing spaces. If you had selected several tables in the project creation process, they would all be inserted
here, separated by commas, with each table name enclosed within square brackets.

The GetDefaultSQL() function is called by the MFC framework when it constructs the SQL statement
to be applied for the recordset. The framework slots the string returned by this function into a skeleton
SQL statement with the form:

SELECT * FROM < String returned by GetDefaultSQL() >;

This looks simplistic, and indeed it is, but you can add WHERE and ORDER BY clauses to the operation, as
you’ll see later.

Data Transfer between the Database and the Recordset
The transfer of data from the database to the recordset, and vice versa, is accomplished by the
DoFieldExchange() member of the CProductSet class. The implementation of this function is:

void CProductSet::DoFieldExchange(CFieldExchange* pFX)
{

pFX->SetFieldType(CFieldExchange::outputColumn);
// Macros such as RFX_Text() and RFX_Int() are dependent on the
// type of the member variable, not the type of the field in the database.
// ODBC will try to automatically convert the column value to the requested
// type

RFX_Long(pFX, _T(“[ProductID]”), m_ProductID);
RFX_Text(pFX, _T(“[ProductName]”), m_ProductName);
RFX_Long(pFX, _T(“[SupplierID]”), m_SupplierID);
RFX_Long(pFX, _T(“[CategoryID]”), m_CategoryID);
RFX_Text(pFX, _T(“[QuantityPerUnit]”), m_QuantityPerUnit);
RFX_Double(pFX, _T(“[UnitPrice]”), m_UnitPrice);
RFX_Int(pFX, _T(“[UnitsInStock]”), m_UnitsInStock);
RFX_Int(pFX, _T(“[UnitsOnOrder]”), m_UnitsOnOrder);
RFX_Int(pFX, _T(“[ReorderLevel]”), m_ReorderLevel);
RFX_Bool(pFX, _T(“[Discontinued]”), m_Discontinued);

}

This function is called automatically by the MFC framework to store data in and retrieve data from the
database. It works in a similar fashion to the DoDataExchange() function you have seen with dialog
controls in that the pFX parameter determines whether the operation is a read or a write. Each time it’s
called, it moves a single record to or from the recordset object.

The first function called is SetFieldType(), which sets a mode for the RFX_() function calls that fol-
low. In this case, the mode is specified as outputColumn, which indicates that data is to be exchanged
between the database field and the corresponding argument specified in each of the following RFX_()
function calls. (RFX here stands for Record Field Exchange.)

1131

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1131



There is a whole range of RFX_() functions for various types of database fields. The function call for a
particular field corresponds with the data type applicable to that field. The first argument to an RFX_()
function call is the pFX object that determines the direction of data movement. The second argument is
the table field name and the third is the data member that is to store that field for the current record.

Understanding the Record View
The purpose of the view class is to display information from the recordset object in the application win-
dow, so you need to understand how this works. The bits of the CProductView class definition that are
of primary interest are shown shaded:

class CProductView : public CRecordView
{
protected: // create from serialization only

CProductView();
DECLARE_DYNCREATE(CProductView)

public:
enum{ IDD = IDD_DBSAMPLE_FORM };
CProductSet* m_pSet;

// Attributes
public:

CDBSampleDoc* GetDocument();

// Operations
public:

// Overrides
public:
virtual CRecordset* OnGetRecordset();
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
virtual void DoDataExchange(CDataExchange* pDX);   // DDX/DDV support
virtual void OnInitialUpdate(); // called first time after construct
virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

// Implementation
public:
virtual ~CProductView();

#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

// Generated message map functions
protected:

1132

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1132



DECLARE_MESSAGE_MAP()
};

The view class for a recordset always needs to be derived because the class has to be customized to dis-
play the particular fields from the recordset that you want. The base class, CRecordView, includes all 
the functionality required to manage communications with the recordset. All you need to do is tailor the
record view class to suit your application. I’ll get to that in a moment.

Note that the constructor is protected. This is because objects of this class are expected to be created
from serialization, which is a default assumption for record view classes. When you add further record
view classes to the application, you’ll need to change the default access for their constructors to public
because you’ll be creating the views yourself.

In the first public block in the class, the enumeration adds the ID IDD_DBSAMPLE_FORM as a member of
the class. This is the ID for a blank dialog that the Application Wizard has included in the program. You’ll
add controls to this dialog to display the database fields from the Products table that you want displayed.
The dialog ID is passed to the base class, CRecordView, in the initialization list of the constructor for the
view class:

CProductView::CProductView() : CRecordView(CProductView::IDD)
{

m_pSet = NULL;
// TODO: add construction code here

}

This action links the view class to the dialog box, which is necessary to enable the mechanism that trans-
fers data between the recordset object and the view object to work.

There is also a pointer to a CProductSet object, m_pSet, in the class definition, which is initialized to
NULL in the constructor. A more useful value for this pointer is set in the OnInitialUpdate() member
of the class, which has been implemented as:

void CProductView::OnInitialUpdate()
{

m_pSet = &GetDocument()->m_DBSampleSet;
CRecordView::OnInitialUpdate();

}

This function is called when the record view object is created and sets the value of m_pSet to be the
address of the m_DBSampleSet member of the document, thus tying the view to the product set object.

Figure 20-14 shows how data from the database ultimately gets to be displayed by the view.

The transfer of data between the data members in the CProductSet object that correspond to fields in
the Products table and the controls in the dialog box associated with the CProductView object is man-
aged by the DoDataExchange() member of CProductView. The code in this function to do this is not
in place yet because you first need to add the controls to the dialog that are going to display the data
and then link the controls to the recordset data members. You will do that next.

1133

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1133



Figure 20-14

Creating the View Dialog
The first step is to place the controls on the dialog box, so go to Resource View, expand the list of dialog
resources, and double-click Idd_Dbsample_Form. You can delete the static text object with the TODO mes-
sage from the dialog. If you right-click the dialog box, you can choose to view its properties, as shown in
Figure 20-15.

If you scroll down through the properties you’ll see that the Style property has been set to Child
because the dialog box is going to be a child window and will fill the client area. The Border property
has been set to None because if the dialog box is to fill the client area, it won’t need a border.

You’ll add a static text control to identify each field from the recordset that you want to display, plus an
edit control to display it.

Figure 20-15

OrderID CustomerID EmployeeID OrderDate

Customers Table

RequiredDate ShippedDate ShipVia

Generated as
max(OrderID)+1

Current
Date

Input from
Dialog

Set as
<NULL>

Arbitrarily
3

Arbitrarily
9

Arbitrarily
9.95

Freight ShipName ShipAddress ShipCity ShipRegion ShipPostalCode ShipCountry

1134

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1134



You can enlarge the dialog if necessary by dragging its borders. Then, place Static Text and Edit controls
on the dialog as shown in Figure 20-16.

You can add the text to each static control by just typing it as soon as the control has been placed on the
dialog. As you see, I have entered the text for each static control so that it corresponds to the field name
in the database. It’s a good idea to make sure that all the edit controls have sensible and different IDs, so
right-click each of them in turn to display and modify their properties. Figure 20-17 shows the properties
for the control corresponding to Product ID.

Figure 20-16

Figure 20-17

It’s helpful to use the field name as part of the control ID as this indicates what the control displays.
Figure 20-17 shows the ID for the first edit control in the title bar of the properties window after I have
modified it. You can change the IDs for the other edit controls similarly. Because you are not intending
to update the database in this example, you should make sure that the data displayed by each edit box
cannot be modified from the keyboard. You can do that by setting the Read Only property for of each

1135

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1135



of the edit controls as True. The background to the edit boxes will then have a different color to signal
that they cannot be altered, as shown in Figure 20-18.

You can add other fields to the dialog box, if you want. The one that is most important for the rest of our
example is the Product ID, so you must include that. Save the dialog and then move on to the last step:
linking the controls to the variables in the recordset class.

Figure 20-18

Linking the Controls to the Recordset
As you saw earlier in Figure 20-14, getting the data from the recordset displayed by the appropriate con-
trol is the job of the DoDataExchange() function in the CProductView class. The m_pSet member pro-
vides a means of accessing the members of the CProductSet object that contains the fields retrieved from
the database, so linking the controls to the data members of CProductSet is easy. MFC defines a range of
DDX_Field functions at global scope that are specifically for exchanging data between a view and a record-
set (DDX stands for Dialog Data Exchange). In particular, the DDX_FieldText() function has overloaded
versions that transfer a variety of types of data between a recordset field and an edit box in a CRecordView
object. The types that can be exchanged by the DDX_FieldText() function are shown in the following table.

When you call the DDX_FieldText() function you must supply four arguments:

❑ A CDataExchange object that determines the direction of data transfer — whether the data is 
to be transferred to or from the recordset. You just supply the pointer that is passed as the argu-
ment to the DoDataExchange() function.

❑ The ID of the control that is the source or destination of the data.

❑ A reference to a field data member in the CRecordset object that is the source or destination of
the data.

❑ A pointer to the CRecordset object with which data is to be exchanged.

short int UINT long DWORD

float double CString COleDateTime COleCurrency

1136

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1136



So to implement the transfer of data between the recordset and the control for the Product ID field, insert
the following call of the DDX_FieldText() function in the body of the DoDataExchange() function:

DDX_FieldText(pDX, IDC_PRODUCTID, m_pSet->m_ProductID, m_pSet);

The first argument is the pDX argument that is passed to the DoDataExchange() function. The second
argument is the ID for the first edit control in the dialog box for the view, the third argument uses the
m_pSet member of the CProductView class to access the m_ProductID member of the recordset object,
and the last argument is the pointer to the recordset object.

You can therefore fill out the code for the DoDataExchange() function in the CProductView class like this:

void CProductView::DoDataExchange(CDataExchange* pDX)
{

CRecordView::DoDataExchange(pDX);
DDX_FieldText(pDX, IDC_PRODUCTID, m_pSet->m_ProductID, m_pSet);
DDX_FieldText(pDX, IDC_PRODUCTNAME, m_pSet->m_ProductName, m_pSet);
DDX_FieldText(pDX, IDC_UNITPRICE, m_pSet->m_UnitPrice, m_pSet);
DDX_FieldText(pDX, IDC_UNITSINSTOCK, m_pSet->m_UnitsInStock, m_pSet);
DDX_FieldText(pDX, IDC_CATEGORYID, m_pSet->m_CategoryID, m_pSet);
DDX_FieldText(pDX, IDC_UNITSONORDER, m_pSet->m_UnitsOnOrder, m_pSet);

}

The programming mechanism for data transfer between the database and the dialog box owned by the
CProductView object is illustrated in Figure 20-19.

Figure 20-19

1137

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1137



The recordset class and the record view class cooperate to enable data to be transferred between the data-
base and the controls in the dialog box. The CProductSet class handles transfers between the database
and its data members and CProductView deals with transfers between the data members of CProductSet
and the controls in the dialog.

Exercising the Example
Believe it or not you can now run the example. Just build it in the normal way and then execute it. The
application should display a window similar to the one shown in Figure 20-20.

Figure 20-20

The CRecordView base class automatically implements toolbar buttons that step from one record in the
recordset to the next or to the previous record. There are also toolbar buttons to move directly to the first
or last record in the recordset. Of course, the products are displayed in a default sequence. It would be
nice to have them sorted in categories and in product ID sequence within each category. Next, you’ll
see how you can do that.

Sor ting a Recordset
As you saw earlier, the data is retrieved from the database by the recordset, using an SQL SELECT state-
ment that is generated by the framework using the GetDefaultSQL() member. You can add an ORDER BY
clause to the statement generated by setting a value in the m_strSort member of CProductSet, which is
inherited from CRecordSet. This causes the output table from the query to be sorted, based on the string
stored in m_strSort. You need to set only the m_strSort member to a string that contains the field name
or names that you want to sort on; the framework provides the ORDER BY keywords. Where you have mul-
tiple names, you separate them by commas. But where should you add the code to do this?

The transfer of data between the database and the recordset occurs when the Open() member of the
recordset object is called. In your program, the Open() function member of the recordset object is called

1138

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1138



by the OnInitialUpdate() member of the base class to the view class, CRecordView. You can, therefore,
put the code for setting the sort specification in the OnInitialUpdate() member of the CProductView
class, as follows:

void CProductView::OnInitialUpdate()
{

m_pSet = &GetDocument()->m_productSet;
m_pSet->m_strSort = “[CategoryID],[ProductID]”;    // Set the sort fields
CRecordView::OnInitialUpdate();

}

You just set m_strSort in the recordset to a string containing the name of the category ID field followed
by the name of the product ID field. Square brackets are useful, even when there are no blanks in a name,
because they differentiate strings containing these names from other strings, so you can immediately pick
out the field names. They are, of course, optional if there are no blanks in the field name.

Modifying the Window Caption
There is one other thing you could add to this function at this point. The caption for the window would
be better if it showed the name of the table being displayed. You can arrange for this to happen by adding
code to set the title in the document object:

void CProductView::OnInitialUpdate()
{

m_pSet = &GetDocument()->m_productSet;
m_pSet->m_strSort = “[CategoryID],[ProductID]”;    // Set the sort fields
CRecordView::OnInitialUpdate();

// Set the document title to the table name
if (m_pSet->IsOpen())                     // Verify the recordset is open
{
CString strTitle = _T(“Table Name”);    // Set basic title string
CString strTable = m_pSet->GetTableName();
if(!strTable.IsEmpty())                 // Verify we have a table name
strTitle += _T(“: “) + strTable;      // and add to basic title

GetDocument()->SetTitle(strTitle);      // Set the document title
}

}

Note that the new code here must go after the call to the base class version of the OnInitialUpdate()
function. After checking that the recordset is indeed open, you initialize a local CString object with a basic
title string. You then get the name of the table from the recordset object by calling its GetTableName()
member. In general, you should check that you do get a string returned from the GetTableName() func-
tion. Various conditions can arise that can prevent a table name from being set — for instance, there may 
be more than one table involved in the recordset. After appending a colon followed by the table name you
have retrieved to the basic title in strTitle, you set the result as the document title by calling the docu-
ment’s SetTitle() member.

If you rebuild the application and run it again, it works as before but with a new window caption as
Figure 20-21 shows. The product IDs are in ascending sequence within each category ID, with the cate-
gory IDs in sequence, too.

1139

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1139



Figure 20-21

Using a Second Recordset Object
Now that you can view all the products in the database, a reasonable extension of the program would be
to add the ability to view all the orders for any particular product. To do this, you’ll add another record-
set class to handle order information from the database and a complementary view class to display some
of the fields from the recordset. You’ll also add a button to the Products dialog to enable you to switch to
the Orders dialog when you want to view the orders for the current product. This enables you to operate
with the arrangement shown in Figure 20-22.

Figure 20-22

1140

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1140



The Products dialog box is the starting position where you can step backwards and forwards through all
the available products. Clicking the Show Orders button switches you to the dialog where you can view
all the orders for the current product. You can return to the Products dialog box by clicking the Show
Products button.

Adding a Recordset Class
You can start by adding the recordset class for the orders; right-click DBSample in Class View and select
Add > Class from the pop-up. Select MFC from the set of Visual C++ categories and MFC ODBC
Consumer as the template. When you click the Add button in the Add Class dialog box that is dis-
played, you’ll see the MFC ODBC Consumer Wizard dialog box shown in Figure 20-23.

Figure 20-23

Select the type of consumer as Snapshot by selecting the radio button and then click the Data Sources
button to go to the Select Data Source dialog box, where you’ll be able to identify the data source; 
it should be on the Machine Data Source tab. When you have selected Northwind as the data source in
the same way as you’ve seen previously, you’ll see the Select Database Object dialog box as shown in
Figure 20-24.

You’ll select two tables to associate with the new recordset class that you’re going to create, so hold 
the Ctrl key down and select the Orders and Order Details table names. You can then click the OK
button to complete the selection process. This returns you to the MFC ODBC Consumer dialog box
where you’ll see the class name and file names have been entered. You can change the class name 
from COrderDetails_MULTI to COrderSet and the file names in a corresponding way, as shown 
in Figure 20-25.

Clicking on the Finish button completes the process and causes the COrderSet class to generate.

1141

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1141



Figure 20-24

Figure 20-25

As you saw in the CProductSet class that was created as part of the initial project, the implementation
of the GetDefaultConnect() function for the COrderSet class is preceded by an #error directive that
prevents compilation from succeeding, so comment that out.

A data member has been created in the COrderSet class for every field in each of the tables. When you
select two or more tables for a given recordset, it is always possible, indeed likely, that there are field names
duplicated; the OrderID field appears in both tables, for example. To ensure the names corresponding to
field data members are always differentiated, the field names are prefixed with the table name in each case.
If you don’t want to keep all these fields, you can delete or comment out any of them, but as I said earlier,

1142

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1142



you must take care not to delete any variables that are primary keys. When you delete a data member for a
table field, you must also delete the initialization for it in the class constructor and the RFX_() call for it in
the DoFieldExchange() member function. You must also change the initial value for the m_nFields mem-
ber in the COrderSet constructor so that it reflects the number of fields left in the class. The data members
that you need to keep for this example are as follows: m_OrdersOrderID, m_OrderDetailsOrderID,
m_OrderDetailsProductID, m_OrderDetailsQuantity, and m_OrdersCustomerID. If you keep just
these you should change the value assigned to m_nFields to 5. Change the members of type CStringW to
type CString.

To hook the new recordset to the document, you need to add a data member to the definition of the
CDBSampleDoc class, so right-click the class name in Class View and select Add > Add Variable from
the pop-up. Specify the type as COrderSet and the variable name as m_OrderSet. You can leave it as a
public member of the class. Click OK to finish adding the data member to the document. The compiler
has to understand that COrderSet is a class before it begins compiling the CBSampleDoc class. If you
take a look at the contents of the DBSampleDoc.h header file, you will see that an #include statement
has already been added for you to the top of DBSampleDoc.h:

#pragma once
#include “ProductSet.h”
#include “orderset.h”
class CDBSampleDoc : public CDocument
{
// Rest of class definition 
}

Adding a View Class for the Recordset
At this point you might expect to be adding a class derived from CRecordView using the Add > Class
menu item in the Class View context menu to display the data from the COrderSet object. This used
to be possible in earlier versions of Visual C++, but unfortunately the Visual C++ 2008 product does
not provide for this. The dialog box for adding a new class does not allow the possibility of selecting
CRecordView as a base class at all, so you must always create classes that have CRecordView as a
base manually.

You need to create another dialog resource before you create the view class so you have the ID for the
resource that you can use in the definition of the view class.

Creating the Dialog Resource
Switch to Resource View, right-click the Dialog folder, and select Insert Dialog from the context menu.
You can delete both of the default buttons from the dialog. Now change the ID and styles for the dialog,
so right-click it and display its properties by selecting Properties from the pop-up. Change the ID prop-
erty to IDD_ORDERS_FORM. You also need to change the Style property to Child and the Border prop-
erty to None.

You’re now ready to populate the dialog box with controls for the fields that you want to display from
the Orders and Order Details tables. If you switch to Class View and select the COrderSet class name,
you’ll be able to see the names of the variables concerned while you are working on the dialog. Add 
controls to the dialog box as shown in Figure 20-26.

1143

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1143



Figure 20-26

Here, there are four edit controls for the OrderID, CustomerID, ProductID, and Quantity fields from
the tables associated with the COrderSet class, together with static controls to identify them. You can
add controls to display a few more fields if you want, as long as you haven’t deleted the class members.
Don’t forget to modify the IDs for the edit controls so that they are representative of the purpose of the
control. You can use the table field names prefixed by the table name to match the data member names.
Finally, you need to make the edit controls read-only by setting the Read Only property to True for each
control. Alternatively, you can set them all to read-only in one go by selecting each of them with the
Ctrl key held down and then setting the Read Only property to True.

The button control labeled Show Products is used to return to the Products table view, so modify the
ID for this button to IDC_PRODUCTS. When you have arranged everything to your liking, save the dialog
resource.

Creating the Record View Class
Create the OrderView.h file that will hold the COrderView class definition. To do this just right-click
DBSample in Solution Explorer and select Add > New Item from the list. Choose the template to create
a .h file and enter the file name as OrderView. After you have created the file, you can add the code for
the class definition as:

#pragma once

class COrderSet;           // Declare the class name
class CDBSampleDoc;        // Declare the class name

// COrderView form view

class COrderView : public CRecordView
{
DECLARE_DYNCREATE(COrderView)

protected:
virtual ~COrderView(){}
virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
virtual void OnInitialUpdate();

public:
enum { IDD = IDD_ORDERS_FORM };

1144

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1144



COrderSet* m_pSet;

// Inline function definition
CDBSampleDoc* GetDocument() const
{
return reinterpret_cast<CDBSampleDoc*>(m_pDocument);

}

COrderSet* GetRecordset();
virtual CRecordset* OnGetRecordset();
COrderView();           // constructor now public

#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
};

This code is based on the CProductView that was generated. The DECLARE_DYNCREATE macro enables
objects of this class type to be created by the MFC framework at runtime. In general MFC document, view,
and frame classes should define this macro. You will add the complementary IMPLEMENT_DYNCREATE
macro to the .cpp file a little later. I have omitted the debug version of the GetDocument() because the
CProductView class contains a version of the function that validates the document object. The inline
version in the COrderView class definition just assumes the cast to CDBSampleDoc* will be OK. I have
included declarations for AssertValid() and Dump() that is compiled only when debug mode is in
effect, so definition has to be included in the .cpp file for the class. The enumeration defines the ID for
the dialog and you will use this in the definition of the constructor. The m_pSet member will hold the
address of the recordset object that supplies the data displayed by this view.

The implementation of the COrderView class goes in the OrderView.cpp file, so create that file within
the project using the procedure you followed for the .h file. You can add the initial #include directive
for the classes you will need to reference:

#include “stdafx.h”
#include “DBSample.h”
#include “OrderView.h”
#include “OrderSet.h” 
#include “DBSampleDoc.h”

This is not the complete set — you’ll be adding a couple more as you develop the class implementation.

You can add the macro to allow dynamic creation of COrderView objects next:

IMPLEMENT_DYNCREATE(COrderView, CRecordView)

The constructor just needs to initialize the m_pSet member to NULL:

COrderView::COrderView()
: CRecordView(COrderView::IDD), m_pSet(NULL)

{
}

1145

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1145



Here you call the base class constructor with the dialog ID that you defined in an enumeration in the class
as the argument. This identifies the dialog that is associated with the view.

Now add definitions for the two functions that may be used when you execute in debug mode:

// COrderView diagnostics

#ifdef _DEBUG
void COrderView::AssertValid() const
{
CRecordView::AssertValid();

}

void COrderView::Dump(CDumpContext& dc) const
{
CRecordView::Dump(dc);

}
#endif //_DEBUG

The DoDataExchange() function links the controls in the dialog to the fields in the recordset. The defi-
nition of this function is:

void COrderView::DoDataExchange(CDataExchange* pDX)
{
CRecordView::DoDataExchange(pDX);
DDX_FieldText(pDX, IDC_ORDERDETAILS_ORDERID,

m_pSet->m_OrderDetailsOrderID, m_pSet);
DDX_FieldText(pDX, IDC_ORDERS_CUSTOMERID,

m_pSet->m_OrdersCustomerID, m_pSet);
DDX_FieldText(pDX, IDC_ORDERDETAILS_PRODUCTID,

m_pSet->m_OrderDetailsProductID, m_pSet);
DDX_FieldText(pDX, IDC_ORDERDETAILS_QUANTITY,

m_pSet->m_OrderDetailsQuantity, m_pSet);
}

You use the m_pSet member to access the fields in the COrderSet object that are to be displayed. The
second argument to each DDX_FieldText() method call identifies the control for the field identified by
the third argument. As you saw when you explored the CProductView class, the first argument deter-
mines whether data is being transferred to or from the control. The last argument simply identifies the
recordset that is involved in the process.

There are two functions to be defined that are involved in retrieving the recordset. You’ll call the
GetRecordset() function to obtain a pointer to the COrderSet object encapsulating the recordset. 
You can implement this as follows:

COrderSet* COrderView::GetRecordset()
{
ASSERT(m_pSet != NULL);
return m_pSet;

}

The m_pSet member contains a pointer to the recordset. The MFC ASSERT macro here aborts the program
with a message if the expression between the parentheses evaluates to 0. Thus, this just verifies that the

1146

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1146



pointer to the COrderSet object is not NULL. The ASSERT macro has the advantage that it operates only in
a debug version of the application. In a release version, it does nothing.

The OnGetRecordset() function is a pure virtual function in the base class, so you must define it here.
You can implement it as.

CRecordset* COrderView::OnGetRecordset()
{
return m_pSet;

}

This just returns the address in m_pSet in this case. Obviously, in a situation where you needed to recreate
the recordset, the code would need to be more complicated.

You are not finished with the view class yet. The next step is to determine more precisely what the record-
set for the orders contain.

Customizing the Recordset 
As it stands, the SQL SELECT operation for a COrderSet object produces a table that will contain all
combinations of records from the two tables involved. This could be a lot of records, so you must add
the equivalent of a WHERE clause to the query to restrict the records selected to those that make sense.
But there is another problem, too: when you switch from the Products table display, you don’t want to
look at just any old orders. You want to see precisely those orders for the product ID we were looking
at, which amounts to selecting only those orders that have the same product ID as that contained in 
the current CProductSet record. This is also effected through a WHERE clause. In the MFC context, the
WHERE clause for a SQL SELECT operation for a recordset is called a filter.

Adding a Filter to the Recordset
You add a filter to the query by assigning a string to the m_strFilter member of the recordset object.
This member is inherited from the base class, CRecordSet. As with the ORDER BY clause, which you
added by assigning a value to the m_strSort member of the recordset, the place to implement this is in
the OnInitialUpdate() member of the record view class, just before the base class function is called.

You want to set two conditions in the filter. One is to restrict the records generated in the recordset to
those where the OrderID field in the Orders table is equal to the field with the same name in the Order
Details table. You can write this condition as:

[Orders].[OrderID] = [Order Details].[OrderID]

The other condition you want to apply is that, for the records meeting the first condition, you want only
those with a ProductID field that is equal to the ProductID field in the current record in the recordset
object displaying the Products table. This means that you need to have the ProductID field from the
COrderSet object compared to a variable value. The variable in this operation is called a parameter, and
the condition in the filter is written in a special way:

ProductID = ?

The question mark represents a parameter value for the filter, and the selected records are those where
the ProductID field equals the parameter value. The value that is to replace the question mark is set in

1147

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1147



the DoFieldExchange() member of the recordset. You’ll implement this in a moment, but first you’ll
complete the specification of the filter.

You can define the string for the filter variable that incorporates both the conditions that you need with
the statement:

// Set the filter as Product ID field with equal Order IDs
m_pSet->m_strFilter =

“[ProductID] = ? AND [Orders].[OrderID] = [Order Details].[OrderID]”;

You’ll incorporate this into the OnInitialUpdate() member of the COrderView class, but before that,
you’ll finish setting the parameter for the filter.

Defining the Filter Parameter
Add a data member to the COrderSet class to store the current value of the ProductID field from the
CProductSet object. This member also actS as the parameter to substitute for the ? in the filter for 
the COrderSet object. So, right-click the COrderSet class name in Class View and select Add > Add
Variable from the pop-up. The variable type needs to be the same as that of the m_ProductID member 
of the CProductSet class, which is type long, and you can specify the name as m_ProductIDparam.
You can also leave it as a public member. You need to initialize this data member in the constructor and
also set the parameter count. The application framework requires the count of the number of parameters 
in your recordset to be set to reflect the number of parameters you are using; otherwise, it won’t work cor-
rectly. Add the shaded code shown below to the COrderSet constructor definition:

COrderSet::COrderSet(CDatabase* pdb) : CRecordset(pdb)
{

m_OrderDetailsOrderID = 0;
m_OrderDetailsProductID = 0;
m_OrderDetailsQuantity = 0;
m_OrdersOrderID = 0;
m_OrdersCustomerID = L””;
m_nFields = 5;
m_ProductIDparam = 0L;    // Set initial parameter value
m_nParams = 1;            // Set number of parameters
m_nDefaultType = snapshot;

}

All of the unshaded code was supplied by Class wizard to initialize the data members corresponding to
the fields in the recordset and to specify the type as snapshot. You should delete the initialization for the
other fields in the recordset. The new code initializes the parameter to zero and sets the count of the num-
ber of parameters to 1. The m_nParams variable is inherited from the base class, CRecordSet. Because
there is a parameter count, you can deduce that you can have more than one parameter in the filter for a
recordset.

At this point you can also remove or comment out the members from the COrderSet class that store
fields from the recordset that you won’t need. Remove or comment out the fields that are not required
from the class definition, just leaving the following:

long m_OrderDetailsOrderID;     // Same as Order ID in Orders table.
long m_OrderDetailsProductID;   // Same as Product ID in Products table.
int m_OrderDetailsQuantity;

1148

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1148



long m_OrdersOrderID;           // Unique order number.
CString m_OrdersCustomerID;     // Same entry as in Customers table.
long m_ProductIDparam;

To identify the m_ProductIDparam variable in the class as a parameter to be substituted in the filter for
the COrderSet object, you must also add some code to the DoFieldExchange() member of the class:

void COrderSet::DoFieldExchange(CFieldExchange* pFX)
{

pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Long(pFX, _T(“[Order Details].[OrderID]”), m_OrderDetailsOrderID);
RFX_Long(pFX, _T(“[Order Details].[ProductID]”),

m_OrderDetailsProductID);
RFX_Int(pFX, _T(“[Order Details].[Quantity]”),

m_OrderDetailsQuantity);
RFX_Long(pFX, _T(“[Orders].[OrderID]”), m_OrdersOrderID);
RFX_Text(pFX, _T(“[Orders].[CustomerID]”), m_OrdersCustomerID);

// Set the field type as parameter
pFX->SetFieldType(CFieldExchange::param);
RFX_Long(pFX,_T(“ProductIDParam”), m_ProductIDparam);

}

The Class Wizard provided code to transfer data between the database and the field variables it has added
to the class. There will be one RFX_() function call for each data member of the recordset. You can delete
those that are not required in this application, leaving just those shown in the preceding code.

The first new line of code calls the SetFieldType() member of the pFX object to set the mode for the fol-
lowing RFX_() call to param. The effect of this is to cause the third argument in any succeeding RFX_()
calls to be interpreted as a parameter that is to replace a ? in the filter for the recordset. If you have more
than one parameter, the parameters substitute for the question marks in the m_strFilter string in
sequence from left to right, so it’s important to ensure that the RFX_() calls are in the right order when
there are several. With the mode set to param, the second argument in the RFX_() call is ignored, so you
could put NULL here or some other string if you want.

Initializing the Record View
You can now implement the override for the OnInitialUpdate() function in the COrderView class.
This function is called by the MFC framework before the view is initially displayed, so you can put code
in this function to do any one-time initialization that you need. In this case you will specify the filter for
the recordset. Here’s the definition of the function to do this:

void COrderView::OnInitialUpdate()
{
BeginWaitCursor();
CDBSampleDoc* pDoc = static_cast<CDBSampleDoc*>(GetDocument());  
m_pSet = &pDoc->m_OrderSet;           // Get a pointer to the recordset

// Use the DB that is open for products recordset
m_pSet->m_pDatabase = pDoc->m_DBSampleSet.m_pDatabase;

// Set the current product ID as parameter

1149

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1149



m_pSet->m_ProductIDparam = pDoc->m_DBSampleSet.m_ProductID;

// Set the filter as product ID field
m_pSet->m_strFilter =
“[ProductID] = ? AND [Orders].[OrderID] = [Order Details].[OrderID]”;

CRecordView::OnInitialUpdate();
EndWaitCursor();

}

Add this function definition to OrderView.cpp. The version of the COrderSet class that was implemented
by the Class wizard doesn’t override the GetDocument() member because it isn’t associated with the doc-
ument class initially. As a result, you must cast the pointer from the base class GetDocument() member to
a pointer to a CDBSampleDoc object. Alternatively, you could add an override version of GetDocument()
to COrderSet to do the cast. Clearly, you need a pointer to the document object because you need to access
the members of the object.

The BeginWaitCursor() call at the start of the OnInitialUpdate() function displays the hourglass
cursor while this function is executing. The reason for this is that this function can take an appreciable
time to execute, especially when multiple tables are involved. The processing of the query and the transfer
of data to the recordset all takes place in here. The cursor is returned to normal by the EndWaitCursor()
call at the end of the function.

The first thing that the code does is to set the m_pDatabase member of the COrderSet object to the same
as that for the CProductSet object. If you don’t do this, the framework re-opens the database when the
orders recordset is opened. Because the database has already been opened for the products recordset, this
wastes a lot of time.

Next, you set the value for the m_ProductIDparam parameter variable to the current value stored in the
m_ProductID member of the products recordset. This value replaces the question mark in the filter when
the orders recordset is opened, so select the records you want; then set the filter for the orders recordset 
to the string you saw earlier.

Accessing Multiple Table Views
Because you have implemented the program with the single document interface, the application has one
document and one view. The availability of just one view might appear to be a problem, but it isn’t in
practice. You can arrange for the frame window object in the application to create an instance of the
COrderView class and switch the current window to that when the orders recordset is to be displayed.

You’ll need to keep track of what the current window is, which you can do by assigning a unique ID to
each of the record view windows in the application. At the moment there are two views: the products
view and the orders view. To define IDs for these, create a new file called OurConstants.h and add the
following code to it:

// Definitions for our constants

#pragma once

// Arbitrary constants to identify record views
const unsigned int PRODUCT_VIEW = 1;
const unsigned int ORDER_VIEW = 2;

1150

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1150



You can now use one of these constants to identify each view and to record the ID of the current view in
the frame window object. To record the current view ID, add a public data member to the CMainFrame
class of type unsigned int and give it the name m_CurrentViewID. After you have done that, you can
initialize it in the constructor for CMainFrame by adding code as follows:

CMainFrame::CMainFrame() 
: m_CurrentViewID(PRODUCT_VIEW)
{
}

The application starts with the Product View initially, so you initialize m_CurrentViewID to be consis-
tent with that. Now add an #include directive for OurConstants.h to the beginning of MainFrm.cpp
so that the definition of PRODUCT_VIEW is accessible in the source file.

Switching Views
To enable the view switching mechanism, you add a public function member to the CMainFrame class
with the name SelectView() with a parameter specifying a view ID. This function switches from the
current view to whatever view is specified by the ID passed as an argument.

Right-click CMainFrame and select Add > Add Function from the pop-up to add a new public member
to the class. You can enter the return type as void and the function name as SelectView. The parameter
name can be ViewID, and the type is unsigned int. You can implement the function as follows:

void CMainFrame::SelectView(unsigned int ViewID)
{
CView* pOldActiveView = GetActiveView();       // Get current view

// Get pointer to new view if it exists
// if it doesn’t the pointer will be null
CView* pNewActiveView = static_cast<CView*>(GetDlgItem(ViewID));

// If this is 1st time around for the new view, 
// the new view won’t exist, so we must create it
if (pNewActiveView == NULL)
{
switch(ViewID)
{
case ORDER_VIEW:      // Create an Order view
pNewActiveView = new COrderView;
break;

default:
AfxMessageBox(L”Invalid View ID”);
return;

}

// Switching the views
// Obtain the current view context to apply to the new view
CCreateContext context;
context.m_pCurrentDoc = pOldActiveView->GetDocument();
pNewActiveView->Create(NULL, NULL, 0L, CFrameWnd::rectDefault,

this, ViewID, &context);
pNewActiveView->OnInitialUpdate();

}
SetActiveView(pNewActiveView);                 // Activate the new view

1151

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1151



pOldActiveView->ShowWindow(SW_HIDE);           // Hide the old view
pNewActiveView->ShowWindow(SW_SHOW);           // Show the new view
pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old view ID
pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
m_CurrentViewID = ViewID;                      // Save the new view ID
RecalcLayout();

}

The operation of the function falls into three distinct parts:

1. Getting pointers to the current view and the new view

2. Creating the new view if it doesn’t exist

3. Swapping to the new view in place of the current view

The address of the current active view is supplied by the GetActiveView() member of the CMainFrame
object. To get a pointer to the new view, you call the GetDlgItem() member of the frame window object.
If a view with the ID specified in the argument to the function exists, it returns the address of the view;
otherwise, it returns NULL, and you need to create the new view.

After creating a view object, you define a CCreateContext object, context. A CCreateContext object
is necessary only when you are creating a window for a view that is to be connected to a document. A
CCreateContext object contains data members that can tie together a document, a frame window, and a
view, and for MDI applications, a document template as well. When you switch between views, you will
create a new window for the new view to be displayed. Each time you create a new view window, you
use the CCreateContext object to establish a connection between the view and your document object.
You need to store a pointer to the document object only in the m_pCurrentDoc member on context. In
general, you may need to store additional data in the CCreateContext object before you create the view;
it depends on the circumstances and what kind of window you are creating.

In the call to the Create() member of the view object that creates the window for the new view, you pass
the context object as an argument. This establishes a proper relationship with your document and vali-
dates the document pointer. The argument this in the call to Create() specifies the current frame as the
parent window, and the ViewID argument specifies the ID of the window. This ID enables the address of
the window to be obtained with a subsequent call to the GetDlgItem() member of the parent window.

To make the new view the active view, you call the SetActiveView() member of CMainFrame. The new
view then replaces the current active view. To remove the old view window, you call the ShowWindow()
member of the view with the argument SW_HIDE using the pointer to the old view. To display the new
view window, you call the same function with the argument SW_SHOW using the pointer to the new view.

SetActiveView(pNewActiveView);                // Activate the new view
pOldActiveView->ShowWindow(SW_HIDE);          // Hide the old view
pNewActiveView->ShowWindow(SW_SHOW);          // Show the new view
pOldActiveView->SetDlgCtrlID(m_CurrentViewID);// Set the old view ID
pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
m_CurrentViewID = ViewID;                     // Save the new view ID

You restore the ID of the old active view to the ID value that you have defined for it in the
m_CurrentViewID member of the CMainFrame class that you added earlier. You also set the ID of the

1152

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1152



new view to AFX_IDW_PANE_FIRST to identify it as the first window for the application. This is necessary
because the application has only one view, so the first view is the only view. Lastly, you save the ID for the
new window in the m_CurrentViewID member, so it’s available the next time the current view is replaced.
The call to RecalculateLayout() causes the view to be redrawn when the new view is selected.

You must add a #include directive for the OrderView.h file to beginning of the MainFrm.cpp file so that
the COrderView class definition is available here. After you save MainFrm.cpp, you can move on to adding
a button control to the Products dialog to link to the Orders dialog. You’ll then be able to add handlers for
this button and its partner on the Orders dialog to call the SelectView() member of CMainFrame.

Enabling the Switching Operation
To implement the view switching mechanism, go back to Resource View and open the IDD_DBSAMPLE_FORM
dialog. You need to add a button control to the dialog box, as shown in Figure 20-27:

Figure 20-27

You can set the ID for the button to IDC_ORDERS, consistent with the naming for the other controls in the
dialog box.

After saving the resource, you can create a handler for the button by right-clicking it and selecting 
Add Event Handler from the pop-up. Use the Event Handler Wizard dialog box to add the function
OnOrders() to the CProductView class for the BN_CLICKED message type; this handler is called
when the button is clicked. You need to add only one line of code to complete the handler:

void CProductView::OnOrders()
{
static_cast<CMainFrame*>(GetParentFrame())->SelectView(ORDER_VIEW);

}

The GetParentFrame() member of the view object is inherited from CWnd, which is an indirect base
class of CMainFrame. This function returns a pointer to the parent frame window, and you use it to call
the SelectView() function that you have just added to the CMainFrame class. The ORDER_VIEW argu-
ment value causes the frame window to switch to the Orders dialog window. If this is the first time this
has occurred, it will create the view object and the window. On the second and subsequent occasions
that a switch to the orders view is selected, the existing orders view are re-used.

1153

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1153



You must add the following #include directives to the beginning of the ProductView.cpp file:

#include “OurConstants.h”
#include “MainFrm.h”

The next task is to add the handler for the button that you previously placed on the IDD_ORDERS_FORM
dialog. From the Editor window showing this dialog box, use the same process to add the OnProducts()
handler to the COrderView class and add a single line of code to its implementation:

void COrderView::OnProducts()
{
static_cast<CMainFrame*>(GetParentFrame())->SelectView(PRODUCT_VIEW);

}

This works in the same way as the previous button control handler. Again, you must add #include
directives for the OurConstants.h and MainFrm.h files to the beginning of the OrderView.cpp file
and then save it.

Handling View Activation
When you switch to a view that already exists, you need to ensure that the recordset is refreshed and that
the dialog is re-initialized so that the correct information is displayed. When an existing view is activated
or deactivated, the framework calls the OnActivateView() member of the class, so this is a good place to
take care of refreshing the recordset and the dialog box. You can override this function in each of the view
classes. You can do this by selecting the Overrides button in the Properties window for a view class
and selecting OnActivateView from the list. Make sure you add the override to both view classes.

You can add the following code to complete the implementation of the OnActivateView() function
override for the COrderView class:

void COrderView::OnActivateView(BOOL bActivate,
CView* pActivateView, CView* pDeactiveView)

{
if(bActivate)
{
// Get a pointer to the document
CDBSampleDoc* pDoc = GetDocument();

// Get a pointer to the frame window
CMainFrame* pMFrame = static_cast<CMainFrame*>(GetParentFrame());

// If the last view was the product view, we must re-query
// the recordset with the product ID from the product recordset
if(pMFrame->m_CurrentViewID==PRODUCT_VIEW)
{
if(!m_pSet->IsOpen())       // Make sure the recordset is open
return;

// Set current product ID as parameter
m_pSet->m_ProductIDparam = pDoc->m_DBSampleSet.m_ProductID;
m_pSet->Requery();          // Get data from the DB

// If we are past the EOF there are no records

1154

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1154



if(m_pSet->IsEOF())
AfxMessageBox(L”No orders for the current product ID”);

}

// Set the window caption
CString strTitle = _T(“Table Name: “);
CString strTable = m_pSet->GetTableName();
if(!strTable.IsEmpty())
strTitle += strTable;

else
strTitle += _T(“Orders - Multiple Tables”);

pDoc->SetTitle(strTitle);
CRecordView::OnInitialUpdate();       // Update values in dialog

}

CRecordView::OnActivateView(bActivate, pActivateView, pDeactiveView);
}

You execute the code only if the view is being activated, and when this is the case, the bActivate argu-
ment will be TRUE. After getting pointers to the document and the parent frame, you verify that the pre-
vious view was the Product View before re-querying the order set. This check is not necessary at present
because the previous view is always the Product View, but when you add another view to the application,
this will not always be true so you might as well put the code in now.

To re-query the database, you set the parameter member of COrderSet, m_ProductIDparam, to the cur-
rent value of the m_ProductID member of the product recordset. This causes the orders for the current
product to be selected. You don’t need to set the m_strFilter member of the recordset here because
that was set in the OnInitialUpdate() function when the CRecordView object was first created. The
IsEOF() function member of the COrderSet object is inherited from CRecordSet and returns TRUE if
the recordset is empty when it is re-queried.

Add the code for OnActivateView() function in the CProductView class as follows:

void CProductView::OnActivateView(BOOL bActivate,
CView* pActivateView, CView* pDeactiveView)

{
if(bActivate)
{

// Update the window caption
CString strTitle = _T(“Table Name”);
CString strTable = m_pSet->GetTableName();
strTitle += _T(“: “) + strTable;
GetDocument()->SetTitle(strTitle);

}
CRecordView::OnActivateView(bActivate, pActivateView, pDeactiveView);

}

In this case, all you need to do if the view has been activated is to update the window caption. Because
the Product View is the driving view for the rest of the application, you always want to return the view
to its state before it was deactivated. If you do nothing apart from updating the window caption, the view
is displayed in its previous state.

1155

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1155



Viewing Orders for a Product
You are now ready to try to build the executable module for the new version of the example. When you
run the example, you should be able to see the orders for any product just by clicking the Orders button
on the Products dialog box. A typical view of an order is shown in Figure 20-28.

Figure 20-28

Clicking the Show Products button returns you to the Products dialog box, so you can browse further
through the products. In this dialog, you can use the toolbar buttons to browse all the orders for the cur-
rent product. The Customer ID is a bit cryptic. You could add one more view to display the details of the
customer’s name and address. It won’t be too difficult, because you have built already the mechanism to
switch between views.

Viewing Customer Details
The basic mechanism that you’ll add will work through another button control on the Order dialog that
switches to a new dialog for customer data. As well as controls to display customer data, you’ll add two
buttons to the customer dialog box: one to return to the Order View, and the other to return to the Product
View. You’ll need another view ID corresponding to the customer view, which you can add with the fol-
lowing line in the OurConstants.h file:

const unsigned int CUSTOMER_VIEW = 3;

Now you’ll add the recordset for the customer details.

Adding the Customer Recordset
The process is exactly the same as you followed for the COrderSet class. Use the Add > Class menu
item from the context menu in Class View and use the MFC ODBC Consumer template to define the
CCustomerSet class, with CRecordset specified as the base class. Select the database as Northwind as

1156

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1156



before and select the Customers table for the recordset. You can select snapshot as the type of access to
the table. The class should then be created with the data members shown as follows:

CStringW m_CustomerID;
CStringW m_CompanyName;
CStringW m_ContactName;
CStringW m_ContactTitle;
CStringW m_Address;    
CStringW m_City;
CStringW m_Region;  
CStringW m_PostalCode;
CStringW m_Country;
CStringW m_Phone;
CStringW m_Fax;

Don’t forget to comment out the #error directive in the CustomerSet.cpp file. Change each of the
CStringW types here to CString and then save the class file. At this point, you could add a CCustomerSet
member to the document so that it is created when the document object is created. Right-click the
CDBSampleDoc class name in Class View and add a variable of type CCustomerSet with the name
m_CustomerSet. You can leave the access specifier as public.

You will find an #include directive for CustomerSet.h that has already been added to DBSampleDoc.h.
After saving all the files you have modified, you can create the customer dialog resource.

Creating the Customer Dialog Resource
This process is also exactly the same as the one you went through for the Orders dialog. Change to
Resource View and create a new dialog resource with the ID IDD_CUSTOMER_FORM, not forgetting to 
set the style to Child and the border to None in the Properties box for the dialog. After deleting the
default buttons, add controls to the dialog box to correspond to the field names for the Customers
table, as shown in Figure 20-29:

Figure 20-29

The two buttons enable you to switch to either the Orders dialog, which is how you got to this dialog, or
directly back to the Products dialog. The size of the window for the application is determined by the size

1157

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1157



of the first dialog box displayed, so because the Customer dialog is a bit larger, resize the Products dialog
box at least as large as this dialog box.

Specify the IDs for the controls using the field names as a basis. You can get help with this by expanding
the list of members of CCustomerSet in Class View and keeping that visible while you work on the dialog.
You can set the button IDs as IDC_ORDERS and IDC_PRODUCTS. After you save the dialog resource, you’re
ready to create the view class for the recordset.

Creating the Customer View Class
You’ll create the view class for the customer recordset manually, just as you did for the COrderView
class. Add CustomerView.h and CustomerView.cpp files to the project and insert the following code
to define the class in the CustomerView.h file:

// CCustomerView record view
#pragma once

class CCustomerSet;
class CDBSampleDoc;

class CCustomerView : public CRecordView
{
DECLARE_DYNCREATE(CCustomerView)

public:
enum { IDD = IDD_CUSTOMER_FORM };
CCustomerSet* m_pSet;

public:
CCustomerView();  
CCustomerSet* GetRecordset();
virtual CRecordset* OnGetRecordset();

protected:
virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
virtual void OnInitialUpdate();
virtual void OnActivateView(BOOL bActivate, CView* pActivateView,

CView* pDeactiveView);

// Implementation
protected:
virtual ~CCustomerView(){}

#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

};

The class has essentially the same members as the COrderView class.

1158

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1158



You can add the following initial code to the CustomerView.cpp:

// CCustomerView implementation
#include “stdafx.h”
#include “resource.h”

IMPLEMENT_DYNCREATE(CCustomerView, CRecordView)

CCustomerView::CCustomerView(): CRecordView(CCustomerView::IDD), m_pSet(NULL)
{
}

CCustomerSet* CCustomerView::GetRecordset()
{
ASSERT(m_pSet != NULL);
return m_pSet;

}

CRecordset* CCustomerView::OnGetRecordset()
{
return m_pSet;

}

// COrderView diagnostics

#ifdef _DEBUG
void CCustomerView::AssertValid() const
{
CRecordView::AssertValid();

}

void CCustomerView::Dump(CDumpContext& dc) const
{
CRecordView::Dump(dc);

}
#endif //_DEBUG

This is the same boilerplate code as in the COrderView class, and the functions are defined here as in the
earlier class. The first #include directive is for the precompiled headers, and the second provides the
definitions for the resource IDs.

You can process the button controls in the IDD_CUSTOMER_FORM dialog box in the same way as you 
did previously to add the OnOrders() and OnProducts() functions to the CCustomerView class;
right-click each button and select the Add Event Handler from the pop-up. The code for these is 
similar to the corresponding functions in the other views. The code you need to add to OnOrders()
in the CustomerView.cpp file is:

void CCustomerView::OnOrders()
{
static_cast<CMainFrame*>(GetParentFrame())->SelectView(ORDER_VIEW);

}

1159

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1159



You can add a similar line of code to the OnProducts() function:

void CCustomerView::OnProducts()
{
static_cast<CMainFrame*>(GetParentFrame())->SelectView(PRODUCT_VIEW);

}

You now need to add code to specify a filter for the customer recordset so that you get only the customer
details displayed that correspond to the customer ID field from the current order in the COrderSet object.

Adding a Filter
You can define the filter in the OnInitialUpdate() member of CCustomerView. Because you anticipate
only one record being returned corresponding to each customer ID, you don’t need to worry about sorting.
The code for this function is as follows:

void CCustomerView::OnInitialUpdate()
{
BeginWaitCursor();

CDBSampleDoc* pDoc = static_cast<CDBSampleDoc*>(GetDocument());
m_pSet = &pDoc->m_CustomerSet;      // Initialize the recordset pointer

// Set the DB for the customer recordset
m_pSet->m_pDatabase = pDoc->m_DBSampleSet.m_pDatabase;

// Set the current customer ID as the filter parameter value
m_pSet->m_CustomerIDparam = pDoc->m_OrderSet.m_OrdersCustomerID;
m_pSet->m_strFilter =”CustomerID = ?”;    // Filter on CustomerID field

CRecordView::OnInitialUpdate();
if (m_pSet->IsOpen())
{
CString strTitle = m_pSet->m_pDatabase->GetDatabaseName();
CString strTable = m_pSet->GetTableName();
if(!strTable.IsEmpty())
strTitle += _T(“:”) + strTable;

GetDocument()->SetTitle(strTitle);
}
EndWaitCursor();

}

After getting a pointer to the document, you store the address of the CCustomerSet object member of
the document in the m_pSet member of the view. You know the database is already open, so you can set
the database pointer in the customer recordset to that stored in the CProductSet object.

The parameter for the filter will be defined in the m_CustomerIDparam member of CCustomerSet. You’ll
add this member to the class in a moment. It’s set to the current value of the m_CustomerID member of
the COrderSet object owned by the document. You will define the filter in such a way that the customer
recordset contains only the record with the same customer ID as that in the current order.

1160

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1160



The OnActivateView() function handles activation of the customer view, and you can implement it in
CustomerView.cpp as follows:

void CCustomerView::OnActivateView(BOOL bActivate,
CView* pActivateView, CView* pDeactiveView)

{
if(bActivate)
{
if(!m_pSet->IsOpen())
return;

CDBSampleDoc* pDoc = static_cast<CDBSampleDoc*>(GetDocument());

// Set current customer ID as parameter
m_pSet->m_CustomerIDparam = pDoc->m_OrderSet.m_OrdersCustomerID;
m_pSet->Requery();               // Get data from the DB
CRecordView::OnInitialUpdate();  // Redraw the dialog

// Check for empty recordset
if(m_pSet->IsEOF())
AfxMessageBox(L”No customer details for the current customer ID”);

CString strTitle = _T(“Table Name:”);
CString strTable = m_pSet->GetTableName();
if(!strTable.IsEmpty())
strTitle += strTable;

else
strTitle += _T(“Multiple Tables”);

pDoc->SetTitle(strTitle);
}
CRecordView::OnActivateView(bActivate, pActivateView, pDeactiveView);

}

If this function is called because the view has been activated (rather than deactivated), bActivate has the
value TRUE. In this case, you set the filter parameter from the order recordset and re-query the database.

The m_CustomerIDparam member for the CCustomerSet recordset object that is associated with this
view object is set to the customer ID from the orders recordset object that is stored in the document. This
will be the customer ID for the current order. The call to the Requery() function for the CCustomerSet
object retrieves records from the database using the filter you have set up. The result is that the details
for the customer for the current order are stored in the CCustomerSet object and then passed to the
CCustomerView object for display in the dialog.

You will need to add the following #include statements to the beginning of the CustomerView.cpp file:

#include “ProductSet.h”
#include “OrderSet.h”
#include “CustomerSet.h”
#include “DBSampleDoc.h”
#include “OurConstants.h”
#include “MainFrm.h”

1161

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1161



The first three are required because of classes used in the definition of the document class. You need
DBSampleDoc.h because of the CDBSampleDoc class reference in OnInitialUpdate(), and the remaining
two .h files contain definitions that are referred to in the button handlers in the CCustomerView class.

Implementing the Filter Parameter
Add a public variable of type CString to the CCustomerSet class to correspond with the type of the
m_CustomerID member of the recordset and give it the name m_CustomerIDparam. If you used the
Add > Add Variable mechanism from Class View to do this, the new member will already be initial-
ized in the constructor; otherwise, add the initialization as in the code that follows. You can set the
parameter count in the CCustomerSet constructor as follows:

CCustomerSet::CCustomerSet(CDatabase* pdb)
: CRecordset(pdb)
, m_CustomerIDparam(“”)
{
m_CustomerID = “”;
m_CompanyName = “”;
m_ContactName = “”;
m_ContactTitle = “”;
m_Address = “”;
m_City = “”;
m_Region = “”;
m_PostalCode = “”;
m_Country = “”;
m_Phone = “”;
m_Fax = “”;
m_nFields = 11;
m_nParams = 1;                       // Number of parameters
m_nDefaultType = snapshot;

}

The m_CustomerIDparam member is initialized to an empty string and the parameter count in
m_nParams is set to 1.

To set up the m_CustomerIDparam parameter, you add statements to the DoFieldExchange() member,
as before:

void CCustomerSet::DoFieldExchange(CFieldExchange* pFX)
{

pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Text(pFX, _T(“[CustomerID]”), m_CustomerID);
RFX_Text(pFX, _T(“[CompanyName]”), m_CompanyName);
RFX_Text(pFX, _T(“[ContactName]”), m_ContactName);
RFX_Text(pFX, _T(“[ContactTitle]”), m_ContactTitle);
RFX_Text(pFX, _T(“[Address]”), m_Address);
RFX_Text(pFX, _T(“[City]”), m_City);
RFX_Text(pFX, _T(“[Region]”), m_Region);
RFX_Text(pFX, _T(“[PostalCode]”), m_PostalCode);

1162

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1162



RFX_Text(pFX, _T(“[Country]”), m_Country);
RFX_Text(pFX, _T(“[Phone]”), m_Phone);
RFX_Text(pFX, _
pFX->SetFieldType(CFieldExchange::param);     // Set parameter mode
RFX_Text(pFX, _T(“CustomerIDParam”), m_CustomerIDparam);

}

I have omitted comment lines from the beginning of this function to save space. After setting the param
mode by calling the SetFieldType() member of the pFX object, you call the RFX_Text() function to
pass the parameter value for substitution in the filter. You use RFX_Text() because the parameter vari-
able is of type CString. There are various RFX_() functions supporting a range of parameter types.

After you have completed this modification, you can save the CustomerSet.cpp file.

Linking the Order Dialog to the Customer Dialog
To permit a switch to the Customer dialog, you require a button control on the IDD_ORDERS_FORM dialog,
so open it in Resource View and add an extra button, as shown in Figure 20-30.

Figure 20-30

I have rearranged the original controls a little — you can arrange them to please yourself. You can define
the ID for the new button control as IDC_CUSTOMER. After you save the dialog, you can add a handler for
the button by right-clicking it and select Add Event Handler from the pop-up. The handler requires only
one line of code to be added to it, as follows:

void COrderView::OnCustomer()
{
static_cast<CMainFrame*>(GetParentFrame())->SelectView(CUSTOMER_VIEW);

}

This obtains the address of the frame window and uses it to call the SelectView() member of
CMainFrame to switch to a customer view. The penultimate step to complete the program is to add the
code to the SelectView() function that deals with the CUSTOMER_VIEW value being passed to it. This
requires just three additional lines of code, as follows:

void CMainFrame::SelectView(UINT ViewID)
{

1163

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1163



CView* pOldActiveView = GetActiveView();       // Get current view

// Get pointer to new view if it exists
// if it doesn’t the pointer will be null
CView* pNewActiveView = static_cast<CView*>(GetDlgItem(ViewID));

// If this is 1st time around for the new view, 
// the new view won’t exist, so we must create it
if (pNewActiveView == NULL)
{

switch(ViewID)
{

case ORDER_VIEW:      // Create an Order view
pNewActiveView = new COrderView;
break;

case CUSTOMER_VIEW:   // Create a customer view
pNewActiveView = new CCustomerView;
break;

default:
AfxMessageBox(“Invalid View ID”);
return;

}

// Switching the views
// Obtain the current view context to apply to the new view
CCreateContext context;
context.m_pCurrentDoc = pOldActiveView->GetDocument();
pNewActiveView->Create(NULL, NULL, 0L, CFrameWnd::rectDefault,

this, ViewID, &context);
pNewActiveView->OnInitialUpdate();

}
SetActiveView(pNewActiveView);                 // Activate the new view
pOldActiveView->ShowWindow(SW_HIDE);           // Hide the old view
pNewActiveView->ShowWindow(SW_SHOW);           // Show the new view
pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old view ID
pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
m_CurrentViewID = ViewID;                      // Save the new view ID
RecalcLayout();

}

The only change necessary is the addition of a case statement in the switch to create a CCustomerView
object when one doesn’t exist. Each view object will be re-used next time around, so they get created only
once. The code to switch between views works with any number of views, so if you want this function to
handle more views, you just need to add another case in the switch for each new view that you want.
Although you are creating view objects dynamically here, you don’t need to worry about deleting them.
Because they are associated with a document object, they are deleted by the framework when the applica-
tion closes.

Because you reference the CCustomerView class in the SelectView() function, you must add an
#include statement for the CustomerView.h file to the block at the beginning of MainFrm.cpp.

1164

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1164



To complete the application you can add the implementation of the DoDataExchange() function for the
CCustomerView class to CustomerView.cpp:

void CCustomerView::DoDataExchange(CDataExchange* pDX)
{
CRecordView::DoDataExchange(pDX);
DDX_FieldText(pDX, IDC_ADDRESS,

m_pSet->m_Address, m_pSet);
DDX_FieldText(pDX, IDC_CITY,

m_pSet->m_City, m_pSet);
DDX_FieldText(pDX, IDC_COMPANYNAME,

m_pSet->m_CompanyName, m_pSet);
DDX_FieldText(pDX, IDC_PHONE,

m_pSet->m_Phone, m_pSet);
DDX_FieldText(pDX, IDC_CUSTOMERID,

m_pSet->m_CustomerID, m_pSet);
}

This uses the DDX_ functions as before to transfer data from the edit controls to the members of the
CCustomerView class. You must add an #include directive for the CustomerSet.h header file for this
to compile correctly.

Exercising the Database Viewer
At this point, the program is complete. You can build the application and execute it. As before, the main
view of the database is the products view. As before, clicking Orders takes you to the Orders view. The
second button on this form should now be active, and clicking it takes you to the details of the customer
for the current order, as Figure 20-31 illustrates.

The two buttons take you back to the Orders view or the Products view, respectively.

Figure 20-31

1165

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1165



Summary
You should now be comfortable with the basics of how MFC links to your database using ODBC.

The key points you have seen in this chapter are:

❑ MFC provides OLE DB and ODBC support for accessing databases.

❑ To use a database with ODBC the database must be registered.

❑ A connection to a database is represented by a CDatabase or a CDaoDatabase object.

❑ A recordset object represents an SQL SELECT statement applied to a defined set of tables. Where
necessary, the framework will automatically create a database object representing a connection
to a database when a recordset object is created.

❑ A WHERE clause can be added for a recordset object through its m_strFilter data member.

❑ An ORDER BY clause can be defined for a recordset through its m_strSort data member.

❑ A record view object is used to display the contents of a recordset object.

Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Using the Products table again, add a “stock control” dialog box to the application. This should
be reachable through a button on the Products dialog box and must itself contain a button to go
back to the Products dialog. The fields it should display are the product ID, product name, reorder
level, unit price, and units in stock. Don’t worry about filtering or sorting at the moment; just get
the basic mechanism working.

2. Refine the preceding project so that the stock control dialog automatically displays information
about the product that was being shown in the Products dialog box when the button was clicked.

3. Implement a system whereby the user of the database is warned in the stock control dialog about
the present stock being near or below the reorder level. You’ll have noticed by now that some of
the stock reorder levels are set to zero; don’t display a warning in those cases.

1166

Chapter 20: Connecting to Data Sources

25905c20.qxd:WroxPro  2/21/08  9:23 AM  Page 1166



21
Updating Data Sources

In this chapter, you’ll build on what you learned about accessing a database via ODBC (Open
DataBase Connectivity) in the previous chapter, and try your hand at updating the Northwind
Traders database through the same mechanism.

By the end of this chapter, you will have learned about:

❑ Database transactions 

❑ How to update a database using recordset objects

❑ How data is transferred from a recordset to the database in an update operation

❑ How to update an existing row in a table

❑ How to add a new row to a table

Update Operations
When you are just writing code to view information from a database, the only issue is whether
you are authorized to access the data. As long as the database has the right kind of access protec-
tion, the data in the database is safe. As soon as you start writing code to update a database, it’s
quite another kettle of fish. Because you are altering the contents of the database, such modifica-
tions could destroy the integrity of the database and make nonsense of the contents of a table, or
even make it unusable. You always need to take great care to test your code properly with a test
database before letting it loose on the real thing.

A database update typically involves modifying one or more fields in a row in an existing table,
modifying an order quantity for instance, or adding a new row — a new order perhaps in the con-
text of the Northwind database. You’ll be developing examples of both of these, but first, consider
the implications.

Most of the complications that can arise with database update operations become apparent in the
context of multi-user databases. Without proper control of the update process, concurrent access
by several users provides the potential for two kinds of problems. The first arises if one person is

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1167



allowed to retrieve a record while an update operation is in progress on the same record. The person just
reading the data can potentially end up with the old data prior to the update or even a mixture with some
fields containing old data and some new. The second problem arises with concurrent update where one
person starts updating a record while another update is already in progress on the same record. With a
single record in a table involved in this, there is potential for an update to be lost. Where records from sev-
eral tables are involved, the data in the database can end up in an inconsistent state. Before you look into
how this can be handled, see how basic update operations on a recordset work.

CRecordset Update Operations
You saw in the previous chapter how the RFX_() function calls in the DoFieldExchange() member of
the recordset object retrieved data from the selected fields in the table or tables in the database, and trans-
ferred it to the data members of the recordset object. The same functions are also used to update fields in a
database table, or to add a completely new row.

As shown in the following table, there are five member functions of the CRecordset class that support
update operations.

None of the functions have parameters. The first four functions here can throw exceptions, so you should
put the call in a try block and add a catch block if you don’t want your program to end abruptly when
an error occurs.

To delete the current record for a recordset object, just call its Delete() member. You must then scroll
the recordset to a new position before attempting to use any of the functions above because the values 
of the data members of the recordset object will be invalid after calling Delete().

Edit() Call this function to start updating an existing record. Throws a
CDBException if the table cannot be updated, and throws a
CMemoryException if an out of memory condition arises.

AddNew() Call this function to start adding a completely new record. Throws a
CDBException if a new record cannot be appended to the table.

Update() Call this function to complete updating of an existing record or adding a
new one. Throws a CDBException if a single record was not updated, or
an error occurred.

Delete() Delete the current record by creating and executing an SQL DELETE.
Throws a CDBException if an error occurs — if the database is read-only
for instance. After a Delete() operation, all the data members of the
recordset will be set to null values — the equivalent of no value set. You
must move to a new record before executing any other operation on the
recordset object.

CancelUpdate() Cancels any outstanding operation to modify an existing record, or to add
a new one.

1168

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1168



Figure 21-1 illustrates the basic sequence of events in updating an existing record or adding a new one.

When you call AddNew() for a recordset to start adding a new record to a table, the function saves the
current values of all the data members of the recordset object that correspond to field values in a buffer,
and then sets the data members to PSEUDO_NULL. This is not zero or null as in a pointer. It is a value
that indicates the data member has not been set. When you call Update() to complete adding a record, the
original values of the data members of the recordset before AddNew() was called are restored. If you want
the recordset to contain the values for the new record, you must call the Requery() member of the record-
set object. This function returns TRUE (a value of the MFC type BOOL) if the operation was successful. You
also call Requery() when you want to obtain a different view of the data where you will retrieve records
using a different SQL command or a different filter for the records.

The transfer of data between the recordset data members and the database always uses the
DoFieldExchange() member of the recordset object, so the RFX_() functions provide a dual 
capability — writing to the database as well as reading from it.

Figure 21-1

Checking that Operations are Legal
It is a good idea to confirm that the operation you intend to carry out is legal with your recordset object. It
is all too easy to end up with a read-only recordset — just forgetting to reset the read-only attribute on the
Northwind.mdb file will do it! If you try to update a table that is read-only, an exception is thrown that is
entirely avoidable if you just verify that the operation is possible. Using exceptions to catch errors that
aren’t that unexpected is inefficient, and generally frowned upon. It’s better to check beforehand when
this is possible, as it is in this case. That way, your exception handling code is truly reserved for excep-
tional occurrences.

The CanUpdate() member of CRecordset returns TRUE if you can modify records in the table represented
by the recordset object. When you want to add a new record, you can call the CanAppend() member of
CRecordset beforehand to check. This returns TRUE if adding new records to the table is permitted.

Record Locking
Record locking prevents other users from accessing the locked record while a table row is being updated.
The extent to which a record is locked during an update is determined by the locking mode set in the

1169

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1169



recordset object. There are two locking modes defined in CRecordset, referred to as optimistic mode
and pessimistic mode.

The default mode for a recordset object is optimistic, so you have to set it only if you want pessimistic
mode. To set this mode, you call the SetLockingMode() member of the recordset object with
CRecordset::pessimistic as the argument. Of course, you can also reset it by calling the function
with CRecordset::optimistic as the argument.

Transactions
The idea of a transaction in the database context is to enable operations to be safely undone when 
necessary. A transaction packages a well-defined series of one or more modifications to a database 
into a single operation so that at any point prior to the completion of the transaction everything can 
be reversed (or rolled back) if an error occurs. Clearly, if an update were to fail when it was partially
completed, due to a hardware problem, for instance, it could have a disastrous effect on the integrity
of the database. A transaction is not just an update to a single table. It can involve very complex opera-
tions on a database involving a series of modifications to multiple tables and may take an appreciable
time to complete. In these situations, support for transactions is virtually a necessity if the integrity of
the database is to be assured.

With transaction based operations, the database system manages the processing of the transaction and
records recovery information so that anything that the transaction does to the data can be undone in the
event of a problem part way through. Transaction events are recorded in a log file on disk, so even if the
computer loses power, the system can recover by reading the entries in the log. By making your database
operations based on transactions, you can protect the database against errors that might occur during pro-
cessing. Typically, transaction processing locks records as necessary along the way and also ensures that
any other database users accessing data that has been modified by the transaction will see the changes
immediately.

Transactions are supported by most large commercial database systems on mainframe computers, and
this is usually the case with database systems that run on a PC. The CDatabase class in MFC supports
transactions, and as it happens, so does the Microsoft ODBC support for Access databases, so you can
try out transaction processing with the Northwind database if you want.

CRecordset::optimistic In optimistic locking mode, the record is only locked while the
Update() member function is executing. This minimizes the
time that the record in inaccessible to other users of the data-
base. If an editing operation may take a long time, pessimistic
locking is often not a practical solution because other users 
may need to access the database. The standard solution is to use
optimistic locking and to introduce some sort of conflict resolu-
tion mechanism.

CRecordset::pessimistic In pessimistic locking mode, the record is locked as soon as you
call Edit(), and it remains locked and therefore inaccessible to
other users until the completion of the call to Update() or until
the update operation is aborted. This can obviously severely affect
performance when updates are being prepared interactively;
however, this mode is essential in many instances to ensure the
integrity of the data is maintained.

1170

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1170



CDatabase Transaction Operations
Transactions are managed through members of your CDatabase class object that provides the connec-
tion to the database. To determine whether transactions are supported for any given connection, you call
the CanTransact() member of the CDatabase object. This returns TRUE if transactions are supported.
Incidentally, there is also a CanUpdate() member of CDatabase that returns FALSE if the data source is
read-only.

There are three member functions of CDatabase involved in transaction processing, as shown in the fol-
lowing table.

The sequence of events in a transaction is very simple:

❑ Call BeginTrans() to start the transaction.

❑ Call Edit(), Update(), AddNew(), for your recordset as necessary.

❑ Call CommitTrans() to complete the transaction.

Outside of a transaction, Edit() or AddNew()operations on a recordset are executed when you call
Update(). Within a transaction they are not executed until you call CommitTrans() for the CDatabase
object. If you need to abort the transaction at any time after calling BeginTrans(), just call Rollback().

Complications can arise with the effect of CommitTrans() and Rollback() — the position in the recordset
you are operating on can be lost for instance, so you may need to take some action in your program to
recover the record pointer after completing or aborting a transaction. There are two members of CDatabase
to help with this. After a CommitTrans() call you need to call the GetCursorCommitBehavior() member
of CDatabase, and after calling Rollback() you need to call GetCursorRollbackBehavior(). Both of
these functions return one of three values of type int, as shown in the following table, that indicate what
you should do.

SQL_CB_PRESERVE The recordset’s connection to the data source is unaffected by the commit
or rollback operation, so do nothing.

SQL_CB_CLOSE You need to call Requery() for the recordset object to restore the current
position in the recordset.

SQL_CB_DELETE You must close the recordset by calling the Close() member of the object
and then re-open the recordset if necessary.

BeginTrans() Starts a transaction on the database. All subsequent recordset operations
are part of the transaction, until either CommitTrans() or Rollback() is
called. The function returns TRUE if the transaction start was successful.

CommitTrans() Commits the transaction so all recordset operations that are part of the
transaction are expedited. The function returns FALSE if an error occurs, 
in which case the state of the data source is undefined.

Rollback() Rolls back all the recordset operations executed since BeginTrans()
was called, and restores the data source to the condition at the time when
BeginTrans() was called.

1171

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1171



There are further complications with using transactions in practice because the particular drivers you 
are using can affect when you must open the recordset. With some drivers you must open the recordset
before you call BeginTrans(). With others, and the Microsoft Access ODBC drivers are a case in point,
Rollback() will not work unless you open your recordset after you call BeginTrans(). You need 
to understand the particular drivers you intend to use before attempting to use transactions in your
application.

A Simple Update Example
It’s time to get some hands on experience with update operations in action starting with a very basic
example. This omits most of what I have discussed so far in this chapter initially, but you will be build-
ing on this to apply some of what you have learned. You can create an application to update a database
table with minimal effort using the MFC Application Wizard that you applied in the previous chapter.
You’ll be creating a program to allow updating of certain fields in the Order Details table.

Create a project called DBSimpleUpdate using the MFC Application template. Elect to go for the Database
View without file support option with ODBC as the Client type option, as you did in the previous chap-
ter. You are still going to use the Northwind database through ODBC, but this time you should choose
dynaset as the recordset type. In a multiuser environment, a dynaset is automatically updated with any
changes made to a record while it is accessed by your program. This ensures the data you have in your
application is always up to date. For operations to modify an existing record or add new ones, you should
choose dynaset as the recordset type.

Because you plan to update the database, you must map the recordset to a single database table. The
database classes in MFC do not support updating of recordsets that involve joining two or more tables.
Choose the Order Details table for the default recordset, as shown in Figure 21-2.

If you select multiple tables here, updating the recordset is inhibited because the recordset is automati-
cally made read-only. The database classes support only read-only access to joins of multiple tables, not
updating.

Figure 21-2

1172

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1172



You can change the view and recordset class and associated file names to match the table you are dealing
with, as illustrated by the window shown in Figure 21-3.

Now all you need to do is click the Finish button and then customize the dialog resource to do what 
you want.

Figure 21-3

Customizing the Application
The Order Details table contains five columns — Order ID, Product ID, Unit Price, Quantity, and
Discount. If you display Class View and look at the members of COrderDetailsSet, you will see the
data members corresponding to these. You need a static text control and an edit control for each of
these on the dialog corresponding to the recordset. I arranged them as shown in Figure 21-4, but you can
arrange them how you like.

Figure 21-4

1173

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1173



Assign IDs to the edit controls to match the field name as you did in the previous chapter — the last one
is IDC_DISCOUNT, for example. The default style set for an edit control allows keyboard input, but on
the assumption you want to limit which recordset fields can be altered, you should set the first three edit
controls as read-only, using the styles tab in the Properties window. The value displayed in a read-only
control can be set in the program, but a value cannot be entered in the control from the keyboard. You
can set all these to read-only in a single step by selecting each of the three controls with the Ctrl key held
down and then right-clicking to display the pop-up menu and selecting Properties. Whatever you
then set in the Properties window is applied to all three. With the dialog arrangement shown, you will
only be able to enter data for Quantity and Discount.

The only other thing you need to do is to associate the edit controls with a corresponding data mem-
ber of the recordset, and as you saw in the previous chapter, you just add a DDX_ function call to the
DoDataExchange() function in the recordset view class, COrderDetailsView, for each data field in
the recordset. Here’s how that code looks:

void COrderDetailsView::DoDataExchange(CDataExchange* pDX)
{
CRecordView::DoDataExchange(pDX);
DDX_FieldText(pDX, IDC_ORDERID, m_pSet->m_OrderID, m_pSet);
DDX_FieldText(pDX, IDC_PRODUCTID, m_pSet->m_ProductID, m_pSet);
DDX_FieldText(pDX, IDC_UNITPRICE, m_pSet->m_UnitPrice, m_pSet);
DDX_FieldText(pDX, IDC_QUANTITY, m_pSet->m_Quantity, m_pSet);
DDX_FieldText(pDX, IDC_DISCOUNT, m_pSet->m_Discount, m_pSet);

}

Having done that, you will have completed the program to update the Order Details table, believe it or not.

Try It Out Updating a Database
This should compile right off the bat if you have set up the controls correctly and remembered to com-
ment out the #error directive that appears before the definition of the GetDefaultConnect() function
in the COrderDetailsSet class. This directive is there to ensure you consider security implications when
connecting to the database. When the program executes, you will be able to move through the rows in the
table using the toolbar buttons. If you enter data into the edit controls for the Quantity or Discount for an
order, it is updated when you move backwards or forwards in the recordset. The application window is
shown in Figure 21-5.

You can see here I have changed the quantity and discount values for the product with the ID 72 on the
order with the ID 10248 to some unlikely values.

How It Works
When you click one of the toolbar buttons to move to another record, the OnMove() handler provided by
the default base class, CRecordView, is called. This function writes out any changes that have been entered
into the recordset before it moves to a new record in the recordset by calling the Move() member of the
CRecordset class that is inherited in COrderDetailsSet. Remember there are two levels of data exchange
going on here. The RFX_() functions called in the DoFieldExchange() member of the COrderDetailsSet
class transfer data between a row in the recordset from the database and the data members of the class. The
DDX_() functions called in the DoDataExchange() member of COrderDetailsView transfer data between
the edit controls and the data members of COrderDetailsSet. When you change the value in an edit con-
trol, the new data is propagated through to the appropriate data member of the recordset object. When you

1174

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1174



move to the next recordset by clicking a toolbar button, the new data is written to the database by the
DoFieldExchange() function.

This example is fine as far as it goes, but having data written to the database without any evident action
on the part of the user is a bit disconcerting. You really should have a bit more control over what’s going
on. You can put together an example where the code requires the user to do something before expediting
an update operation.

Figure 21-5

Managing the Update Process
You really want a positive action on the part of the user to enable an update rather than allowing it to hap-
pen by default. You could start making all the edit controls read-only, so by default data entry from the
keyboard is inhibited for all the controls. You could then add an Edit Order button to the dialog box, which
is intended to enable the appropriate edit controls to allow keyboard entry. This is shown in Figure 21-6.

Figure 21-6

1175

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1175



Here you will be implementing two notional modes in the program: read-only mode when updating 
is not possible, because the controls will be read-only, and edit mode when keyboard entry for selected
controls are possible so the recordset can be updated. The idea is that when the user clicks the Edit
Order button, the edit controls for fields you want to allow updating on are enabled for keyboard input,
and you will enter your edit mode’. Add the button to the dialog box for your DBSimpleUpdate applica-
tion. You can set the ID for the button as IDC_EDITORDER. You can also add a handler for the button to
the COrderDetailsView class by right-clicking the button and selecting Add Event Handler from the
pop-up. Shorten the name of the handler function to OnEditorder().

Ideally, you should inhibit the use of the toolbar buttons or the Record menu items to move to another row
in the table in update mode because you want a button click by the user to end the update operation, not
move the current position of the recordset.

When the Edit Order button is clicked, the read-only status of the controls for quantity and discount
should be removed, and there should be a button to be clicked when the update should take place. To
accommodate all this, you want the dialog box in the application to look as in Figure 21-7 after an Edit
Order button click.

Figure 21-7

The edit controls for Quantity and Discount now allow data to be entered, the Edit Order button has a
new label — Update — and there is a new button with the label Cancel that allows the operation to be
aborted by the user, if necessary. In addition the toolbar buttons to move, the current record should be
disabled when the Edit Order button is clicked. So, too, should be the menu items in the Record menu
drop down. The program is now in “edit” mode.

You can add the Cancel button to the dialog box, but you don’t want the button displayed initially so
you should set the Visible property for the button to False. Set the ID property value to IDC_CANCEL.
You will also need a handler for the Cancel button, so add one now to the COrderDetailsView class with
the name OnCancel() in the same way as for the Edit Order button — you’ll be filling in the code later.

The process for the update operation is that the user enters the data in the enabled fields on the dialog box
and clicks the Update button to complete the update. The dialog box then returns to its original read-only
mode state with all the edit controls read-only. The user clicks the Cancel button instead of Update if he or
she does not want to proceed with the update operation.

1176

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1176



To achieve this mechanism, and to manage the update process effectively, you will need to do several
things after the Edit Order button is clicked:

❑ Change the text on the Edit Order button to “Update” so it now becomes the button to complete
the update operation.

❑ Cause the Cancel button to appear on the dialog box — make it visible in other words.

❑ Record in the class that edit mode has been entered. This is necessary because you will use the
same button for two purposes: flip-flopping the label between Edit Order and Update.

❑ Enable keyboard entry for the edit controls that show fields you want to allow updating on.

See how you can put the code together that will do what you want.

Implementing Update Mode
Let’s start by providing for recording whether or not the application is in update mode. You can do that
by adding an enum declaration to the COrderDetailsView class together with a variable of the enum type
that reflect the current mode. Add the following two lines to the public section of the class:

enum Mode {READ_ONLY, UPDATE};       // Application modes
Mode m_Mode;                         // Records the current mode

The application is initially in READ_ONLY mode so you can initialize m_Mode in the constructor accordingly:

COrderDetailsView::COrderDetailsView()
: CRecordView(COrderDetailsView::IDD)
,m_Mode(READ_ONLY)

{
m_pSet = NULL;
// TODO: add construction code here

}

You can do the switching of the button label and the program mode in the OnEditorder() handler that
you added to the view class. In principle, a starting version of the function needs to implement capability
something like this:

void COrderDetailsView::OnEditorder() 
{
if(m_Mode == UPDATE)
{ // When button was clicked we were in update

// Disable input to edit controls
// Change the Update button text to Edit Order   
// Make the Cancel button invisible
// Enable Record menu items and toolbar buttons
// Complete the update
m_Mode = READ_ONLY;                // Change to read-only mode

}
else
{ // When button was clicked we were in read-only mode

1177

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1177



// Enable input to edit controls
// Change the Edit Order button text to Update   
// Make the Cancel button visible
// Disable Record menu items and toolbar buttons
// Start the update
m_Mode = UPDATE;                   // Switch to update mode

}
}

The mode switching code is already there. At the moment all the function does is switch the m_Mode
member between READ_ONLY and UPDATE to record the current mode. The rest of the functionality that
you require is simply described in comments. Next, investigate how to implement each of the comment
lines in turn.

Enabling and Disabling Edit Controls
To modify the properties of a control, you need to call a function of some kind that relates to the control.
This implies that you must have access to an object that represents the control. It’s very easy to add a con-
trol variable to the view class; just right-click the control in the Design window for the dialog and select
Add Variable from the pop-up menu. Figure 21-8 shows the dialog box that displays for the edit control
showing the discount value.

Figure 21-8

I have entered the variable name as m_DiscountCtrl. Because the variable relates to an edit control the
variable is of type CEdit. Click Finish to add this variable to the View Class. Repeat this process for the
edit control displaying the order quantity and give the variable the name m_QuantityCtrl.

1178

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1178



With the two control variables added to the View Class you have access to the controls to update their
styles, so you modify the OnEditorder() function as follows:

void COrderDetailsView::OnEditorder()
{

if(m_Mode == UPDATE)
{ // When button was clicked we were in update

// Disable input to edit controls
m_QuantityCtrl.SetReadOnly(); 
m_DiscountCtrl.SetReadOnly();

// Change the Update button text to Edit Order   
// Make the Cancel button invisible
// Enable Record menu items and toolbar buttons
// Complete the update
m_Mode = READ_ONLY;                // Change to read-only mode

}
else
{ // When button was clicked we were in read-only mode

// Enable input to edit controls
m_QuantityCtrl.SetReadOnly(FALSE); 
m_DiscountCtrl.SetReadOnly(FALSE);

// Change the Edit Order button text to Update   
// Make the Cancel button visible
// Disable Record menu items and toolbar buttons
// Start the update
m_Mode = UPDATE;                   // Switch to update mode

}
}

The SetReadOnly() member of the CEdit class has a parameter of type BOOL that has the default value
TRUE. Thus calling the function with no argument implies the argument value is the default and the con-
trol read-only property is set to true. Passing a FALSE value to the function when you call it sets the read-
only property to false. Incidentally, you could reduce the code in the function by removing the calls to
SetReadOnly() in the if-else statement and adding two statements after the if statement:

m_QuantityCtrl.SetReadOnly(m_Mode == UPDATE); 
m_DiscountCtrl.SetReadOnly(m_Mode == UPDATE);

The argument expression, m_Mode == UPDATE, is TRUE when m_Mode has the value UPDATE. This is
FALSE otherwise, so these two calls to the SetReadOnly() function do the work of the original four.
The downside is that it would not be quite as clear what was happening in the code.

Just to remind you — many of the MFC functions have parameters of type BOOL that can have values TRUE
and FALSE because they were written before the availability of the bool type in C++. You can always use

1179

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1179



values of type bool as arguments for BOOL parameters if you want, but I prefer to stick to the TRUE and
FALSE arguments values with type BOOL and only use true and false for variables of type bool.

Changing the Button Label
You can get at the object corresponding to the Edit Order button by adding a control data member,
m_EditOrderCtrl, to the View Class in exactly the same way as you did for the edit controls. The vari-
able is of type CButton, which is the MFC class that defines a button. You can use the variable to set the
button label in the OnEditorder() member by calling the SetWindowText() member that is inherited 
in the CButton class from CWnd:

void COrderDetailsView::OnEditorder()
{
if(m_Mode == UPDATE)
{ // When button was clicked we were in update
// Disable input to edit controls
m_QuantityCtrl.SetReadOnly(); 
m_DiscountCtrl.SetReadOnly();

// Change the Update button text to Edit Order   
m_EditOrderCtrl.SetWindowText(_T(“Edit Order”));

// Make the Cancel button invisible
// Enable Record menu items and toolbar buttons
// Complete the update
m_Mode = READ_ONLY;                // Change to read-only mode

}
else
{ // When button was clicked we were in read-only mode

// Enable input to edit controls
m_QuantityCtrl.SetReadOnly(FALSE); 
m_DiscountCtrl.SetReadOnly(FALSE);

// Change the Edit Order button text to Update
m_EditOrderCtrl.SetWindowText(_T(“Update”));

// Make the Cancel button visible
// Disable Record menu items and toolbar buttons
// Start the update
m_Mode = UPDATE;                   // Switch to update mode

}
}

Each call of the SetWindowText() function sets the text displayed on the button to the string you supply
as the argument to the function. The parameter type is LPCTSTR for which you can use a CString argu-
ment or a string constant of type _T.

Controlling the Visibility of the Cancel Button
To make the Cancel button visible or invisible, you need a control variable corresponding to that button
available, so add a control variable with the name m_CancelEditCtrl just as you did for the Edit Order

1180

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1180



button. Because the CButton class is derived from CWnd, you can call the inherited ShowWindow() mem-
ber of the CButton object to set the button as visible or invisible, as follows:

void COrderDetailsView::OnEditorder()
{

if(m_Mode == UPDATE)
{ // When button was clicked we were in update

// Disable input to edit controls
m_QuantityCtrl.SetReadOnly(); 
m_DiscountCtrl.SetReadOnly();

// Change the Edit Order button text to Update   
m_EditOrderCtrl.SetWindowText(_T(“Edit Order”));

// Make the Cancel button invisible
m_CancelEditCtrl.ShowWindow(SW_HIDE);

// Enable Record menu items and toolbar buttons
// Complete the update
m_Mode = READ_ONLY;                // Change to read-only mode

}
else
{ // When button was clicked we were in read-only mode

// Enable input to edit controls
m_QuantityCtrl.SetReadOnly(FALSE); 
m_DiscountCtrl.SetReadOnly(FALSE);

// Change the Edit Order button text to Update
m_EditOrderCtrl.SetWindowText(_T(“Update”));

// Make the Cancel button visible
m_CancelEditCtrl.ShowWindow(SW_SHOW);

// Disable Record menu items and toolbar buttons
// Start the update
m_Mode = UPDATE;                   // Switch to update mode

}
}

The ShowWindow() function that the CButton class inherits from CWnd requires an argument of type
int that must be one of a range of fixed values (see the documentation for the full set). You use the 
argument value SW_HIDE to make the button disappear if m_Mode has the value UPDATE, and
SW_SHOW when the application is entering edit mode to make the button visible and activate it.

Disabling the Record Menu
You want to disable the menu items in the Record menu when the m_Mode member of the view has the
value UPDATE. You won’t do this in the OnEditorder() handler, though, because there is an easier and
better way as you will now see, so you can remove the two comment lines in the if statement in the
OnEditorder() handler that relate to this.

1181

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1181



You can manage the state of the menu items and toolbar buttons by adding update handlers for them in the
view class that are specifically for this purpose. Display the menu resource for the application by double-
clicking the ID for the menu in Resource View. This is the menu resource in the DBSimpleUpdate.rc file
with the ID IDR_MAINFRAME. Add a handler for the UPDATE_COMMAND_UI message for each of the menu
items in the Record menu — starting with the First Record menu item. Extend the Record menu by
clicking it and then right-click the First Record menu item in Resource View and select Add Event
Handler from the pop-up menu. Figure 21-9 shows the Event Handler Wizard dialog box that is displayed
as a result.

Figure 21-9

Select the COrderDetailsView class name from the class list, then select the message type as
UPDATE_COMMAND_UI. The description at the bottom of the dialog box indicates the prime purpose of the
UPDATE_COMMAND_UI handler — exactly what you need in this instance. Click the Add and Edit button
in the dialog box to add the handler and repeat the process for the three other items in the Record menu.

The argument that is passed to the UPDATE_COMMAND_UI handler function is of type CCmdUI and the
CCmdUI class has a member function, Enable(), that you can call to enable or disable the item. An argu-
ment value of TRUE enables the item, and a value of FALSE disables it. The default value for the parame-
ter is TRUE so you can call the function with no argument value to enable the item. You want to disable
the menu items and toolbar buttons when m_Mode has the value UPDATE, but the circumstances when
you want to disable them are a little more complicated because of the behavior of the menu items and
toolbar buttons before you started messing with them.

The program as generated by default already disables the menu items and toolbar buttons corresponding
to the IDs ID_RECORD_FIRST and ID_RECORD_PREV when the current record is the first in the recordset.
Similarly, when the current record is the last in the recordset, the ID_RECORD_NEXT and ID_RECORD_LAST
items are disabled. You should maintain this behavior when m_Mode is READ_ONLY. The key to doing this
is to use inherited functions in the View Class that test whether the current record is the first or the last.

1182

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1182



You only need add one line of code to each of these handlers to do what you want. It’s exactly the same
line of code for OnUpdateRecordFirst() and OnUpdateRecordPrev(). For example:

void COrderDetailsView::OnUpdateRecordFirst(CCmdUI* pCmdUI) 
{
// Disable item if m_Mode is UPDATE 
// Enable item if m_Mode is READ_ONLY and it’s not the 1st record
pCmdUI->Enable((m_Mode == READ_ONLY) && !IsOnFirstRecord());

}

The IsOnFirstRecord() function returns TRUE if the view is on the first record in the recordset, and FALSE
otherwise. This disables the items (the menu item and the corresponding toolbar button) if either m_Mode
has the value UPDATE or the value returned by IsOnFirstRecord() member of COrderDetailsView
is TRUE. The item is enabled if m_Mode has the value READ_ONLY and the value returned by the
IsOnFirstRecord() function is FALSE. This handler affects both the menu item and the toolbar button
because they both have the same ID, ID_RECORD_FIRST.

The handlers corresponding to ID_RECORD_NEXT and ID_RECORD_LAST also require the same line of code:

void COrderDetailsView::OnUpdateRecordLast(CCmdUI* pCmdUI) 
{
// Disable item if m_Mode is UPDATE 
// Enable item if m_Mode is READ_ONLY and it’s not the 1st record
pCmdUI->Enable((m_Mode == READ_ONLY) && !IsOnLastRecord());

}

This works in the same way as the previous handler.

Expediting the Update
The last piece you need is to actually carry out the update when the Update button is clicked. To update
a record, the user first clicks the Edit Order button, so at this point you must call the Edit() member of
the recordset object to start the process of modifying the recordset. When the Update button is clicked,
you need to call the Update() member of the recordset object to get the new data written to the record
in the database. You can implement it using the m_pSet member of the View Class like this:

void COrderDetailsView::OnEditorder() 
{
if(m_pSet->CanUpdate())
{
try
{

if(m_Mode == UPDATE)
{ // When button was clicked we were in update

// Disable input to edit controls
m_QuantityCtrl.SetReadOnly(); 
m_DiscountCtrl.SetReadOnly();

// Change the Update button text to Edit Order   
m_EditOrderCtrl.SetWindowText(_T(“Edit Order”));

1183

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1183



// Make the Cancel button invisible
m_CancelEditCtrl.ShowWindow(SW_HIDE);

// Complete the update
m_pSet->Update();                                       
m_Mode = READ_ONLY;            // Change to read-only mode

}
else
{ // When button was clicked we were in read-only mode

// Enable input to edit controls
m_QuantityCtrl.SetReadOnly(FALSE); 
m_DiscountCtrl.SetReadOnly(FALSE);

// Change the Edit Order button text to Update
m_EditOrderCtrl.SetWindowText(_T(“Update”));

// Make the Cancel button visible
m_CancelEditCtrl.ShowWindow(SW_SHOW);

// Start the update
m_pSet->Edit();                                         

m_Mode = UPDATE;               // Switch to update mode
}

}
catch(CException* pEx)
{
pEx->ReportError();              // Display the error message

}
}
else
AfxMessageBox(_T(“Recordset is not updatable.”));

}

As I discussed at the beginning of this chapter, the Edit() and Update() functions can throw an excep-
tion if an error occurs, so you put the calls within a try block along with the rest of the code. Clearly, if
you cannot update the recordset, there is no purpose to any of the processing in the OnEditorder() func-
tion. If an exception is thrown, you call its ReportError() function to display an error message. The
catch block exception parameter is a pointer to CException, so the catch block is executed for excep-
tions objects of type CException, or any class derived from CException. You need this to accommodate
the CMemoryException that can be thrown by Edit(), as well as the CDBException that can be thrown
by both Edit() and Update(). Note the use of the pointer as the catch block parameter. Recall that this
is because these are MFC exceptions thrown using the THROW macro, not C++ exceptions thrown using the
keyword throw. If they were the latter, you would use a reference as the catch block parameter type.

You also verify that the recordset is updateable by calling its CanUpdate() member. If this returns FALSE,
you display an error message in a message box.

1184

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1184



Implementing the Cancel Operation
The Cancel button should abort the update operation. All that is necessary to do this is to call the
CancelUpdate() member of the COrderDetailsSet object. Of course, you have a little housekeeping
to do, but this is exactly the same as if the Update() button was pressed, except that you don’t call
Edit(). Here’s the code for the OnCancel() handler:

void COrderDetailsView::OnCancel() 
{
m_pSet->CancelUpdate();                   // Cancel the update operation
m_EditOrderCtrl.SetWindowText(_T(“Edit”));// Switch button text
m_CancelEditCtrl.ShowWindow(SW_HIDE);     // Hide the Cancel button
m_QuantityCtrl.SetReadOnly(TRUE);         // Set state of quantity edit control
m_DiscountCtrl.SetReadOnly(TRUE);         // Set state of discount edit control
m_Mode = READ_ONLY;                       // Switch the mode

}

The CancelUpdate() function ends the update operation and restores the recordset object’s fields to
what they were before Edit() was called. Because the Cancel button can only be clicked in edit mode,
you can update the buttons and other controls in the same way as in the OnEditorder() handler. That’s
everything you need. You are ready for a trial run.

Try It Out Controlled Updating
Assuming you have no typos in your code, when you compile and run the program, it should work as
planned. You can only enter data in the Quantity and Discount edit controls after you have clicked the
Edit button. Figure 21-10 shows an example of the update operation window.

Figure 21-10

1185

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1185



The buttons for moving to a new record are now disabled, as are the menu items for the Record menu.
To complete the update after you have entered the new data, you click the Update button. This causes
the new data to be written to the database, and the application returns to the normal state — all edit
controls disabled and the buttons and menu restored to their original status.

Adding Rows to a Table
Next, extend the example to implement the capability to add a new order to the Northwind database.
This provides insight into some of the practical problems and complexities you will face in this kind of
operation.

An order itself is not a simple record in a table in the Northwind database. Two tables are involved in
defining a new order. The basic order data is in the Orders table, where information about the customer
is stored. For each order, there is one or more records in the Order Details table and one for each product
in the order, the link to the record in the Orders table being the Order ID. The relationship between these
tables is illustrated in Figure 21-11.

Figure 21-11

But there’s more than these two tables involved in the process for adding a new order. When creating a new
order you have to provide a way for the user to select a customer from the Customers table. The Orders
table includes a field identifying the employee, which needs to be one of the employees recorded in the
Employees table. After the information required for a new record in the Orders table has been established,

   
                   Order ID          

                     Custom
er ID   

   
                   Em

ployee ID   

   
   

                Order Date         

… etc.

998 EDXY

Orders Table

   
                   Order ID          

                     Product ID   

                      Unit Price   

   
                   Quantity         

   
                   Discount        

998
998
998

43
11
71

2.50
9.95
15.00

50
25
30

0.1
0

0.15

Orders Details Table

The products corresponding
to an order in the Orders

table are recorded in one or
more records of the Order

Details Table

5 columns in total

1186

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1186



one or more products obviously will need to be selected from those defined in the Products table. With all
these tables involved, it’s going to be a somewhat messy business. You can simplify it slightly by making the
Employee ID field 1 by default. This avoids the need to deal with the Employees table in the example. You
need to establish the overall logic first.

The Order Entry Process
You will be using two dialog forms in addition to the dialog form you already have that provides for view-
ing and editing the details of existing orders. One deals with the selection of the customer for the order, and
setting the required delivery date, and the other takes care of entering the details of the products and quan-
tities for the order. The dialog box to select the customer is associated with the Customers table in the data-
base, and the dialog box for selecting products is associated with the Products table. Buttons on the dialog
box enable the transition from one dialog box to another. The basic logic is shown in Figure 21-12.

Figure 21-12

You will hold off creating a new record in the Orders table until you have the first Product Details record
entered. That way you will avoid ending up with an order that doesn’t order anything. Now you can put
together the dialog resources you need and implement the code to support the operations.

Creating the Resources
You need an additional button on the dialog box that you have at present to initiate the process of creat-
ing a new order, so add a button with the label New Order, and with the ID IDC_NEWORDER and use the
Format > Make Same Size > Both menu to make sure the new button is the same width and height
as the Cancel button. After you have done this, you can place the new button coincident with the Cancel
button if you want because only one is visible at any given time, with the New Order button being visi-
ble by default. On the other hand you could keep them distinct if you would prefer to avoid working with
resources where one can mask another.

If you want the New Order button to appear on top when it is in the same position as the Cancel button,
you need to make sure it follows the Cancel button in the tab order; you can check this by using the
Format > Tab Order menu item. Figure 21-13 shows the revised IDD_SIMPLEUPDATE_FORM dialog
form with the New Order button overlaying and therefore masking the Cancel button.

1187

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1187



Figure 21-13

You can add a handler for the New Order button to COrderDetailsView by right-clicking the button
and selecting Add Event Handler from the pop-up. You could shorten the default handler name to
OnNewOrder() if you like. You may need to move the button before clicking it to get the handler for the
right button. You will add the code for this handler later. Of course, you could have used the Cancel but-
ton here by changing its label and altering the effect of its handler depending on the state of the m_Mode
member of COrderDetailsView, but with this approach you’ll get to see how you can work with two
buttons here.

You can create the two new dialog forms you need by right-clicking the Dialog folder in Resource View and
selecting Insert Dialog from the pop-up. Assign the IDs as IDD_CUSTOMER_FORM and IDD_PRODUCT_FORM,
respectively. They both need to have Child selected for the Style property and None selected in the Border
property. You could also make all three dialog forms about the same size and a little larger than the origi-
nal form.

Creating the Recordsets
Two recordset classes corresponding to the Customers and Products tables in the database are required. You
add each of these in the same way; right-click on DBSimpleUpdate in Class View and select Add > Class
from the pop-up and then choose MFC ODBC Consumer as the template. You can make the class names
CCustomerSet and CProductSet set corresponding to the Customers and Products tables respectively
and select the recordset type to be Snapshot in both instances. Change fields of type CStringW to type
CString and don’t forget to delete or comment out the #error directive that precedes the definition of the
GetDefaultConnect() function in each class.

Creating the Recordset Views
You can now create record view classes that connect to the new dialogs, so add .h files and .cpp files 
to the project that will hold the code for the new CCustomerView and CProductView classes that you’ll
define; you use the Solution Explorer window for this. The CCustomerView class encapsulates a view of
the CCustomerSet recordset and uses the IDD_CUSTOMER form dialog resource. The initial class defini-
tion is therefore:

// CustomerView.h : header file

1188

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1188



#pragma once

class CCustomerSet;

class CCustomerView : public CRecordView
{
public:
CCustomerView();  
virtual ~CCustomerView();

public:
enum { IDD = IDD_CUSTOMER_FORM };// Form Data
CCustomerSet* m_pSet;

// Operations
public:
CCustomerSet* GetRecordset(); 

#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

};

You can initialize the m_pSet member that stores the pointer to the recordset object in the constructor in
the CustomerView.cpp file:

#include “stdafx.h”
#include “DBSimpleUpdate.h”            // Main header file for the application
#include “CustomerView.h”

// Constructor
CCustomerView::CCustomerView()
: CRecordView(CCustomerView::IDD),
m_pSet(NULL)

{
}

The constructor also establishes IDD_CUSTOMER_FORM as the dialog box for this view by passing its ID to the
base class constructor. You need the #include directive for DBSimpleUpdate.h preceding the #include
for CustomerView.h, as without it the symbol IDD_CUSTOMER_FORM would not be recognized during com-
pilation. DBSimpleUpdate.h has an #include directive for Resource.h that contains the definitions for
the IDs for the resources you have created.

Now add the definitions of the functions that are to be generated in debug mode to CustomerView.cpp:

// CCustomerView diagnostics

#ifdef _DEBUG
void CCustomerView::AssertValid() const
{

1189

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1189



CRecordView::AssertValid();
}

void CCustomerView::Dump(CDumpContext& dc) const
{
CRecordView::Dump(dc);

}
#endif //_DEBUG

You probably won’t need these, but it’s good to have them defined — just in case something goes wrong.

You can now add overrides for the DoDataExchange(), OnGetRecordset(), and OnInitialUpdate()
functions that are inherited from the base class. The example shows you how to customize these to work
with the recordset in the way that you want. Right-click the CCustomerView class name in Class View
and select Properties from the pop-up. Click the overrides toolbar button (wait for the tooltips for the but-
tons to display if you can’t remember which button it is) and for each override select the function name in
the left column and select the <Add> option in the cell to the right to add the function.

You can complete the implementation of the OnGetRecordset() function override right away:

CRecordset* CCustomerView::OnGetRecordset()
{
if(m_pSet == NULL)                   // If we don’t have the recordset address
{
m_pSet = new CCustomerSet(NULL);   // create a new one
m_pSet->Open();                    // and open it

}
return m_pSet;                       // Return the recordset address

}

If m_pSet is NULL you create a recordset and open it before returning its address. If m_pSet is not NULL
there is already a recordset created so you return the address that it contains. You must add an #include
directive for CCustomerSet.h to the .cpp file because you refer to the CCustomerSet class name here.

You can now implement the GetRecordset() function to use this function:

CCustomerSet* CCustomerView::GetRecordset()
{
return static_cast<CCustomerSet*>(OnGetRecordset());

}

The explicit cast is necessary here because the cast is down the class hierarchy from the base class to the
derived class. You will be able to complete the detail of the other two overrides later.

Because you are creating the CCustomerSet object on the heap, you need to take care to delete it in the
CCustomerView class destructor:

CCustomerView::~CCustomerView()
{
if (m_pSet)
delete m_pSet;

}

1190

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1190



The OnInitialUpdate() function override in the CCustomerView class should be implemented as you
have seen previously:

void CCustomerView::OnInitialUpdate()
{
BeginWaitCursor();
GetRecordset();
CRecordView::OnInitialUpdate();
if (m_pSet->IsOpen())
{
CString strTitle = m_pSet->m_pDatabase->GetDatabaseName();
CString strTable = m_pSet->GetTableName();
if(!strTable.IsEmpty())
strTitle += _T(“:”) + strTable;

GetDocument()->SetTitle(strTitle);
}
EndWaitCursor();

}

The definition of the CProductView class is much the same as the CCustomerView class, the primary
difference being the dialog form associated with it:

// ProductView.h : header file
#pragma once

class CProductSet;

class CProductView : public CRecordView
{
public:

CProductView();
virtual ~CProductView();

public:
enum { IDD = IDD_PRODUCT_FORM };     // Form Data
CProductSet* m_pSet;

// Operations
public:

CProductSet* GetRecordset();

// Implementation
protected:
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
};

1191

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1191



Now you can add overrides for the OnGetRecordset(), DoDataExchange(), and OnInitialUpdate()
functions using the method you used for the previous class and add the following directives to the begin-
ning of the ProductView.cpp file:

#include “stdafx.h”
#include “DBSimpleUpdate.h”
#include “ProductView.h”
#include “ProductSet.h”

The constructor should initialize the m_pSet member and the destructor should delete the object pointed
to by the m_pSet object because you’ll create it on the heap. The constructor and destructor definitions are:

CProductView::CProductView()
: CRecordView(CProductView::IDD),
m_pSet(NULL)

{
}

CProductView::~CProductView()
{
if (m_pSet)
delete m_pSet;

}

The implementation of the OnGetRecordset() function is:

CRecordset* CProductView::OnGetRecordset()
{
if(m_pSet == NULL)                   // If there is no recordset
{
m_pSet = new CProductSet(NULL);    // create one
m_pSet->Open();                    // then open it

}
return m_pSet;                       // Return the address of the recordset

}

The implementation of the GetRecordset() function in the CProductView class is also essentially the
same as for the CCustomerView class:

CProductSet* CProductView::GetRecordset()
{
return static_cast<CProductSet*>(OnGetRecordset());

}

You can also add definitions for the diagnostic functions to be used in debug mode:

#ifdef _DEBUG
void CProductView::AssertValid() const

1192

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1192



{
CRecordView::AssertValid();

}

void CProductView::Dump(CDumpContext& dc) const
{
CRecordView::Dump(dc);

}
#endif //_DEBUG

You’ll return to the functions still to be implemented in CProductView a bit later in this chapter — in
the meantime you are now ready to populate the dialog boxes with the controls you need.

Adding Controls to the Dialog Resources
Although you have only tied the IDD_CUSTOMER_FORM dialog box into the Customers table, within the
process you need to provide all the information necessary to create a new record in the Orders table. The
source of the data for each field of a new Orders record is shown in Figure 21-14.

Figure 21-14

Half of the fields are drawn from the record in the Customers table that the user selects. Because you
are creating a new order, you will need to synthesize a new unique order ID. To do this you can find
the largest ID currently in use in the Orders table and then just add 1 to that value.

To select the customer, the user scrolls through the recordset until the required customer is displayed.
You can then retrieve the data you need to construct the new Orders record from the recordset. You can
display the current date in the dialog box as the order date, and you can provide a control for selecting
the required ship date. The other fields you’ll just assign arbitrary values to, so that you don’t overcom-
plicate the example.

1193

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1193



Of course, you don’t need to display all the information from the Customers table in the dialog 
box — just the name is sufficient to identify the customer for selection purposes. You still need the
data in the recordset though. You can place controls on the IDD_CUSTOMER_FORM dialog as shown 
in Figure 21-15.

Figure 21-15

You can see from the diagram how the controls are to be used, and the IDs that you need to assign to
them. The date/time picker controls allow a date or time to be entered or selected. Whether it selects a
date or a time depends on the value you choose for the Format property. The controls here use Short
Date format. The date is chosen by clicking the down arrow and choosing a date from the calendar that
pops up. Note that the control showing the order date is not accessible by the user because the date
value is just today’s date. You set this state for the control by setting the Disabled property value to
True. Note also that the edit controls for the order ID and customer name each have their Read Only
property set to True to prevent modification of the values displayed.

You can add variables to the CCustomerView class to store values from the date/time picker controls.
Right-click the order date edit control and select Add Variable from the pop-up. Figure 21-16 shows the
dialog box.

You need to select the category as Value and the type as CTime because you want a variable that stores the
value from the control rather than one that provides access to the control itself. You can give the member
the name m_OrderDate. The Add Member Variable Wizard automatically adds initialization for the vari-
able to the class constructor and adds a DDX_ function call to the DoDataExchange() function to effect data
exchange between the variable and the control. You can add a variable with the name m_RequiredDate in
a similar way for the other date/time picker control.

1194

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1194



Figure 21-16

Although this view is associated with a recordset corresponding to the Customers table, in fact only the edit
control showing the customer name needs to be connected to the CCustomerSet recordset as you are only
displaying this field on the dialog box. You can add a DDX_ function call for this to the DoDataExchange()
function in the CCustomerView class:

void CCustomerView::DoDataExchange(CDataExchange* pDX)
{

CRecordView::DoDataExchange(pDX);
DDX_DateTimeCtrl(pDX, IDC_ORDERDATE, m_OrderDate);
DDX_DateTimeCtrl(pDX, IDC_REQUIREDDATE, m_RequiredDate);
DDX_FieldText(pDX, IDC_COMPANYNAME, m_pSet->m_CompanyName, m_pSet);

}

At this point you can also right-click each of the buttons and select Add Event Handler from the pop-
up to add handlers to the CCustomerView class for them. You can short the default function names to
OnSelectproducts() and OnCancelorder() if you want. You will fill in the code for these handlers
and deal with the rest of the controls later.

The IDD_PRODUCT_FORM dialog selects the products to be ordered, after the customer has been selected.
The application switches to this dialog box when the Select Products button is clicked on the customer
selection dialog box. You need to show sufficient information on the dialog box to allow the product to
be chosen, and you must provide for the quantity and discount to be entered. The dialog box with its
controls is shown in Figure 21-17.

Note that the edit controls here are read-only except for the two for quantity and discount because these two
values are the only ones the user needs to supply. You can connect the edit control for the product name to
the recordset by adding a statement to the DoDataExchange() function in the CProductView class:

void CProductView::DoDataExchange(CDataExchange* pDX)
{

CRecordView::DoDataExchange(pDX);
DDX_FieldText(pDX, IDC_PRODUCTNAME, m_pSet->m_ProductName, m_pSet);

}

1195

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1195



Figure 21-17

The DDX_FieldText() function call interchanges data between the m_ProductSet member of the
CProductSet object and the control with the ID IDD_PRODUCTNAME.

Add BN_CLICKED event handlers for the Select Product and Done buttons to the CProductView
using the same technique you used for the previous dialog resource; you can give them the names
OnSelectproduct() and OnDone() to conform with the button labels.

The edit controls that display the order ID and the customer name must be initialized with values that
originate in the previous dialog, so you need class variables to hold the values for these controls. Right-
click each of these two controls in the IDD_PRODUCT_FORM dialog and select Add Variable from the pop-
up. You should select the Value category for both variables and they can both be public. Select type long
for the m_OrderID variable and type CString for the m_CustomerName variable.

The user enters values in the edit controls for quantity and discount, so you need variable for these too
in the CProductView class; both of these are Value category, too. Add a variable of type int with the
name m_Quantity, to store the quantity and a variable of type float with the name m_Discount for
the discount value. You should now find that the variables are initialized in the constructor and the
DoDataExchange() function looks like this:

void CProductView::DoDataExchange(CDataExchange* pDX)
{
CRecordView::DoDataExchange(pDX);
DDX_FieldText(pDX, IDC_PRODUCTNAME, m_pSet->m_ProductName, m_pSet);
DDX_Text(pDX, IDC_NEWORDER, m_OrderID);
DDX_Text(pDX, IDC_COMPANYNAME, m_CustomerName);
DDX_Text(pDX, IDC_ORDERQUANTITY, m_Quantity);
DDX_Text(pDX, IDC_ORDERDISCOUNT, m_Discount);

}

With the dialogs defined, you can implement the mechanism to switch between them.

1196

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1196



Implementing Dialog Switching
You saw the basic logic for switching between dialogs in this program in Figure 21-12. A button click is
the mechanism for switching from one dialog to the next, so the button handlers will contain code to
cause the switch to happen. You can first define view IDs to identify each of the three dialogs, so add a
header file, ViewConstants.h. This time you can try using an enum declaration to identify the views 
so the file should contain the following code:

// Definition of constants identifying the record views

#pragma once

enum ViewID{ ORDER_DETAILS, NEW_ORDER, SELECT_PRODUCT};

You need a variable of type ViewID in the CMainFrame class to record the ID of the current view, so add
m_CurrentViewID by right-clicking on CMainFrame in Class View and selecting Add > Add Variable
from the pop-up. You need to initialize this, so modify the CMainFrame constructor to:

CMainFrame::CMainFrame() : m_CurrentViewID(ORDER_DETAILS)
{

// TODO: add member initialization code here
}

This identifies the view the application always starts with. An #include directive for ViewConstants.h
was added automatically to the MainFrm.h file so the definitions for the view IDs are available here in the
MainFrm.cpp file.

You can now add a member function, SelectView(), to CMainFrame that performs switching between
dialogs. The return type is void and the single parameter is of type ViewID as the argument will be one
of the view IDs defined in the enum. The implementation of SelectView() is like this:

// Enables switching between views. The argument specifies the new view
void CMainFrame::SelectView(ViewID viewID)
{

CView* pOldActiveView = GetActiveView();     // Get current view

// Get pointer to new view if it exists
// if it doesn’t the pointer will be null
CView* pNewActiveView = static_cast<CView*>(GetDlgItem(viewID));

// If this is first time around for the new view, the new view 
// won’t exist, so we must create it
// The Order Details view is always created first so we don’t need
// to provide for creating that.
if (pNewActiveView == NULL)
{

switch(viewID)
{

case NEW_ORDER:               // Create view to add new order
pNewActiveView = new CCustomerView;
break;

case SELECT_PRODUCT:          // Create view to add product to order

1197

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1197



pNewActiveView = new CProductView;
break;

default:
AfxMessageBox(_T(“Invalid View ID”));
return;

}

// Switching the views
// Obtain the current view context to apply to the new view
CCreateContext context;
context.m_pCurrentDoc = pOldActiveView->GetDocument();
pNewActiveView->Create(NULL, NULL, 0L, CFrameWnd::rectDefault,

this, viewID, &context);
pNewActiveView->OnInitialUpdate();

}
SetActiveView(pNewActiveView);                 // Activate the new view
pOldActiveView->ShowWindow(SW_HIDE);           // Hide the old view
pNewActiveView->ShowWindow(SW_SHOW);           // Show the new view
pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old view ID
pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
m_CurrentViewID = viewID;                      // Save the new view ID
RecalcLayout();

}

The code here refers to the CCustomerView and CProductView classes, so #include directives for
CustomerView.h and ProductView.h are necessary in the source file.

Switching from the order details dialog to the dialog starting new order creation is done in the handler
for OnNeworder() in the COrderDetailsView class:

void COrderDetailsView::OnNeworder() 
{
static_cast<CMainFrame*>(GetParentFrame())->SelectView(NEW_ORDER);

}

This gets a pointer to the parent frame for the view — the CMainFrame object for the application — and
then uses that to call SelectView() to select the new order processing dialog. An #include directive
for MainFrm.h is necessary in this source file to get at the definition of CMainFrame; MAinFrm.h has an
#include directive for ViewConstants.h so NEW_ORDER is available here, too.

The Select Products button handler in the CCustomerView class switches to the dialog box for
CProductsView:

void CCustomerView::OnSelectproducts() 
{
static_cast<CMainFrame*>(GetParentFrame())->SelectView(SELECT_PRODUCT);

}

The Cancel button handler in the same class just switches back to the previous view:

void CCustomerView::OnCancelorder() 
{

1198

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1198



static_cast<CMainFrame*>(GetParentFrame())->SelectView(ORDER_DETAILS);
}

Don’t forget to add an #include directive for MainFrm.h in CustomerView.cpp.

The last switching operation to be implemented is in the OnDone() handler in the CProductView class:

void CProductView::OnDone() 
{
static_cast<CMainFrame*>(GetParentFrame())->SelectView(ORDER_DETAILS);

}

This switches back to the original application view that allows browsing and editing of order details. Of
course, you could alternatively switch back to the CCustomerView dialog to provide a succession of order
entries if you wanted to. Don’t forget the #include directive for MainFrm.h once more.

The switching from the initial dialog box that allows you to browse order details to the dialog box for
editing the details now has to control the visibility of the New Order button; otherwise, the Cancel but-
ton is hidden by the New Order button in the editing dialog. Add a control variable, m_NewOrderCtrl,
in COrderDetailsView corresponding to the IDC_NEWORDER ID. Then you can amend the
OnEditorder() handler to:

void COrderDetailsView::OnEditorder()
{

if(m_pSet->CanUpdate())
{

try
{

if(m_Mode == UPDATE)
{ // When button was clicked we were in update

// Disable input to edit controls
m_QuantityCtrl.SetReadOnly(); 
m_DiscountCtrl.SetReadOnly();

// Change the Update button text to Edit Order   
m_EditOrderCtrl.SetWindowText(_T(“Edit Order”));

// Make the Cancel button invisible
m_CancelEditCtrl.ShowWindow(SW_HIDE);

// Show the new order button
m_NewOrderCtrl.ShowWindow(SW_SHOW);             

// Complete the update
m_pSet->Update();                                       
m_Mode = READ_ONLY;            // Change to read-only mode

}
else
{ // When button was clicked we were in read-only mode

// Enable input to edit controls
m_QuantityCtrl.SetReadOnly(FALSE); 

1199

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1199



m_DiscountCtrl.SetReadOnly(FALSE);

// Change the Edit Order button text to Update
m_EditOrderCtrl.SetWindowText(_T(“Update”));

// Hide the new order button
m_NewOrderCtrl.ShowWindow(SW_HIDE);             

// Make the Cancel button visible
m_CancelEditCtrl.ShowWindow(SW_SHOW);

// Start the update
m_pSet->Edit();                                         

m_Mode = UPDATE;               // Switch to update mode
}

}
catch(CException* pEx)
{

pEx->ReportError();              // Display the error message
}

}
else
AfxMessageBox(_T(“Recordset is not updatable.”));

}

Now you hide or show the New Order button, depending on whether the value stored in m_UpdateMode
is READ_ONLY or UPDATE. You also must make the button visible in the OnCancel() handler:

void COrderDetailsView::OnCancel() 
{
m_pSet->CancelUpdate();                     // Cancel the update operation
m_EditOrderCtrl.SetWindowText(_T(“Edit”));  // Switch button text
m_CancelEditCtrl.ShowWindow(SW_HIDE);       // Hide the Cancel button
m_NewOrderCtrl.ShowWindow(SW_SHOW);         // Show the New Order button
m_QuantityCtrl.SetReadOnly(TRUE);           // Set state of quantity edit control
m_DiscountCtrl.SetReadOnly(TRUE);           // Set state of discount edit control
m_UpdateMode = !m_UpdateMode;               // Switch the mode

}

What you have done so far here is to implement the basic view switching mechanism. You will still need
to come back and add code to deal with updating the database; however, this is a good point to try com-
piling and executing what you have to shake out any typos or other errors you might have added. After
it works, you should find that you can scroll through the customers and the products. Make sure you
check out all the switching paths.

Creating an Order ID
To create an ID for a new order, you need a recordset for the Orders table. Right-click DBSimpleUpdate
in Class View and select the Add > Class menu item from the pop-up. Select MFC ODBC Consumer as
the template and click the Add button; then select Northwind as the database and Orders as the table
for the recordset. Choose Dynaset as the type because you reuse this recordset when you want to add a

1200

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1200



new order. Enter the class name as COrderSet and the corresponding files names as OrderSet.h and
OrderSet.cpp. Click the Finish button to create the class. You can change the CStringW members of the
new class to type CString and comment out the #error directive in the OrderSet.cpp class.

Storing the New Order ID
In this section I will go into operations with recordsets in a little more depth. You need to create a unique
order ID whenever you start creating a new order in the CCustomerView class, so you need to think
about where you can best do this and what the process should be. It really should be a COrderSet object’s
responsibility to create the new ID, even though the ID is displayed by one of the edit controls in the view
represented by the CCustomerView object because the new ID is essentially dependent on the data in this
recordset. A good approach would be to add a variable in the CCustomerView class that sets the value of
the ID in the edit control that can be set using a function belonging to a COrderSet object.

Go to the Design window for the IDD_CUSTOMER_FORM dialog form and right-click the edit control for
the order ID — the control has the ID IDC_NEWORDERID. Select Add Variable from the pop-up and then
enter the name. Choose the variable type and category as shown in Figure 21-18.

Figure 21-18

The type is CString by default, so make sure you set it to long. The DDX_Text() functions that transfer
data to and from an edit control come in a number of flavors to accommodate the different data types
shown in the drop-down list in the dialog box.

Creating the New Order ID
The COrderSet object belongs in the document object, so add a public data member to the
CDBSimpleUpdateDoc class with the name m_OrderSet to go along with the m_DBSimpleUpdateSet
member that was created by the Application Wizard. You do this as usual by right-clicking the class
name in Class View and selecting Add > Add Variable from the pop-up. The COrderSet object is
created automatically when the document object is created. With the object for the order set in the 
document, it is accessible in any of the view classes that need it.

1201

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1201



You can add a new member function to the COrderSet class to generate the unique new order ID. Go to
Class View and add the function, CreateNewOrderID(), with a long return type and no parameters.

The first thing the CreateNewOrderID() function needs to do is check whether the recordset is open:

long COrderSet::CreateNewOrderID()
{
if(!IsOpen())
Open(CRecordset::dynaset);

// Rest of the function implementation...
}

The IsOpen() function that you call in the if statement returns TRUE if the recordset is open and FALSE
otherwise. To open the recordset, you call the Open() member that is inherited from CRecordset. This
runs an SQL query against the database with the recordset type specified by the first argument. You have
the first argument specified as CRecordset::dynaset, which, as you might expect, opens the recordset
as a dynaset. As it happens, this is unnecessary because if you omitted the argument, the default that you
specified when you created the class — dynaset — would apply. However, this does provide a cue to
mention the other options that you have for this argument, shown in the following table.

There are two further parameters to Open() for which you have accepted default argument values. The sec-
ond parameter is a pointer to a string that can be a table name, an SQL SELECT statement, a call of a prede-
fined query procedure, or null, which is the default. If it is null, the string returned by GetDefaultSQL()
is used. The third parameter is a bit mask that you can use to specify a myriad of options for the connec-
tion, including making it read-only, which means that you can’t write to it at all, or making it append-only,
which prohibits editing or deleting records. You will find more details on this in the documentation for this
function.

With the recordset opened, you want to scan through all the records to find the largest value in the
OrderID field. You can do that by adding the following code:

long COrderSet::CreateNewOrderID()
{
if(!IsOpen())
Open(CRecordset::dynaset);

CRecordset::snapshot Recordset is opened as snapshot — I discussed snapshot and
dynaset in the previous chapter.

CRecordset::forwardonly Recordset is opened as read-only and it can only be scrolled for-
ward. (When a recordset is opened, it is positioned at the first
record automatically.)

CRecordset::dynamic Recordset is open with scrolling in both directions, and changes
made by other users are reflected in the recordset fields.

AFX_DB_USE_DEFAULT_TYPE Recordset is opened with the default recordset type stored in the
inherited member, m_nDefaultType, which is initialized in the
constructor.

1202

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1202



// Check for no records in recordset  
long newOrderID = 0;
if(!(IsBOF() && IsEOF()))
{                                         // We have records
MoveFirst();                            // so go to the first
while(!IsEOF())                         // Compare with all the others
{
// Save order ID if its larger
if(newOrderID < m_OrderID)

newOrderID = m_OrderID;

MoveNext();                           // Go to next record
}

}
return ++newOrderID;

}

The IsBOF() and IsEOF() members of the recordset class return true if you are beyond the beginning or
end of the records in the recordset respectively, in which case no record is currently active so you should
be using the fields. When a recordset is empty, both functions return TRUE. As long as there are records,
you move to the first record by calling the MoveFirst() member function. There is also a MoveLast()
member that goes to the last record in the recordset.

You create a local variable, newOrderID, with an initial value of 0 that eventually stores the maximum order
ID in the table. The while loop moves through each of the records in the recordset using the MoveNext()
member function, checking for a larger value for the m_OrderID member. Before calling any of the move
members of a recordset, you must call either IsEOF() or IsBOF(), depending on which way you are going.
If you call a move function when you are beyond the end or beginning of the recordset, the function throws
an exception of type CDBException.

In addition to the move functions you have used here, a recordset object provides you with three others,
shown in the following table.

When the loop ends you have the maximum order ID stored in newOrderID, so you just need to incre-
ment it by 1 before returning it.

MoveLast() Moves to the last record in the recordset. You must not use this function (or
MoveFirst()) with forward-only recordset, otherwise an exception of type
CDBEception is thrown. 

MovePrev() Moves to the record preceding the current record in the recordset. If there isn’t
one, it moves to one position beyond the first record. After this the recordset
fields are not valid and IsBOF()returns true.

Move() This is used to move one or more records through a recordset. The first argu-
ment, of type long, specifies the number of rows to move. The second argument
of type WORD determines the nature of the move operation. Four values for the
second argument make the function equivalent to the other move functions we
have seen. You will find more details on this in the Visual C++ documentation.

1203

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1203



The last step is to get the value transferred to the control so it appears in the IDD_CUSTOMER_FORM dialog.
A call to UpdateData() for the recordset view object with an argument of FALSE does this. This function 
is inherited in the record view class from CWnd. An argument of FALSE causes the data to be transferred
from the data member of the View Class to the controls in the dialog. A value of TRUE causes data to 
be retrieved from the controls and stored in the data members. In both cases this is achieved by causing 
the DoDataExchange() member of view to be called by the framework.

Initiating ID Creation
The customer view needs a new order ID to be available when it is first displayed. Add a public member
function, SetNewOrderID(), to the CCustomerView class and implement it as follows:

void CCustomerView::SetNewOrderID(void)
{
// Get a new order ID from the COrderSet object in the document
m_NewOrderID = static_cast<CDBSimpleUpdateDoc*>

(GetDocument())->m_OrderSet.CreateNewOrderID();
UpdateData(FALSE);                              // Transfer data to controls

}

The pointer returned by the inherited GetDocument() function is of type CDocument. You want to 
use this to access the m_OrderSet member of the derived class so you must cast the pointer to type
CDBSimpleUpdateDoc*. You then call the member function for the m_OrderSet member of the docu-
ment class that returns the new order ID, and store the result in the m_NewOrderID member of the
CCustomerView class. Calling the inherited UpdateData() member of the view transfers the data 
from the data members of the view to the controls. You must now add an #include directive for
DBSimpleUpdateDoc.h to the source file because you refer to the CDBSimpleUpdateDoc class name.

Because you only ever create a single CCustomerView object and reuse it as necessary, you will want a new
ID to be available each time you switch to that view. The SelectView() member of the CMainFrame object
deals with switching between dialogs and this is also where a CCustomerView object gets created first time
around. This is a good place to initiate the process for creating the new order ID. All you need to do is to
add some code to call the SetNewOrderID() member if the view corresponds to the CCustomerView.

void CMainFrame::SelectView(ViewID viewID)
{

CView* pOldActiveView = GetActiveView();     // Get current view

// Get pointer to new view if it exists
// if it doesn’t the pointer will be null
CView* pNewActiveView = static_cast<CView*>(GetDlgItem(viewID));

// If this is first time around for the new view, the new view 
// won’t exist, so we must create it
// The Order Details view is always created first so we don’t need
// to provide for creating that.
if (pNewActiveView == NULL)
{

switch(viewID)
{

case NEW_ORDER:               // Create view to add new order
pNewActiveView = new CCustomerView;

1204

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1204



break;
case SELECT_PRODUCT:          // Create view to add product to order

pNewActiveView = new CProductView;
break;

default:
AfxMessageBox(_T(“Invalid View ID”));
return;

}

// Switching the views
// Obtain the current view context to apply to the new view
CCreateContext context;
context.m_pCurrentDoc = pOldActiveView->GetDocument();
pNewActiveView->Create(NULL, NULL, 0L, CFrameWnd::rectDefault,

this, viewID, &context);
pNewActiveView->OnInitialUpdate();

}
SetActiveView(pNewActiveView);                 // Activate the new view
if(viewID==NEW_ORDER)
static_cast<CCustomerView*>(pNewActiveView)->SetNewOrderID();

pOldActiveView->ShowWindow(SW_HIDE);           // Hide the old view
pNewActiveView->ShowWindow(SW_SHOW);           // Show the new view
pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old view ID
pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
m_CurrentViewID = viewID;                      // Save the new view ID
RecalcLayout();

}

All you do is check the viewID value. If it is NEW_ORDER you call the SetNewOrderID() member of the
new view object. Because pNewActiveView is of type CView, you must cast it to the actual view type to
call the member function.

Storing the Order Data
You don’t want to create a new entry in the Orders table until you have the first Product Details
record for the order, so you need a way to pass the data accumulated in the CCustomerView object to
the CProductView object. A simple way to do this is to define a new class to represent an order. It just
needs to have a data member for each data value that you want to stash away. Except for the shipped
date field that doesn’t sensibly have a value in a new order, the data members are the same as the data
members corresponding to the fields in the COrderSet class. Create a new header file, Order.h, in the
project, and add the following code to it:

// Stores the data for a new order
#pragma once

class COrder
{
public:
// Data members same as fields in COrderSet
long m_OrderID;
CString m_CustomerID;

1205

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1205



long m_EmployeeID;
CTime m_OrderDate;
CTime m_RequiredDate;
long m_ShipVia;
double m_Freight;
CString m_ShipName;
CString m_ShipAddress;
CString m_ShipCity;
CString m_ShipRegion;
CString m_ShipPostalCode;
CString m_ShipCountry;

// Default constructor
COrder():

m_OrderID(0),                  // Will be set by CCustomerView object
m_EmployeeID(1),               // Arbitrary employee ID assigned
m_ShipVia(3),                  // Arbitrary shipping company
m_CustomerID(_T(“”)),     m_Freight(0.0),       m_ShipName(_T(“”)),
m_ShipAddress(_T(“”)),    m_ShipCity(_T(“”)),   m_ShipRegion(_T(“”)),
m_ShipPostalCode(_T(“”)), m_ShipCountry(_T(“”))

{
SYSTEMTIME Now;
GetLocalTime(&Now);                        // Get current time
m_OrderDate = m_RequiredDate = CTime(Now); // Set time as today

}
};

In general it is not good practice to make all the data members of a class public like this, but because
the recordset classes generated by the Class Wizard all have public members, there is little to be gained
by making them private in our class here.

If you add a data member, m_Order, of type COrder, to the CDBSimpleUpdateDoc class, you will be able
to use this to pass the order data to the CProductView object. All you have to do is get the CCustomerView
object to load up the data members when the Select Products button is pressed, ready to be picked up
by the CProductView object. You can implement the button handler in CCustomerView like this:

void CCustomerView::OnSelectproducts() 
{
// Get a pointer to the document  
CDBSimpleUpdateDoc* pDoc = static_cast<CDBSimpleUpdateDoc*>(GetDocument());

// Set up order field values from CCustomerSet object  
pDoc->m_Order.m_CustomerID = m_pSet->m_CustomerID;
pDoc->m_Order.m_ShipAddress = m_pSet->m_Address;
pDoc-> m_Order.m_ShipCity = m_pSet->m_City;
pDoc-> m_Order.m_ShipCountry = m_pSet->m_Country;
pDoc-> m_Order.m_ShipName = m_pSet->m_CompanyName;
pDoc-> m_Order.m_ShipPostalCode = m_pSet->m_PostalCode;
pDoc-> m_Order.m_ShipRegion = m_pSet->m_Region;

// Set up order field values from CCustomerView dialog input
pDoc-> m_Order.m_OrderID = m_NewOrderID;            // Generated new ID

1206

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1206



pDoc-> m_Order.m_OrderDate = m_OrderDate;           // From order date control
pDoc-> m_Order.m_RequiredDate = m_RequiredDate;     // From required date control

static_cast<CMainFrame*>(GetParentFrame())->SelectView(SELECT_PRODUCT);
}

This is straightforward stuff. You are just copying values from the recordset and record view objects to
the Order object that is a member of the document object.

Setting Dates
There is a small problem with the date picker controls on the CCustomerView dialog: The variables cor-
responding to these, m_OrderDate and m_RequiredDate, are not initialized at the moment, so the con-
trols do not display sensible values to start with. You want then to display the current date at the outset,
so you should add some code to initialize them at the end of the OnInitialUpdate() member called
when the view object is first created:

void CCustomerView::OnInitialUpdate()
{

BeginWaitCursor();
GetRecordset();
CRecordView::OnInitialUpdate();
if (m_pSet->IsOpen())
{

CString strTitle = m_pSet->m_pDatabase->GetDatabaseName();
CString strTable = m_pSet->GetTableName();
if(!strTable.IsEmpty())

strTitle += _T(“:”) + strTable;
GetDocument()->SetTitle(strTitle);
}
EndWaitCursor();

// Initialize time values  
SYSTEMTIME Now;
GetLocalTime(&Now);                            // Get current time
m_OrderDate = m_RequiredDate = CTime(Now);     // Set time as today

}

Here you set both CTime variables to the current time, just as you did in the constructor for the COrder class.

Now the CCustomerView object is in good shape. It displays the right date and it squirrels away all the
value for the fields in a row in the Orders table, so you are ready to tackle the production selection process.

Selecting Products for an Order
When the view for selecting a product is displayed, you want to have the variables for the controls that
display the order ID and the customer name already set up with appropriate values. You get these val-
ues from the Order member of the document object. You can add a function to the CProductView class
to do this. You can call it InitializeView() and the return type is void. You can call the function from
the SelectView() member of the CMainFrame object for the application. That way you ensure that the
controls are always initialized before the dialog box is displayed.

1207

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:24 AM  Page 1207



Before you implement InitializeView(), consider something else. The new Orders table record is
added only when the Select Product button is clicked to add a product to the order for the first time.
Subsequent button clicks should just add another product to the order, so you need a way to determine
whether the Orders table has been appended to or not when the button is clicked. You can do this by
adding a variable, m_OrderAdded, of type bool to CProductView that is false to start with and set to
true by the Select Product button handler. So add this variable to the class. You can initialize it in the
InitializeView() member that you can implement as follows:

void CProductView::InitializeView()
{
// Get a pointer to the document  
CDBSimpleUpdateDoc* pDoc = static_cast<CDBSimpleUpdateDoc*>(GetDocument());

m_OrderID = pDoc->m_Order.m_OrderID;
m_CustomerName = pDoc->m_Order.m_ShipName;
m_Quantity = 1;                                // Must order at least 1
m_Discount = 0;                                // No default discount
m_OrderAdded = false;                          // Order not added initially
UpdateData(FALSE);                             // Transfer data to controls

}

This initializes the view class members for the order ID and customer name controls by copying values from
the appropriate member of the Order member of the document. This function is also an opportunity to
ensure that the controls for order quantity and discount start with suitable initial values. The order quantity
for any product has to be at least 1, and the discount is 0 by default. Calling the inherited UpdateData()
member with an argument value FALSE causes the data to be transferred from the class variables to the con-
trols, as you saw previously. You need to add an #include directive for DBSimpleUpdateDoc.h to the
beginning of the source file to make the document class definition available.

To put this into operation, you just need to call InitializeView() whenever you switch to the product
selection dialog box. The obvious place to do this is in the SelectView() member of the CMainFrame
class:

void CMainFrame::SelectView(ViewID viewID)
{

CView* pOldActiveView = GetActiveView();     // Get current view

// Get pointer to new view if it exists
// if it doesn’t the pointer will be null
CView* pNewActiveView = static_cast<CView*>(GetDlgItem(viewID));

// If this is first time around for the new view, the new view 
// won’t exist, so we must create it
// The Order Details view is always created first so we don’t need
// to provide for creating that.
if (pNewActiveView == NULL)
{

switch(viewID)
{

case NEW_ORDER:               // Create view to add new order
pNewActiveView = new CCustomerView;
break;

case SELECT_PRODUCT:          // Create view to add product to order

1208

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1208



pNewActiveView = new CProductView;
break;

default:
AfxMessageBox(_T(“Invalid View ID”));
return;

}

// Switching the views
// Obtain the current view context to apply to the new view
CCreateContext context;
context.m_pCurrentDoc = pOldActiveView->GetDocument();
pNewActiveView->Create(NULL, NULL, 0L, CFrameWnd::rectDefault,

this, viewID, &context);
pNewActiveView->OnInitialUpdate();

}
SetActiveView(pNewActiveView);                 // Activate the new view
if(viewID==NEW_ORDER)

static_cast<CCustomerView*>(pNewActiveView)->SetNewOrderID();
else if(viewID == SELECT_PRODUCT)
static_cast<CProductView*>(pNewActiveView)->InitializeView(); 

pOldActiveView->ShowWindow(SW_HIDE);           // Hide the old view
pNewActiveView->ShowWindow(SW_SHOW);           // Show the new view
pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old view ID
pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
m_CurrentViewID = viewID;                      // Save the new view ID
RecalcLayout();

}

When the viewID parameter has the value SELECT_PRODUCT, the CProductView class variables for the
order ID and customer name controls will be initialized, as will the bool variable controlling the creation
of a new record in the Orders table.

Adding a New Order
The final piece of the program that you have to put together is the code to add a new order. Adding an
order is always done by the OnSelectproducts() member of CProductView. The effect of pressing the
Select Products button depends on the value of the data member, m_OrderAdded. If it is false, the func-
tion should add a new record to the Orders table, as well as a new record to the Order Details table. If
m_OrderAdded is true, only the Order Details table should have a new record added as this is another
product for the same order. All the values you need for the new Orders record are stored in the m_Order
member of the document. You just need to copy them to the members of the COrderSet object that is also
a member of the document. The document object is in a strong position to deal with this, so add a member
function, AddOrder() to CDBSimpleUpdateDoc with a bool return type, and implement it as:

bool CDBSimpleUpdateDoc::AddOrder()
{
try
{
if(!m_OrderSet.IsOpen())                     // If recordset is not open

m_OrderSet.Open();                       // open it

1209

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1209



if(m_OrderSet.CanAppend())                 // If we can add a record
{                                          // then add it
m_OrderSet.AddNew();                     // Start adding new record
m_OrderSet.m_CustomerID = m_Order.m_CustomerID;
m_OrderSet.m_EmployeeID = m_Order.m_EmployeeID;
m_OrderSet.m_Freight = m_Order.m_Freight;
m_OrderSet.m_OrderDate = m_Order.m_OrderDate;
m_OrderSet.m_OrderID = m_Order.m_OrderID;
m_OrderSet.m_RequiredDate = m_Order.m_RequiredDate;
m_OrderSet.m_ShipAddress = m_Order.m_ShipAddress;
m_OrderSet.m_ShipName = m_Order.m_ShipName;
m_OrderSet.m_ShipPostalCode = m_Order.m_ShipPostalCode;
m_OrderSet.m_ShipRegion = m_Order.m_ShipRegion;
m_OrderSet.m_ShipVia = m_Order.m_ShipVia;

// No value for the Shipped Date field
m_OrderSet.SetFieldNull(&m_OrderSet.m_ShippedDate);

m_OrderSet.Update();                     // Complete adding new record
return true;                             // Return success

}
else
AfxMessageBox(_T(“Cannot append to Orders table”));

}
catch(CException* pEx)                         // Catch any exceptions
{
pEx->ReportError();                          // Display the error message

}
return false;                                  // Here we have failed

}

You saw earlier in this chapter that the functions in a recordset object for adding and editing records can
throw exceptions, so you put the code in a try block and catch any exceptions to avoid aborting the
application if this happens.

After ensuring that the COrderSet recordset is open, you check that it allows records to be added by
calling its CanAppend() member. Adding a new record involves three steps:

1. You first call the AddNew() member of the recordset. This starts the process and saves the current
values of the data members in the recordset because you will be altering them and sets the values
of the data members to null. This is nothing to do with null for pointers and it is not zero — null
here implies no value has been set for a variable.

2. You set all the data members for the field values in the recordset to the values required in the
record. This is quite straightforward. You just copy the values stored in the members of the
m_Order object to the members of the recordset object. The m_ShippedDate member is null
because you have not set a value for it here.

3. You call Update() to actually get the record written and this also restores the original values 
in the recordset object. It doesn’t apply here, but if you were displaying the recordset that you
were adding to, you would need to call the Requery() member of the recordset object to get 
the new record values displayed.

1210

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1210



You can now put in the basic logic for the OnSelectproduct() handler for the CProductView class.
You need to call UpdateData() for the view to get the data that was entered in the edit controls trans-
ferred to data members of the view object. Here’s the outline code for the handler function:

void CProductView::OnSelectproduct() 
{
UpdateData(TRUE);                              // Transfer data from controls

// Get a pointer to the document  
CDBSimpleUpdateDoc* pDoc = static_cast<CDBSimpleUpdateDoc*>(GetDocument()); 

if(!m_OrderAdded)                              // If order not added
m_OrderAdded = pDoc->AddOrder();             // then try to add it

if(m_OrderAdded)
// Code to add new Order Details record...

}

After calling the UpdateData() for the CProductView object, you get a pointer to the document object.
You need this to call the AddOrder() member of the document that will do the work. Next you check the
m_OrderAdded member. You only want to add a record to Orders when this is false. The AddOrder()
member of the document object returns a bool value that is true if the order was added successfully, and
false for any failure. You use this value to set the m_OrderAdded member of CProductView, and as an
indicator for whether you can continue to add order details. You don’t need to display any message in the
case of failure. The AddOrder() function has already done that.

The code to add a record to the Order Details table is also probably best handled by the document
object, but the document class member function to do it needs access to four values from members of the
CProductView and CProductSet classes — for the product ID, the order quantity, the unit price, and 
the applicable discount. The order ID is available in the document class from its m_Order member, so you
don’t need to worry about that. You can add a function, AddOrderDetails(), to CDBSimpleUpdateDoc to
add a record to the Order Details table. The return type should be void and the function has four parame-
ters the ID of type long, price of type double, quantity of type int, and discount of type float.

You can implement the function as follows:

void CDBSimpleUpdateDoc::AddOrderDetails(long ID, double price,
int quantity, float discount)
{
try
{
if(!m_DBSimpleUpdateSet.IsOpen())               // If recordset is not open
m_DBSimpleUpdateSet.Open();                  // open it

m_DBSimpleUpdateSet.AddNew();                  // Start adding new record

// Set Product Details recordset data member values 
m_DBSimpleUpdateSet.m_OrderID = m_Order.m_OrderID;
m_DBSimpleUpdateSet.m_Quantity = quantity; 
m_DBSimpleUpdateSet.m_Discount = discount;
m_DBSimpleUpdateSet.m_ProductID = ID;
m_DBSimpleUpdateSet.m_UnitPrice = price;

1211

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1211



m_DBSimpleUpdateSet.Update();                  // Complete adding new record
}
catch(CException* pEx)                         // Catch any exceptions
{
pEx->ReportError();                          // Display the error message

}
}

This sets up the values in the m_DBSimpleUpdateSet members and then updates the table in essentially
the same way as for the Orders table. Again, you have to put the update code in a try block to catch any
exceptions that might be thrown by AddNew() or Update().

You want to call this function every time the Select Product button handler in the CProductView class is
called, so you can modify the handler to do this:

void CProductView::OnSelectproduct() 
{
UpdateData(TRUE);                              // Transfer data from controls

// Get a pointer to the document  
CDBSimpleUpdateDoc* pDoc = static_cast<CDBSimpleUpdateDoc*>(GetDocument()); 

if(!m_OrderAdded)                              // If order not added
m_OrderAdded = pDoc->AddOrder();             // then try to add it

if(m_OrderAdded)
{

pDoc->AddOrderDetails(m_pSet->m_ProductID,
m_pSet->m_UnitPrice,
m_Quantity,
m_Discount);

// Now reset the values in the quantity and discount controls
m_Quantity = 1;
m_Discount = 0;
UpdateData(FALSE);                           // Transfer data to controls

}
}

You use the m_DBSimpleUpdateSet object to update the Order Details table. This was used by the original
view in the application, and it is stored in the document object. You get the values for quantity and dis-
count from the data members in the view object corresponding to the edit controls that provide for these
values to be entered. The order ID value was set when the dialog was displayed so that it would be dis-
played for information only. The product ID and unit price values are retrieved from the CProductSet
object associated with this view. After calling Update() to write the record, reset the values for quantity
and discount back to their defaults.

Try It Out Adding New Orders
After adding a number of other orders, as you might deduce from the order ID, I added the order shown
in Figure 21-19.

1212

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1212



Then I clicked the Select Product button, and selected the product, quantity, and discount shown in
Figure 21-20.

Figure 21-19

Figure 21-20

Clicking the Select Product button adds that product to the order for the customer and then allows the
selection of another product. Each click of the Select Product button adds a new record to the Order Details
table for the current order ID. When the order is complete, just click the Done button to end the process.

After you add an order, you can verify that it was added correctly by moving to the last order in the order
details browsing view as Figure 21-21 shows.

1213

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1213



Figure 21-21

You may notice that the views don’t reset to the beginning of the recordset when you finish an order
entry operation. Try the first exercise at the end of the chapter to fix this for the customer recordset. You
should not find this too difficult.

Summary
In this chapter you learned how elementary updating works using the ODBC support in MFC. The
important points covered in this chapter include:

❑ Updating is only possible if a recordset corresponds to a single table. Recordsets corresponding
to table joins cannot be updated.

❑ To start editing a record in a recordset you call the Edit() member of the recordset object.

❑ To start adding a new record to a recordset, you call the AddNew() member of the recordset object.

❑ To complete either modifying an existing record or adding a new one, you must call the
Update() member of the recordset object.

❑ Before initializing an update of a recordset, you should always ensure that the recordset is open
and that the update operation you intend to perform is legal.

❑ A transaction packages a series of database update operations so that the original state of that
database can be restored in the event of an error.

1214

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1214



Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Modify the update application in this chapter so that the dialog box for adding a new order always
displays the customers in alphabetical order, and the dialog box always displays the first customer
each time it is displayed.

2. Modify the example to display the total value of a new order on the view to select products for
the order (which corresponds to CProductView).

3. Extend the example in this chapter to enable the employee to be selected from the records in the
Employees table.

4. Extend the example further to allow the shipped via field in an order to be chosen from the records
in the Shippers table.

1215

Chapter 21: Updating Data Sources

25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1215



25905c21.qxd:WroxPro  2/21/08  9:25 AM  Page 1216



22
More on Windows 

Forms Applications

You already know quite a lot about the process of creating Windows Forms applications from
CLR Sketcher. In this chapter, you will explore some more controls that you can use in the GUI 
for a Windows Forms application. You’ll do this by assembling a single application incrementally
throughout the chapter, so by the end of the chapter you’ll have another Windows Forms program
of a reasonable size.

In this chapter, you’ll learn:

❑ How to use a wider variety of controls to build an application GUI

❑ How to display a Web page in an application

❑ How to work with control containers

❑ How to create and display message boxes

Creating the Application GUI
Create a new CLR project using the Windows Forms Application template and assign the
name Ex22_01 to the project. You are going to develop Ex22_01 into a program to generate lot-
tery entries. The program won’t be an ideal design because it includes controls that duplicate
some functions perhaps unnecessarily, but the benefit is that you get to try out various possibili-
ties in a working application. I have chosen two lotteries with which I am familiar and for which
the program generates entries; if these don’t match the lottery that you favor, you should be able 
to adjust the example quite easily.

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1217



Let me make one point against entering a lottery — you would probably not choose the numbers 1 to 6 as
your entry because it is extremely unlikely that such an entry would win. Of course, the truth is that it’s
just as likely as any other more random-looking set of numbers you might choose, but the numbers 1 to 6
have never come up as the winning entry in any lottery anywhere. So you can conclude that whatever
you choose — you lose.

First, display the Properties window for the form and change the value of its Text property to A Winning
Application. To display the controls that are available for use with the form, press Ctrl+Alt+X, or select the
View > Toolbox menu item. Add a menu strip control to the top of the form by dragging a MenuStrip
from the Toolbox window to the form. Add three menu items to the menu strip with the text &Play,
&Limits, and &Help. The & precedes the character that is the accelerator character for the menu item, so
Alt+P is the accelerator for the Play menu. The Editor window containing the form with the menu strip
should now look as shown in Figure 22-1.

The Play menu won’t have a submenu but will cause a Click event to fire when it is clicked. Because
you’ll be handling the event, it is convenient to give the menu item a name that is shorter than the default.
You can access the properties by right-clicking the control in the form and selecting Properties from the
context menu, but this time try clicking menuStrip1 below the form and select Edit Items from the con-
text menu. It displays the Items Collection Editor dialog box shown in Figure 22-2.

If you select the name in the left pane in the dialog box corresponding to the Play menu, the properties for
it are displayed in the right pane. You can then edit the (Name) property value to make it playMenuItem.
Figure 22-2 shows the dialog box after the change has been made. The advantage of using this dialog box
is that you can work through all the items on the menu strip adjusting the properties as necessary. You can
also add new items to the menu strip or rearrange the menu sequence by moving items up or down using
the buttons to the right of the left pane.

Figure 22-1

1218

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1218



Figure 22-2

Adding Submenus
Add three menu items, Upper, Lower, and Reset, to the Limits menu and add an About menu item to the
Help menu. You can add new menu items to a drop-down menu using the Items Collection Editor, too. You
access this by right-clicking the top level menu item such as Limits and selecting .EditDropDownItems...
from the pop-up. You just select the item you want to add from the drop-down list at the top, and click the
Add button. Alternatively you can work through the Editor pane and interact directly with the menu strip
as you did with the CLR Sketcher application. The properties for the new menu items need to be modified,
so display the properties for the Upper menu first of all by right-clicking it and selecting Properties from the
pop-up. You will be handling events for this menu item so you can change the default name property to
something shorter, such as upperMenuItem. You can also add a shortcut key for the item by clicking the
down arrow in the value column for the ShortcutKeys property to display the list shown in Figure 22-3.

Figure 22-3

1219

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1219



Select the modifier or modifiers by clicking one or more of the checkboxes and select the key from the
drop-down list. I chose Ctrl+Alt+U as the shortcut for this menu item, as you can see. Figure 22-3 also
shows that I have set the value for the ToolTipText property as “Set upper limit for values”. As
you know, hovering the mouse cursor over a menu item results in the tooltip being displayed after a brief
delay. Setting the AutoToolTip property that is toward the beginning of the list to True makes the tooltip
the same as the text on the menu item. Leaving the property value as False causes the ToolTipText
property value to be chosen for the tooltip text. You can also control whether or not the shortcut key com-
bination is displayed alongside the menu item text by setting the ShowShortcutKeys property value.

Clicking the Lower menu item causes its properties to be displayed in the Properties window. You 
can then change the (Name) property value to lowerMenuItem, the ShortcutKeys property value to
Ctrl+Alt+L, and the ToolTipText property values to “Set lower limit for values”. In the 
same way you can change the (Name) property for the Reset menu item to resetMenuItem, set the
ShortCutKeys property value to Ctrl+Alt+R, and make the tooltip text “Reset limits to original
values”. You can also change the (Name) property value for the About menu item to aboutMenuItem
and add tooltip text for that, too; an About menu item doesn’t usually have a shortcut key combination
defined. The Play menu item creates a complete new set of values for a lottery entry, so you could add
tooltip text to indicate that, if you want.

Adding a Tab Control
A TabControl control provides multiple tabs that can each contain their own set of controls. You can use a
tab control to provide for entries to more than one lottery in the application window client area. Display
the Toolbox window (Ctrl+Alt+X) and select TabControl from the list — it’s in the Containers group.
Click in the client area of the form to add the tab control and then display its properties. All the controls
listed under the Containers heading can contain other controls so they all provide a means of collecting
together a set of controls into a group. Obviously with the tab control each tab can contain its own set of
controls, and you can have as many tabs in the control as you want.

You want the tab control to always fill the client area of the window, and this is determined by the value
of the Dock property that is in the Layout group of properties for the TabControl control. Figure 22-4
shows the Properties window for the tab control with the value cell for the Dock property expanded.

Clicking in the central area where the cursor currently appears in Figure 22-4 changes the Dock property
value to Fill, which is what you want here. You can also dock the control to any of the four sides of the
client area by clicking in one of the four areas around the edge of the pop-up or have it undocked by
clicking in the area labelled None. The form in the Editor pane should now look like Figure 22-5.

The tab control has two tabs, but you can add another by clicking the arrow on the top edge of the con-
trol toward the right. Just click Add Tab from the pop-up. You’ll need to change the text on each of the
tabs to something more meaningful and change the (Name) property values too. Go to the Properties
window for the TabControl control — right-clicking the control and selecting Properties from the pop-
up displays the window if it is not already visible — then select the value field for the TabPages prop-
erty and click the ellipsis that appears. The Tab Page Collection Editor dialog box shown in Figure 22-6
displays.

1220

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1220



Figure 22-4

Figure 22-5

The text on the tab should reflect the lottery name to which the controls on this tab relate, so I changed
the (Name) property value to lottoTab and the Text property value to Lotto, as shown in Figure 22-6.
The (Name) property value is the name used in the Form1 class for the variable that references this tab,
and the Text property value is the text on the tab.

1221

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1221



Figure 22-6

The tab labelled tabPage2 is for an entry to a second lottery, which in my case is called Euromillions.
Again, you can choose whatever lottery you prefer. Click tabPage2 in the left pane to display the proper-
ties for it in the right pane; after you select the new tab you should see that the name in the left pane for
tabPage1 has been altered to lottoTab and the text on the first tab in the form has been updated. I set
the Text property value for tabPage2 as Euromillions and the (Name) property value as euroTab.
You’ll use the third tab to display a Web page for entering a lottery so change the Text property value 
for tabPage3 to Web Page and the name property value to webTab. When you have completed that, 
you can click the OK button to close the dialog box.

Using GroupBox Controls
You can use a GroupBox control to collect other controls together in a group. A GroupBox control also
delineates the group with a line boundary and allows you to label the group if you want. A Lotto lottery
entry consists of six different numbers that are from 1 to 49 so you’ll want to group together the controls
that will display these numbers. Add a GroupBox control to the Lotto tab by clicking the control in the
Toolbox window and then clicking in the Lotto tab. You can then modify the Text, (Name), and Dock
property values for the GroupBox to the values shown in Figure 22-7.

The Text property value indicates the range of possible values for the lottery entry that is displayed on
this tab. The value for the Dock property makes the GroupBox control fill its container, which is the Lotto
tab on the Tab control. The (Name) property value determines the name of the variable in the Form1 class
that identifies this control.

The lottery entry on the Euromillions tab involves two groups of values, one group of five different values
from 1 to 50 and a second group of two different “star” values each from 1 to 9. Numbers in the first
group can be the same as the two “star” values. Use yet another container in the Euromillions tab, so click
on SplitContainer in the Containers group in the Toolbox window and click in the Euromillions tab
to place it there. To select a tab, first click the tab label at the top of the tab control — this selects the tab
control with the tab label you highlighted; you then click within the display area of the tab to select the
highlighted tab within the control. The Dock property value for the SplitContainer control is Fill by
default so the control should fill the tab. The control has two panes that can each contain further controls.
You can drag the divider between the panes to adjust the relative sizes of the panes.

1222

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1222



Figure 22-7

Display the Properties for the control and set the Orientation and (Name) properties, as shown in
Figure 22-8.

The panes should now be separated by a horizontal divider, so drag this so that the lower pane is about
half the height of the upper pane. Then set the IsSplitterFixed property for the control to have the
value True, as shown in Figure 22-8. This fixes the divider at the position you have set. If you leave the
IsSplitterFixed property value as False, you allow the divider to be dragged to any position by the
user when the application is executing.

Figure 22-8

1223

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1223



You can group the contents of each pane in the SplitContainer control using a GroupBox control, so
add a GroupBox control to each of the panes. Set the Text, (Name), and Dock properties for the GroupBox
control in the upper pane to have the values “Values 1 to 50”, euroValues, and Fill, respectively,
and set the Text, (Name), and Dock properties for the GroupBox control in the lower pane to have the
values “Values 1 to 9,” euroStars, and Fill, respectively. The Editor window should look like
Figure 22-9.

Figure 22-9

You have quite a hierarchy of controls now. The client area of the form contains a tab control and the
Euromillions tab on the tab control contains a SplitContainer control and each of the panes in the
SplitContainer control contains a GroupBox control. The next step is to add buttons to each of the
GroupBox controls in the panes.

Using Button Controls
Button controls in the Common Controls group are regular buttons that typically appear in a dialog
window. You’ll use a button control to house each value in a lottery entry. For the Euromillions lottery
you’ll need seven buttons, five in the group box in the top pane with values from 1 to 50 and two in the
group box in the bottom pane with values from 1 to 9.

Place five buttons in the group box in the upper pane on the Euromillions tab and add two more in the
group box in the lower pane below to make an elegant arrangement. You can reposition any of the but-
tons by dragging it with the mouse whereupon you should see vertical and/or horizontal alignment
guides displayed to help you align the control to the others. You can also use the Format > Horizontal
Spacing > Make Equal menu item to make the spacing in a horizontal sequence of controls uniform.
The other menu items in the Format menu are worth exploring; they provide for setting the vertical spac-
ing, for aligning controls, for centering a selected group of controls in a form, and for adjusting the height
and width of the controls. You can select any number of controls by clicking them while holding the Ctrl
key down.

1224

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1224



Figure 22-10 shows my arrangement for the buttons on the Euromillions tab.

You’ll be generating values to display as the text on these buttons, so you need to change the properties
for each of them. I suggest you make the values for the Text property on the upper five buttons the val-
ues 1, 2, 3, 4, and 5, and the values for the Text property on the two buttons in the lower pane 1 and 2.
You can change the (Name) property for each button too. The buttons in the upper pane can have names
euroValue1, euroValue2, through to euroValue5, and the two on the lower pane euroStar1 and
euroStar1. While you’re at it, you might like to change the BackColor property for each button that
determines the background color. I chose the color Silver for the top five buttons and Gold for the bot-
tom two — where both colors are from the Web palette. When you have completed that, the application
window with the Euromillions tab selected should look as shown in Figure 22-11.

Now you can return to the Lotto tab by clicking it in the Editor window. You can then add buttons to
that. The Lotto lottery is very simple: You just have to choose six different values from 1 to 49 for an entry.
You therefore need to add six Button controls to the GroupBox that is already on the Lotto tab. After you
have arranged the buttons to your satisfaction, change the text on the buttons so they show the default
values 1 to 6 and change the (Name) property for the buttons to lottoValue1, lottoValue2, through to
lottoValue6. You can also set the BackColor property value for the buttons to a color of your choice —
I chose the SkyBlue from the Web color palette. If you compile and execute the application, it should
look as shown in Figure 22-12.

Figure 22-10

Figure 22-11

1225

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1225



Figure 22-12

You can add a control to the Web Page tab next.

Using the WebBrowser Control
Displaying a Web page in the application is going to be much easier than you might have imagined because
the WebBrowser control in the Common Controls group does all of the work. Click the Web Page tab 
in the form the Editor window; then click on WebBrowser in the Toolbox window, and click in the tab to
place it there. You can display its properties by right-clicking it and selecting Properties from the pop-up.
The Properties window for the control is shown in Figure 22-13.

Figure 22-13

Figure 22-13 shows the properties after I have amended the (Name) property value to webBrowser, and
set a value for the Url property as the URL for the Web page that the control should display; you can
enter the URL for your local lottery organization here. If you verify that the Dock property value is Fill,

1226

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1226



that’s all that’s required to get the Web page displayed on the tab. Of course, the page displays only if your
computer has an active Internet connection when you execute the program and the security settings for
your browser do not prevent it from being displayed. If you recompile the program an execute it once
more, the Web Page tab should look more or less like Figure 22-14.

Figure 22-14

If the Web page doesn’t appear, it may be that your Internet connection is not active. Note how you get
scrollbars by default in the WebBrowser control when they are necessary. You can also navigate by selecting
active links in the Web page. If the Web page looks scrambled, it may be because you have strict Internet set-
tings, in which case adding the Web site to your Trusted Sites zone may fix the problem.

You have almost — but not quite — finished the GUI for the application. It’s time to review how the
application is going to work in detail.

Operation of the Winning Application
Clicking the Play menu item displays a complete entry on the tab that is currently visible in the applica-
tion window; thus you can apply the Play item to the Lotto tab or the Euromillions tab. The values
for a lottery entry are displayed in ascending sequence. Switching to the Web Page tab displays the Web
page where you can enter a lottery.

After an entry has been created, you might want to be able to change a particular value — because you
have an irrational aversion to particular numbers, for instance, or because you don’t believe numbers
over 30 are for you. Clicking a button could cause a new number to be generated to replace the number
on the button you clicked. Of course, the new number would have to be different from all the numbers
in the current entry.

1227

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1227



Another possibility is that you might want to choose a specific number that you regard to be lucky — a
birthday or a birth month, for example, or the number of peas you left on your plate at lunch today. You
could arrange for this possibility by adding a context menu that displays when you right-click on a par-
ticular button. A Choose menu item on the context menu could accommodate this. Dealing with the
event arising from clicking the context menu item needs a little work because you’ll have to provide
for the entry of the data. The number that is entered also needs to be validated; the value must be within
the permitted range, and it must not duplicate an existing value in the current group of buttons.

The Limits > Upper and Limits > Lower menu items allow a more constrained range of values to be
used for generating an entry. There need to be checks here, too; the range must be inside the range that is
permitted for a given lottery, and the range must be wide enough to allow the required number of differ-
ent values to be generated.

Finally the Help > About menu item should display a message box displaying information about the
application.

The first step in implementing the application so that it operates as described previously is to add a context
menu for the buttons that display lottery entry values. That’s surprisingly easy.

Adding a Context Menu
As you saw when developing CLR Sketcher, a context menu in a CLR Forms application is just another
control. It’s the ContextMenuStrip control that is in the Menus & Toolbars group of controls in the
Toolbox window. Click the ContextMenuStrip control and then click in the grey area at the bottom of the
Editor window to add the control to the application. The context menu displays in the form below the
existing menu. If you click in the first menu, you can insert the item name. You can enter &Choose for the
text for menu item, which makes Alt+C the accelerator for the item. It would be better to have a more
meaningful name for the context menu, so open the Properties window for the ContextMenuStrip
control and change its (Name) property value to buttonContextMenu. You could also change the value
for the (Name) property for the Choose menu item to chooseValue.

You can now enable the buttonContextMenu control as the context menu for each of the buttons on the
two lottery entry tabs. To do this, set the value of the ContextMenuStrip property for each button to the
name of the ContextMenuStrip control, buttonContextMenu. The name appears in the drop-down list
in the value cell for the property so you just click it to set the value. You can do this for all the buttons on a
tab at once: Place the mouse cursor above and to the left of the group of buttons and drag the cursor so it’s
below and to the right of the buttons before releasing it. This selects all the buttons and you change the
ContextMenuStrip property value in the Properties window for all the selected buttons.

Creating Event Handlers
The process of building the GUI graphically using the Form Design capability has automatically gener-
ated code for the controls you have added. There is now a member of the Form1 class for every control
you have added to the form, and code to initialize these has been added to the InitializeComponent()
function. If you look at the function, you’ll see that it now contains a vast amount of code that sets proper-
ties for individual controls and assembles controls into their containers. Creating the GUI graphically is a
breeze — you’ll need a few more brain cells ticking over to move the application on from there.

1228

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1228



To make the program work the way that you want, you must create event handler functions for the events
you want the application to recognize and process, and implement these functions to make user interac-
tions with the GUI do what you want. Although the code to handle the events cannot be generated auto-
matically, the IDE can still help by generating the skeleton event handler functions and registering them
with the event delegates.

You can view the events for a control by clicking the events button in the Properties window for the 
control. This displays all the possible events for the control and you set the name of the function that is to
handle a particular event in the cell to the right of the event name. Of course, you identify handler func-
tions only for the events you want to recognize and in most instances this is a very small proportion of 
the possible events for a control. You’ll want to create handler functions for the Click event for the menu
items for all the menu items and each of the buttons on the tabs. You did this in CLR Sketcher through 
the Properties window but there’s also a shortcut for creating a handler function for a control to respond 
to a Click event; you just double-click the control in the Editor window and the code is created and dis-
played, and the function is registered as a handler for the event object. This creates a unique event handler
for the control, but sometimes you’ll want to make a single function handle events of a given type for more
than one control. In this case, the Properties window route is the way to do it.

Event Handlers for Menu Items
You can start by creating an event handler function for the Play menu item. Double-clicking the menu
item creates the following handler function code:

private: System::Void playMenuItem_Click(System::Object^  sender,
System::EventArgs^  e) 

{
}

This is a skeleton handler containing no code in the body of the function. Just to remind you of what you
learned with CLR Sketcher, the first parameter is a handle referencing the control from which the event
originated, and the second parameter provides information related to the event. The type of the first argu-
ment when a handler is called corresponds to the type of the control that originated the event, and this is
ToolStripMenuItem^ in this case because the handler function is called when the Play menu item is
clicked; the menu item handle is stored in the playMenuItem member of the Form1 class and you can
check out its type in the class definition. Similarly, the actual type of the second argument to a Click
event handler depends on the type of the control.

The handler function name that is generated by default is playMenuItem_Click. You must not change
the function name in the code. In fact, I recommend you do not change any names in the code that is auto-
matically generated; always do it through the Properties window. If you don’t like the name that has
been created for the event handler function, you can change it through the Click event property value in
the Properties window for the control.

The name of the handler function has been registered with the event object by the following statement in
the InitializeComponent() function:

this->playMenuItem->Click += 
gcnew System::EventHandler(this, &Form1::playMenuItem_Click);

1229

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1229



This statement adds the function name to the Click delegate in the playMenuItem object that is a mem-
ber of the Form1 class. You learned about delegates and how event handler functions are registered in
Chapter 9.

Adding Members to the Form1 Class
Before you start implementing the handlers for the menu items, there are some additional fields that
you’ll need to store data relating to the constraints on the values for the lottery entries. You know how to
add a new field to the Form1 class; it’s the way you have already used extensively to add members to a
class. Switch to Class View, right-click the Form1 class, and select Add > Add Variable from the con-
text menu. Alternatively, you can just add the code manually, but be sure you don’t intrude on the region
of the class definition that is reserved for use by the Form Design operations. You’ll need to add the fol-
lowing variables as private members:

private:
int lottoValuesCount;           // Number of values in Lotto entry         
int euroValuesCount;            // Number of values in Euromillions entry         
int euroStarsCount;             // Number of stars in Euromillions entry         
int lottoLowerLimit;            // Minimum value allowed in Lotto 
int lottoUpperLimit;            // Maximum value allowed in Lotto 
int lottoUserMinimum;           // Lower lotto range limit from user
int lottoUserMaximum;           // Upper lotto range limit from user

int euroLowerLimit;             // Minimum value allowed in Euromillions 
int euroUpperLimit;             // Maximum value allowed in Euromillions
int euroStarsLowerLimit;        // Minimum stars value allowed in Euromillions 
int euroStarsUpperLimit;        // Maximum stars value allowed in Euromillions 
int euroUserMinimum;            // Lower euro range limit from user
int euroUserMaximum;            // Upper euro range limit from user
int euroStarsUserMinimum;       // Lower euro stars range limit from user
int euroStarsUserMaximum;       // Upper euro stars range limit from user

You also need to add a private field of type Random to the Form1 class:

Random^ random;                 // Generates pseudo-random numbers

An object of type Random can generate pseudo-random values of various types. You’ll use this to generate
the values for a lottery entry.

All of these fields must be initialized in the class constructor. Make sure the Form1 constructor definition
looks similar to this:

public ref class Form1 : public System::Windows::Forms::Form
{
public:

Form1(void)
: lottoValuesCount(6),
euroValuesCount(5), euroStarsCount(2),
lottoLowerLimit(1),lottoUpperLimit(49),
lottoUserMinimum(lottoLowerLimit),lottoUserMaximum(lottoUpperLimit),
euroLowerLimit(1), euroUpperLimit(50),
euroStarsLowerLimit(1),euroStarsUpperLimit(9),

1230

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1230



euroUserMinimum(euroLowerLimit),euroUserMaximum(euroUpperLimit),
euroStarsUserMinimum(euroStarsLowerLimit),euroStarsUserMaximum(euroStarsUpperLimit)

{
InitializeComponent();
//
random = gcnew Random;

//
}

That’s all the new class data members you need for now, so back to event handling.

Handling the Play Menu Event
The playMenuItem_Click() handler should create a new set of values on the buttons for the tab that is
currently visible. Recall earlier in this chapter that you set the (Name) property values for the tabs in the
TabControl control as lottoTab and euroTab. If you look in the lower pane of the Class View window
for the now extensive Form1 class, you’ll find two variables of type TabPage^ with these names. Objects
of type TabPage have a Visible property of type bool that has the value true if the page is visible and
false if it is not. This is just what you need to implement the handler for the Play menu item.

The outline logic for the handler can use the values of the Visible property for the tab pages like this:

private: System::Void playMenuItem_Click(System::Object^  sender,
System::EventArgs^  e)

{
if(lottoTab->Visible)
{
// Generate and set values for Lotto entry

}
else if(euroTab->Visible)
{
// Generate and set values for Euromillions entry

}
}

If the Visible property for the lottoTab page is true, you create a new Lotto lottery entry, and if the
Visible property for the euroTab page is true, you create a Euromillions lottery entry. Although both
tabs cannot be visible at the same time, it’s as well to test positively for both tab pages because a user
might click the Play menu item when the Web Page tab is visible.

The process for generating a set of values for the two lotteries have some things in common. For lotto you
must generate six different random integers in a given range. For Euromillions you must generate five dif-
ferent integers within a given range and then generate two different integers within another range. A
helper function to generate an arbitrary number of integers within a given range would be useful. You
could define such a function something like this:

void GetValues(array<int>^ values, int min, int max)
{
// Fill the array with different random integers from min to max...

}

1231

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1231



The Length property for the values array tells you how many values are to be generated. The calling
function just needs to create an array of the appropriate size and pass it as the first argument to the
GetValues() function. The second and third arguments specify the limits for the values to be generated.

Add the GetValues() function as a private member of the Form1 class and complete the definition like this:

void GetValues(array<int>^ values, int min, int max)
{
values[0] = random->Next(min, max+1);       // Generate first random value

// Generate remaining random values
for(int i = 1 ; i<values->Length ; i++)
{
for(;;)                                 // Loop until a valid value is found
{
// Generate random integer from min to max
values[i] = random->Next(min, max+1);

// Check that its different from previous values
if(IsValid(values[i], values, i))     // Check against previous values...
break;                              // ...it is different so end loop

}
}

}

Any value within the range is fine for the first element. Subsequent values must be checked against the
preceding values that have been generated, and the IsValid() function does this. Here’s how you can
implement this function:

// Check whether number is different from values array elements
// at index positions less than indexLimit
bool IsValid(int number, array<int>^ values, int indexLimit)
{
for(int i = 0 ; i< indexLimit ; i++)
{
if(number == values[i])
return false;

}
return true;

}

Add this function as a private member of the Form1 class. It’s operation is simple: it checks the first
argument against the elements in the array specified by the second argument that have index values less
than the third argument and returns false if the first argument is equal to any of the array elements; other-
wise, it returns true to indicate the first argument is valid.

The indefinite for loop in the GetValues() function continues to execute and generate new random val-
ues until the IsValid() function returns true, whereupon the inner loop ends and the next iteration of
the outer for loop executes to find the next unique value.

You can now use the GetValues() function in the implementation of the Play menu Click event handler:

private: System::Void playMenuItem_Click(System::Object^  sender,
System::EventArgs^  e)

1232

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1232



{
array<int>^ values;        // Variable to store a handle to array of integers
if(lottoTab->Visible)
{
// Generate and set values for Lotto entry
values = gcnew array<int>(lottoValuesCount);           // Create the array
GetValues(values, lottoUserMinimum, lottoUserMaximum); // Generate values
SetValues(values, lottoValues);   

}
else if(euroTab->Visible)
{
// Generate and set values for Euromillions entry
values = gcnew array<int>(euroValuesCount);
GetValues(values, euroUserMinimum, euroUserMaximum);
SetValues(values, euroValues);
values = gcnew array<int>(euroStarsCount);
GetValues(values, euroStarsUserMinimum, euroStarsUserMaximum);
SetValues(values, euroStars);

}
}

The Lotto entry is created in three steps:

1. Create the array to hold the values.

2. Generate the values by calling the GetValues() function.

3. Set the values as text on the buttons by calling the SetValues() function.

The sequence of steps is repeated twice for the Euromillions lottery entry: once for the set of five values
and again for the set of two stars.

You can make use of the fact that the buttons are contained within a GroupBox control when imple-
menting the SetValues() function. The Controls property for a GroupBox object returns a collection
on all the controls that have been added to the object. The collection that is returned by the Controls
property for a GroupBox itself has a default indexed property that accesses the controls in the collec-
tion. The collection is first-in last-out like a stack, so index values for the property accesses the controls
in the reverse sequence from the sequence in which you added them to the group box. You can imple-
ment the SetValues() function as a private member of the Form1 class like this:

// Set values as text on buttons in a GroupBox control
void SetValues(array<int>^ values, GroupBox^ groupBox)
{
Array::Sort(values);               // Sort values in ascending sequence
int count = values->Length - 1;
for(int i = 0 ; i<groupBox->Controls->Count ; i++)
safe_cast<Button^>(groupBox->Controls[i])->Text = values[count-i].ToString();

}

After sorting the array of values, you set the count variable as the index value for the last element in the
array. The loop then stores the string representation of the values in the Text property for each Button con-
trol in reverse sequence. The expression groupBox->Controls[i] results in a handle of type Control^
that references the control corresponding to index i in the collection, and you cast this to type Button^
before accessing the Text property to set its value. The limitation of this approach is that the sequence in

1233

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1233



which you added buttons to the group box determines the sequence of buttons in the Controls collection.
If this does not match the visible sequence of the buttons, the resulting button values will not appear in
ascending sequence.

You don’t have to implement the capability that the SetValues() function provides using the GroupBox
object. All the buttons are explicit members of the Form1 class, so you could take the pedestrian approach
and access each of them directly to set the value for the Text property. This will guarantee the button
sequence is correct if you named them in sequence. You need at least two separate functions — one for the
Lotto entry and one for the Euromillions entry, although the latter might more conveniently be split into
two functions making three in all. Here’s how the function to set values for the Lotto entry might look:

void SetNewValues(array<int>^ values)
{
Array::Sort(values);
lottoValue1->Text = values[0].ToString();
lottoValue2->Text = values[1].ToString();
lottoValue3->Text = values[2].ToString();
lottoValue4->Text = values[3].ToString();
lottoValue5->Text = values[4].ToString();
lottoValue6->Text = values[5].ToString();

}

This function uses the handle to each button to set its Text property. Functions to set the Text property
for the Euromillions entry could be implemented in essentially the same way. You would then need to
modify the playMenuItem_Click() handler function to call these functions to set the values.

You can now recompile Ex22_01 to see if it all works. If you managed to enter all the code without typos,
you should be able to generate a Lotto entry like the one shown in Figure 22-15.

Figure 22-15

The numbers on the buttons appear in ascending sequence so they look neat and tidy. If they do not appear
in sequence, it may be because you did not add the buttons to the GroupBox control in an orderly manner.

The program also produces an entry for the Euromillions lottery as in Figure 22-16.

1234

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1234



Figure 22-16

Now that the basic functionality is there, it’s time to develop the application further.

Handling Events for the Limits Menu
There are three menu items on the Limits menu, and you’ll need a handler for the Click event for each.
Double-click each of the menu items in turn to generate the handler functions; this will also register each
of them to handle the Click event.

The Click event handler for the Reset menu item is going to be the easiest to implement because all it
has to do is set the user limits back to be the same as the limits imposed by the lottery that’s currently
visible. The Click event handlers for the other two menu items are going to involve rather more work.
You will have to make provision for the limit values to be entered somehow, and the obvious way to do
this is to display a dialog box when the menu item is clicked. Clearly, the next step in developing the
application is to create a dialog box.

Creating a Dialog Box
The Toolbox window provides several standard dialog boxes; all of them are quite fancy but none of
them are suitable in this instance. Because you need something very specific in this program, you must
create the dialog box yourself. A dialog box is just a form with its FormBorderStyle property value set
to FixedDialog, so you’ll get a lot of help from the Form Designer in creating the dialog box.

Select Project > Add New Item on the main menu, or press Ctrl+Shift+A to display the Add New
Item dialog. Select the UI from the Categories: list in the right pane and the template in the right
pane as Windows Form and enter the name as LottoLimitsDialog. This is the dialog window you’ll
display when setting the upper or lower limits for the Lotto entry. You’ll create another dialog form for
the Euromillions lottery entry later on. When you click the Add button, a new form is added to the proj-
ect and is displayed in the Editor window. The class type for the new dialog box is the name you sup-
plied, LottoLimitsDialog.

Press F4 to display the Properties window for the new form. You can change the Text property value
to “Set Limits for Lotto Values”, and this text is displayed in the title bar of dialog window; you

1235

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1235



can adjust the width of the window by dragging the right side until the title bar text is visible. You can
also set the value for the StartPosition property in the Layout group of properties to Center Parent
so the dialog window displays at the center of the parent form that displays it — this is the application
window in the example. Because this is going to be a dialog box and not an application window, set the
FormBorderStyle property value to FixedDialog. The dialog window should not be minimized or
maximized by the user when it is displayed, so set the MinimizeBox and MaximizeBox properties in the
Window Style group to False to remove the capability. A dialog box should be closed through the but-
tons that you’ll provide in the dialog window, so set the ControlBox property value to False to remove
the control and system boxes from the title bar.

The next step is to add two buttons toward the bottom of the form; these are going to be the OK and
Cancel buttons for the dialog box. Set the Text property value for the button to the left to be “OK” and
the (Name) property to be lottoOK. You can also set the value for the DialogResult property in the
Behavior group to OK. The values for the same properties for the right button should be “Cancel”,
lottoCancel, and Cancel, respectively. The effect of setting the DialogResult property value for the
buttons is that the value of the DialogResult property for the dialog box is set to the value correspon-
ding to the value for the DialogResult property for the button that was clicked to close the dialog box.
This gives you the possibility of testing programmatically for which button was used to close the dialog
and execute different code depending on whether it was the OK button or the Cancel button.

Now that you have added the buttons to the dialog box, you can return to the dialog properties and set
the values for the AcceptButton and CancelButton properties in the Misc property group to lottoOK
and lottoCancel, respectively. This has the effect that pressing the Enter key while the dialog box is
displayed clicked the OK button, and pressing the Esc key clicks the Cancel button.

You have more than one control in the dialog box that you could use to permit a limit value to be
entered. You can use a ListBox control to enable the user to select from a list of possible values, so 
you can try that here. You should add two Label controls to the dialog box form with two ListBox
controls alongside, as shown in Figure 22-17.

Figure 22-17

The (Name) property for the list boxes should be lottoLowerList and lottoUpperList for the top
and bottom. As you see, I resized the ListBox controls to be the same height as the Label controls and 
a width sufficient to display a single limit value. I also changed the font Size property to 10 and the
ScrollAlwaysVisible property to True. Make sure the SelectionMode property value is One for
both list boxes, as you want to allow only one item to be selected from a list box at one time.

The GUI for the dialog box is complete, but to make it do what you want you are back in coding mode
again. You can start with the code that populates the ListBox controls with limit values.

1236

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1236



Adding a List to a ListBox
The list that a ListBox controls is a set of objects that are stored as handles of type Object^, so any kind
of object can be stored in the list. In the example you want to store a set of integer limit values in each list
box, and for the most part you are able to rely on autoboxing and unboxing to convert values of type int
to and from objects of type Int32 whenever necessary. The Items property for a ListBox object returns
a reference to a collection of the objects in the list box; this collection has an Add() method that adds an
object that you pass as the argument to the list. A ListBox object has a large number of properties includ-
ing the Enabled property that has the value true when the user can interact with the list box and the
value false when interaction is to be inhibited.

The basic process for loading up the list for a list box is the same for both ListBox controls, so you could
code a private function member of the LottoLimitsDialog class that is generalized to add a range of
integers to a list box:

void SetList(ListBox^ listBox, int min, int max, int selected)
{
listBox->BeginUpdate();              // Suppress drawing the listbox

for(int n = min ; n <= max ; n++)
listBox->Items->Add(n);

listBox->EndUpdate();                // Resume drawing the list box

listBox->SelectedItem = Int32(selected);
} 

The arguments to the SetList() function are the list box for which the list is to be added, the minimum
and maximum integers in the range to be added, and the integer that is to be selected in the list box. The
function adds integers from min to max inclusive to the list box using the Add() function for the collec-
tion object that is returned by the Items property for the ListBox object. It also sets the selected value
as the item that is initially selected in the list when the list box is displayed by setting it as the value for
the SelectedItem property for the list box.

When the user selects a limit in the dialog box, you’ll need somewhere to put the value so that it can be
accessed from a function belonging to the Form1 object; the event handler for the menu items have responsi-
bility for retrieving the limit value and storing it in the Form1 object. One way to do this is to add a couple
of private members to the LottoLimitsDialog class to store the upper and lower limit values and then
add public properties to the class to make the values available externally. Adding the following code to the
LottoLimitsDialog class definition does that:

private: 
int lowerLimit;                      // Lower limit from control
int upperLimit;                      // upper limit from control

public:
property int LowerLimit              // Property accessing lower limit
{
int get(){  return lowerLimit;  }

void set(int limit)
{ 
lowerLimit = limit;

1237

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1237



lottoLowerList->SelectedItem = Int32(limit);
}

}

property int UpperLimit              // Property accessing upper limit
{
int get(){  return upperLimit;  }

void set(int limit)
{ 
upperLimit = limit;
lottoUpperList->SelectedItem = Int32(limit);

}
}

You need to be able to update the properties because the Click event handler for the Limits > Reset
menu item changes the limits, and you want the ListBox objects to have whatever is the current upper or
lower limit selected. As well as storing the value in the class object, you also update the ListBox objects
to reflect the new limits.

You can now create two public member functions in the LottoLimitsDialog class that sets up the two
ListBox controls:

public:
void SetLowerLimitsList(int min, int max, int selected)
{
SetList(lottoLowerList, min, max, selected);
lowerLimit = selected;

}

void SetUpperLimitsList(int min, int max, int selected)
{
SetList(lottoUpperList, min, max, selected);
upperLimit = selected;

}

Each function uses the SetList() function to set the range of values in the corresponding ListBox object
and then sets the selected value in the member for storing the limit.

Handling the Dialog Button Events
Add an event handler function for the Click event for the OK Button object, so return to the Design tab
for the LottoLimitsDialog form and double-click the OK button to add the skeleton code.

You don’t need to add a handler for the Click event for the Cancel button. The effect of clicking the
button is to close the dialog box and no further action is required.

You can implement the handler for the Click event for the OK button like this:

System::Void lottoOK_Click(System::Object^  sender, System::EventArgs^  e) 
{
// If there’s a currently selected upper limit item, save it

1238

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1238



if(lottoUpperList->SelectedItem != nullptr)
upperLimit = safe_cast<Int32>(lottoUpperList->SelectedItem);

// If there’s a currently selected lower limit item, save it
if(lottoLowerList->SelectedItem != nullptr)
lowerLimit = safe_cast<Int32>(lottoLowerList->SelectedItem);

}

The function first stores the upper limit value from the lottoUpperList ListBox object in the member
variable you added for that purpose. The SelectedItem property for a ListBox object makes the cur-
rently selected item available as a handle of type Object^ and as a precaution the code verifies that the
handle returned is not null. Before storing the selected item you must cast it to its actual type — type
Int32. Auto-unboxing then takes care of converting the object to an integer. The handler next stores the
lower limit value from the other ListBox object in the same way. When the handler finishes executing,
the dialog box is closed automatically.

Controlling the State of the ListBox Objects
The same dialog object is used in the response to the Click events for both the Limits > Upper and
Limits > Lower menu items, but you don’t want to allow both list boxes to be changed in either case.
For the Upper menu item event you’ll want the selection of a lower limit to be inhibited, and for the
Lower menu item you’ll want the list box for the upper limit to be inhibited. You could add a couple of
public function members to the LottoLimitsDialog class to make this possible. Here’s the function to
set the state of the ListBox objects for the Upper menu item:

void SetUpperEnabled()
{
lottoUpperList->Enabled = true;   // Enable upper list box
lottoLowerList->Enabled = false;  // Disable lower list box

}

You set the Enabled property for the lottoUpperList object to true to allow the user to interact with
it. Setting the Enabled property for lottoLowerList to false makes it read-only.

For the Lower menu item you do the reverse:

void SetLowerEnabled()
{
lottoUpperList->Enabled = false; // Disable upper list box
lottoLowerList->Enabled = true;  // Enable lower list box

}

You have done a lot of work to get the dialog object to behave as you want in the application, but you don’t
yet have a dialog object. The application window object takes care of that.

Creating the Dialog Object
The Form1 class constructor can create the dialog object. It can also initialize the ListBox objects in the
dialog. Add a private member to the Form1 class that stores the handle to the dialog box:

private:  LottoLimitsDialog^ lottoLimitsDialog;

1239

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1239



Add the following lines of code to the body of the Form1 constructor:

lottoLimitsDialog = gcnew LottoLimitsDialog;
lottoLimitsDialog->SetLowerLimitsList(1, lottoUpperLimit-lottoValuesCount+1,

lottoUserMinimum);
lottoLimitsDialog->SetUpperLimitsList(lottoValuesCount, lottoUpperLimit,

lottoUserMaximum);

This code is very straightforward. The first statement creates the dialog object. The next two statements
call the functions that initialize the lists in the ListBox objects. The maximum value in the ListBox
object that sets the lower limit is calculated so that it permits the required number of values for an entry
to be created. If the maximum value for a value is 49 and the number of values in an entry is 6, the maxi-
mum for the lower limit must be 44 — if it was any higher you could not create six different values. The
same reasoning applies to the minimum value for the upper limit; it cannot be less than the number of val-
ues in an entry. The selected item for the list boxes are the lottoUserMinimum and lottoUserMaximum
values.

Because you refer to the LottoLimitsDialog class name in the Form1 class constructor, you’ll need to
add an #include directive for the class definition to Form1.h:

#include “LottoLimitsDialog.h”

Using the Dialog Box
You’ll put the dialog box into operation in the code for the Click event handlers for the Upper and Lower
menu items in the Limits menu. To display a dialog box as a modal dialog box, you call the ShowDialog()
function for the dialog object. Optionally you can pass the handle to the parent form as the argument to the
ShowDialog() function. You can implement the Click event handler functions like this:

System::Void lowerMenuItem_Click(System::Object^  sender, System::EventArgs^  e) 
{
if(lottoTab->Visible)
{
lottoLimitsDialog->SetLowerEnabled();
::DialogResult result = lottoLimitsDialog->ShowDialog(this); 

if(result == ::DialogResult::OK)
{
// Update user limits from dialog properties
lottoUserMaximum = lottoLimitsDialog->UpperLimit;
lottoUserMinimum = lottoLimitsDialog->LowerLimit;

}
}

}

System::Void upperMenuItem_Click(System::Object^  sender, System::EventArgs^  e) 
{
if(lottoTab->Visible)
{
lottoLimitsDialog->SetUpperEnabled();
::DialogResult result = lottoLimitsDialog->ShowDialog(this);

1240

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1240



if(result == ::DialogResult::OK)
{
// Update user limits from dialog properties
lottoUserMaximum = lottoLimitsDialog->UpperLimit;
lottoUserMinimum = lottoLimitsDialog->LowerLimit;

}
}

}

These two functions both work in the same way; they call the function to set the list box states and then
display the dialog box as a modal dialog box by calling the ShowDialog() function for the dialog object.
If you wanted to display the dialog box as a modeless dialog box, you call the Show() function for the
dialog object instead.

When you call the ShowDialog() function, it does not return until the dialog box closes. This means
that the code to update the limits is not executed until the new limits have been recorded in the dialog
object by the Click event handler for the lottoOK button. When you display a dialog box as modeless
by calling the Show() function, the function returns immediately. Thus if you need to be able to access
data that might have been changed in the dialog box, you need another way to do it. Adding a handler
function for the Closing event for the dialog form is one possibility; another would be to deal with
transferring the data in the handler for the button that closes the dialog box.

The ShowDialog() function returns a value of the enumeration type DialogResult and you store this in
the local variable, result. The return value from the ShowDialog() function indicates which button in the
dialog was clicked, and if the value is the enumeration constant ::DialogResult::OK, it indicates that the
OK button was clicked. Thus the code in each handler function updates only the lottoUserMaximum and
LottoUserMinimum fields when the OK button was used to close the dialog.

Note the use of the :: operator in the type specification ::DialogResult and in the expression
::DialogResult::OK. The scope resolution operator is necessary preceding the DialogResult name
to distinguish the name of the enumeration at global scope from the property with the same name that 
is a member of the Form1 class.

Of course, you could access the DialogResult property for the lottoLimitsDialog object directly, so
you could write the if statement as:

if(lottoLimitsDialog->DialogResult == ::DialogResult::OK)
{

// Update user limits from dialog properties
lottoUserMaximum = lottoLimitsDialog->UpperLimit;
lottoUserMinimum = lottoLimitsDialog->LowerLimit;

}

The former version is better because it is obvious that you are checking the value returned by the
ShowDialog() function.

At the moment, the Click event handler for the OK button does not validate the input values. It is cur-
rently quite possible to set the lower and upper limits to values that make it impossible to assign six
unique values for the lottery entry. You can use the DialogResult property for the form to deal with
the problem.

1241

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:25 AM  Page 1241



Validating the Input
The difference between the upper and lower limits that the user chooses must be greater than or equal to
5 if there are to be 6 unique values in a Lotto entry. You could modify the Click event handler for the OK
button in the dialog class to check for this:

System::Void lottoOK_Click(System::Object^  sender, System::EventArgs^  e) 
{
int upper = 0;
int lower = 0;
// If there’s a currently selected upper limit item, save it
if(lottoUpperList->SelectedItem != nullptr)
upper = safe_cast<Int32>(lottoUpperList->SelectedItem);

// If there’s a currently selected lower limit item, save it
if(lottoLowerList->SelectedItem != nullptr)
lower = safe_cast<Int32>(lottoLowerList->SelectedItem);

if(upper - lower < 5)
{
MessageBox::Show(L”Upper limit: “ + upper + L”  Lower limit: “ + lower +

L”\nUpper limit must be at least 5 greater that the lower limit.” +
L”\nTry Again.”,
L”Limits Invalid”, 
MessageBoxButtons::OK,
MessageBoxIcon::Error);

DialogResult = ::DialogResult::None;
}
else
{
upperLimit = upper;
lowerLimit = lower;

}
}

Now the function saves the values selected in the ListBox objects in the local variables lower and upper.
If the values differ by less than 5, a message box is displayed and closing of the dialog box is inhibited by
setting the value of the DialogResult property to None. The static Show() function in the MessageBox
class displays a message box that is customized by the arguments to the function. This version of the
Show() function used here accepts four arguments as shown in the following table.

Parameter Type Description

String^ The text to be displayed in the message box.

String^ The text to appear in the title bar of the message box.

MessageBoxButtons An enumeration constant specifying the buttons to appear in the mes-
sage box. The MessageBoxButtons enumeration defines the following
values:

OK, OKCancel, YesNo, YesNoCancel, RetryCancel,
AbortRetryIgnore

1242

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1242



There are a significant number of overloaded versions of the static Show() function that range from the very
simple with a single parameter of type String^ to the rather more complicated with up to 10 parameters.

If you compile and execute the example and set the limits inappropriately, you’ll see a window similar to
that shown in Figure 22-18.

Figure 22-18

As you see, you automatically get a scrollbar for scrolling through the list of items in a list box. Note that
scrolling to a given item does not select it. You must click on the item to select it before clicking the OK
button. The circular red icon with the white cross was specified by the fourth argument to the Show()
function, and the single OK button is the result of the third argument.

The Show() function that you call to display a message box returns a value of type DialogResult that
indicates which button was used to close the message box. You can use this return value to decide what
to do after the message box closes. In the lottoOK_Click() handler for the OK button in the limits dia-
log box, you could decide whether or not to close the limits dialog box using the value returned by the
Show() function for the message box:

System::Void lottoOK_Click(System::Object^  sender, System::EventArgs^  e) 
{

int upper = 0;
int lower = 0;
// If there’s a currently selected upper limit item, save it
if(lottoUpperList->SelectedItem != nullptr)

upper = safe_cast<Int32>(lottoUpperList->SelectedItem);

// If there’s a currently selected lower limit item, save it

Parameter Type Description

MessageBoxIcon An enumeration constant specifying the icon to appear in the message
box. The MessageBoxIcon enumeration defines the following values:

Asterisk, Exclamation, Error, Hand, Information, None,
Question, Stop, Warning

1243

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1243



if(lottoLowerList->SelectedItem != nullptr)
lower = safe_cast<Int32>(lottoLowerList->SelectedItem);

if(upper - lower < 5)
{
::DialogResult result =    
MessageBox::Show(L”Upper limit: “ + upper + L”  Lower limit: “ + lower +

L”\nUpper limit must be at least 5 greater that the lower limit.” +
L”\nTry Again.”,
L”Limits Invalid”, 
MessageBoxButtons::OKCancel,
MessageBoxIcon::Error);

if(result == ::DialogResult::OK)
DialogResult = ::DialogResult::None;

else
DialogResult = ::DialogResult::Cancel;

}
else
{

upperLimit = upper;
lowerLimit = lower;

}
}

Because the third argument to the Show() function is MessageBoxButtons::OKCancel, the message
box now has two buttons, as shown in Figure 22-19.

Figure 22-19

In the Click event handler for the OK button in the limits dialog box you store the return value from the
Show() function in result. The type for result has to be specified using the scope resolution operator.
Otherwise, it is interpreted by the compiler as the DialogResult property for the lottoLimitsDialog
object, and the code does not compile. If result contains the value ::DialogResult::OK, you set the
DialogResult property for the lottoLimitsDialog object to ::DialogResult::None, which prevents
the dialog box from closing and allows the limit to be changed. Otherwise you set the DialogResult
property for the dialog to ::Dialog::Cancel, which has the same effect as clicking the Cancel button
for the dialog box so it closes.

1244

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1244



Handling the Reset Menu Item Event
You can implement the event handler for the Reset menu item like this:

System::Void resetMenuItem_Click(System::Object^  sender, System::EventArgs^  e) 
{
if(lottoTab->Visible)
{
// Reset user limits for Lotto
lottoUserMaximum = lottoUpperLimit; 
lottoUserMinimum = lottoLowerLimit; 
lottoLimitsDialog->UpperLimit = lottoUpperLimit;
lottoLimitsDialog->LowerLimit = lottoLowerLimit;

}
else if(euroTab->Visible)
{
// Reset user limits for Euromillions
euroUserMaximum = euroUpperLimit; 
euroUserMinimum = euroLowerLimit; 
euroStarsUserMaximum = euroStarsUpperLimit; 
euroStarsUserMinimum = euroStarsLowerLimit; 

// Code to update Euromillions limits dialog...
}

}

This just resets the limits in the fields in the Form1 object and then updates the properties in the dialog
object accordingly. You still have to add code to this function to deal with resetting the dialog box to
which you have yet added the application that will handle the input for the Euromillions lottery limits.

You can now recompile the program and try resetting the limits for the Lotto entry after you have changed
them. Selecting the Limits > Reset menu item resets both limits to their original values.

Adding the Second Dialog
The second dialog box for setting limits for the Euromillions lottery is going to be easy; it’s the same
process as for the first dialog box. Create a new form in the project by pressing Ctrl+Shift+A to dis-
play the Add New Item dialog box and select the UI category and the Windows Form template; the
name should be EuroLimitsDialog. You can set property values for this dialog box in much the same
way as for the previous dialog. 

Form Property Value to be Set

FormBorderStyle FixedDialog

ControlBox False

MinimizeBox False

MaximizeBox False

Text Set Euromillions Limits

1245

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1245



You can add OK and Cancel buttons to the dialog form next. Set the Text property values for the buttons
to “OK” and “Cancel” and the (Name) property values to euroOK and euroCancel, respectively. You
should also set the DialogResult property values to OK and Cancel. With the buttons defined, you can
return to the properties for the dialog form and set the AcceptButton and CancelButton property val-
ues to euroOK and euroCancel, respectively. Set the value of the AcceptButton property for the form
to be euroOK.

In the interests of getting experience of a wider range of controls, you’ll forego consistency in the appli-
cation, and you won’t use ListBox controls to handle the input as you did in the first dialog box. In this
dialog box you need to provide for the entry of upper and lower limits for the set of five values as well
as the set of two stars. It won’t make for a very elegant implementation, but to maximize the variety of
controls you work with you’ll use NumericUpDown controls for the former and ComboBox controls for
the latter. You can add these controls together with associated Label controls to the dialog form with
each group of controls placed within a GroupBox control, as illustrated in Figure 22-20. Obviously you’ll
need to add the GroupBox controls first and then place the other controls within them.

Figure 22-20

You can set the value of the Text property for each Label control as shown in Figure 22-20. The font size
for the labels has been changed to 9 point. To identify the function of the controls within each group box,
the value for the Text property for the upper group box has been set to “Set Values Limits” and that
of the lower group box “Set Stars Limits.” You won’t be accessing the GroupBox objects in the code,
so the (Name) property values for these are of no importance.

The values for the (Name) properties for the NumericUpDown controls in the upper group box should be
set to lowerValuesLimits and upperValuesLimits. You can set the values that these controls display
by setting values for the Maximum and Minimum properties. These values for the lowerValuesLimits
control on the left should be 45 and 1 respectively, and the values for the Maximum and Minimum proper-
ties for the control to the right should be 49 and 5 respectively. You can set the value of the Value prop-
erty for the upperValuesLimit control to 49; this is the value displayed initially in the control. If you
also set the ReadOnly property value for each of the NumericUpDown controls to True, this prevents the
entry of a value from the keyboard. You are using the NumericUpDown control very simply here. You can

1246

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1246



change the up down increment by setting the Increment property value. The Increment property is of
type Decimal so you can set this to non-integral values, too.

You can set the values of the (Name) property for the ComboBox controls in the lower group box to
lowerStarsLimits and upperStarsLimits. You can enter values to be displayed in a ComboBox quite
easily. Click the small arrow at the top right of the leftmost ComboBox control to display the menu shown
in Figure 22-21.

Figure 22-21

Select the Edit Items menu item at the bottom of the menu to display the dialog window for the
String Collection Editor shown in Figure 22-22.

Figure 22-22 shows the values entered for the ComboBox control on the left. For the ComboBox control on
the right you can enter the values from 2 to 9 inclusive.

The ComboBox is not ideal for this application because it allows text input as well as selection from a list;
you want to have a limit value selected only from the list. The control gets its name, ComboBox, because
it combines the function of a ListBox control that allows selection from a list with that of a TextBox
control that provides for text input.

Figure 22-22

1247

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1247



Getting the Data from the Dialog Controls
You’ll get the limit values back from the controls in essentially the same way as you did for the dialog
box for Lotto limits. You can add some new data members to the EuroLimitsDialog class to hold the
user limit values first:

private:
int lowerValuesLimit;
int upperValuesLimit;
int lowerStarsLimit;
int upperStarsLimit;

To be on the safe side you had better initialize these members in the class constructor:

EuroLimitsDialog(void)
:lowerValuesLimit(1)
,upperValuesLimit(50)
,lowerStarsLimit(1)
,upperStarsLimit(9)

{
InitializeComponent();
//
//TODO: Add the constructor code here
//

}

You’ll also need some public properties defined in the dialog class to make the limits accessible from the
application window object:

public:
property int LowerValuesLimit
{
int get() {  return lowerValuesLimit;  }

void set(int limit)
{
lowerValuesLimit = limit;
lowerValuesLimits->Value = limit;        // Set as selected in NumericUpDown 

}
}
property int UpperValuesLimit
{
int get() {  return upperValuesLimit;  }

void set(int limit)
{
upperValuesLimit = limit;
upperValuesLimits->Value = limit;        // Set as selected in NumericUpDown 

}
}
property int LowerStarsLimit
{

1248

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1248



int get() {  return lowerStarsLimit;  }

void set(int limit)
{
lowerStarsLimit = limit;
lowerStarsLimits->SelectedItem = limit;  // Set as selected in ComboBox 
lowerStarsLimits->SelectedIndex =        // Set index for selected item

lowerStarsLimits->FindString(limit.ToString());
}

}

property int UpperStarsLimit
{
int get() {  return upperStarsLimit;  }

void set(int limit)
{
upperStarsLimit = limit;
upperStarsLimits->SelectedItem = limit;  // Set as selected in ComboBox 
upperStarsLimits->SelectedIndex =        // Set index for selected item

upperStarsLimits->FindString(limit.ToString());
}

}

The get() function for each property returns the value of the corresponding private member of the dia-
log class. The set() function sets the value of the data member and also updates the control in the dialog
box so that the value set becomes the selected value. The SelectedIndex property value is the index to
the selected item. You set this using the FindString() function for the ComboBox control that returns the
index value for the first occurrence of the argument in the control’s collection of items. The value at this
position is displayed initially in the control.

Add a Click event handler for the OK button in the EuroLimitsDialog class by double-clicking the
button in the Design window. You won’t need to implement a handler for the Cancel button. You can
implement the OK button handler like this:

System::Void euroOK_Click(System::Object^  sender, System::EventArgs^  e) 
{
::DialogResult result;               

// get the limits for values 
int valuesLower = Decimal::ToInt32(lowerValuesLimits->Value);
int valuesUpper = Decimal::ToInt32(upperValuesLimits->Value);
if(valuesUpper - valuesLower < 4)              // Check for an adequate range
{
result = MessageBox::Show(this,              // Range insufficient so

“Upper values limit: “+valuesUpper +  // display message box
“  Lower values limit: “+ valuesLower+
“\nUpper values limit must be at least 4 greater that the lower limit.”+
“\nTry Again.”,
“Limits Invalid”,
MessageBoxButtons::OKCancel,
MessageBoxIcon::Error);

1249

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1249



if(result == ::DialogResult::OK)             // If message box OK clicked
DialogResult = ::DialogResult::None;       // prevent dialog from closing

else                                         // Messag box Cancel clicked
DialogResult = ::DialogResult::Cancel;     // so close the dialog

return;
}

// Get stars limits
int starsLower = lowerStarsLimits->SelectedItem == nullptr ?

lowerStarsLimit :
Int32::Parse(lowerStarsLimits->SelectedItem->ToString());

int starsUpper = upperStarsLimits->SelectedItem == nullptr ?
upperStarsLimit :
Int32::Parse(upperStarsLimits->SelectedItem->ToString());

if(starsUpper - starsLower < 1)                // Check for an adequate range
{
result = MessageBox::Show(this,              // Range insufficient so

“Upper stars limit: “+starsUpper +    // so display message box
“  Lower stars limit: “+ starsLower+
“\nUpper stars limit must be at least 1 greater that the lower limit.”+
“\nTry Again.”,
“Limits Invalid”,
MessageBoxButtons::OKCancel,
MessageBoxIcon::Error);

if(result == ::DialogResult::OK)             // If message box OK clicked
DialogResult = ::DialogResult::None;       // prevent dialog from closing

else                                         // Message box Cancel clicked
DialogResult = ::DialogResult::Cancel;     // so close the dialog

}
// Store the new limits
lowerValuesLimit = valuesLower;
upperValuesLimit = valuesUpper;
lowerStarsLimit = starsLower;
upperStarsLimit = starsUpper;

}

The Value property for a NumericUpDown control returns a value of type Decimal. To convert this to
type Int32 you pass it as the argument to the static ToInt32() function in the Decimal class. The value
that this function returns is automatically unboxed so that it can be stored in the variable of type int.

The value returned by the SelectedItem property for a ComboBox control is of type Object^, so to be
on the safe side you check whether it is null. If it is null, you set the local variable to the current value
recorded in the dialog object; if it isn’t null, you store the value represented by the SelectedItem prop-
erty. You can’t store the value directly, but calling the ToString() function for the object produces a
string representation of the object that you are then able to convert to type int using the static Parse()
function in the Int32 class.

1250

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1250



You will need a private member of the Form1 class that stores a handle to the new dialog box:

private:
EuroLimitsDialog^ euroLimitsDialog;    // Dialog to set Euromillions limits

You can add the following statements to the end of the code in the Form1 class constructor to create the
dialog object and update the properties for the stars limit values:

euroLimitsDialog = gcnew EuroLimitsDialog;
euroLimitsDialog->LowerStarsLimit = euroStarsLowerLimit;
euroLimitsDialog->UpperStarsLimit = euroStarsUpperLimit;

By setting the LowerStarsLimit and UpperStarsLimit properties for the dialog object, you ensure
that the ComboBox controls show these values when the dialog box is initially displayed. If there is no
selected item set for a ComboBox control, it displays nothing initially.

Don’t forget to add the #include directive for the EuroLimitsDialog class definition to Form1.h:

#include “EuroLimitsDialog.h”

Disabling Input Controls
When the Limits > Upper menu item is clicked, you want to prevent the input for a lower limit being
entered, and when the Limits > Lower menu item is selected, you want to prevent input for an upper
limit value. You can add a couple of member functions to the EuroLimitsDialog class to make this
possible:

public:
// Disables controls for selecting upper limits
void SetLowerEnabled(void)
{
upperValuesLimits->Enabled = false;
upperStarsLimits->Enabled = false;
lowerValuesLimits->Enabled = true;
lowerStarsLimits->Enabled = true;

}

// Disables controls for selecting lower limits
void SetUpperEnabled(void)
{
upperValuesLimits->Enabled = true;
upperStarsLimits->Enabled = true;
lowerValuesLimits->Enabled = false;
lowerStarsLimits->Enabled = false;

}

The value of the Enabled property for a control determines whether it is enabled. A true value enables
the control, and a value of false disables it so the user cannot interact with it. The SetLowerEnabled()
function disables the controls used to enter upper limits and enables those for entry of lower limits. The
SetUpperEnabled() function does the reverse.

1251

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1251



Updating the Limits Menu Item Handlers
The last step to complete the support for entering limits for the Euromillions lottery is to update the
Click event handlers in the Form1 class for the items in the Limits menu. The handler for the Upper
menu item should be modified as follows:

System::Void upperMenuItem_Click(System::Object^  sender, System::EventArgs^  e) 
{
::DialogResult result;
if(lottoTab->Visible)
{

lottoLimitsDialog->SetUpperEnabled();
result = lottoLimitsDialog->ShowDialog(this);
if(result == ::DialogResult::OK)
{

lottoUserMaximum = lottoLimitsDialog->UpperLimit;
lottoUserMinimum = lottoLimitsDialog->LowerLimit;

}
}
else if(euroTab->Visible)
{
euroLimitsDialog->SetUpperEnabled();
result = euroLimitsDialog->ShowDialog(this); 
if(result == ::DialogResult::OK)
{
euroUserMaximum = euroLimitsDialog->UpperValuesLimit;
euroUserMinimum = euroLimitsDialog->LowerValuesLimit;
euroStarsUserMaximum = euroLimitsDialog->UpperStarsLimit;
euroStarsUserMinimum = euroLimitsDialog->LowerStarsLimit;

}
}

}

The local variable result is used in both if statements, so it is now declared at the beginning of the
function. After enabling the controls in the dialog box appropriately by calling the SetUpperEnabled()
function for the dialog object, you display the dialog box as modal. If the user closes the dialog box by
clicking the OK button, you store the results available through the properties of the dialog object.

The changes to the handler for the Click event for the Lower menu item are very similar:

System::Void lowerMenuItem_Click(System::Object^  sender, System::EventArgs^  e) 
{
::DialogResult result;
if(lottoTab->Visible)
{

lottoLimitsDialog->SetLowerEnabled();
result = lottoLimitsDialog->ShowDialog(this);
if(result == ::DialogResult::OK)
{

lottoUserMaximum = lottoLimitsDialog->UpperLimit;
lottoUserMinimum = lottoLimitsDialog->LowerLimit;

}
}

1252

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1252



else if(euroTab->Visible)
{
euroLimitsDialog->SetLowerEnabled();
result = euroLimitsDialog->ShowDialog(this); 
if(result == ::DialogResult::OK)
{
euroUserMaximum = euroLimitsDialog->UpperValuesLimit;
euroUserMinimum = euroLimitsDialog->LowerValuesLimit;
euroStarsUserMaximum = euroLimitsDialog->UpperStarsLimit;
euroStarsUserMinimum = euroLimitsDialog->LowerStarsLimit;

}
}

}

The logic here is the same as in the previous handler function.

Implementing the Help > About Menu Item 
This is easy now that you know about the MessageBox class. You can just show a message box when the
Help > About menu item is clicked:

System::Void aboutToolStripMenuItem_Click(System::Object^  sender,
System::EventArgs^  e) 

{
MessageBox::Show(L”© Copyright Ivor Horton”, L”About A Winning Application”,

MessageBoxButtons::OK, MessageBoxIcon::Exclamation);
}

When the the menu item is clicked, the handler function displays the message box shown in Figure 22-23.

Figure 22-23

Handling a Button Click
Clicking a button should change the value on the button to a new random value. Of course, the value
must be different from values on the other buttons as well as being different from the value for the button

1253

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1253



that was clicked. It would be a good idea to present the whole set in sorted order; this may result in the
new value being on a different button, but that’s likely to be better that not having the values in sequence.

The process for handling a button click is going to be the same for all the buttons, so you’ll be able to
economize on code by creating a generalized function to do the work. You can define a private function
member of the Form1 class that generates a new value for a given Button object from an array of buttons:

// Generates a new value for button different from current button values
void SetNewValue(Button^ button, array<Button^>^ buttons,

int lowerLimit, int upperLimit)
{
int index = 0;                       // Index of button in buttons

// Array to store button values
array<int>^ values = gcnew array<int>(buttons->Length);

// Get values from buttons and find index for button
for(int i = 0 ; i < values->Length ; i++)
{
values[i] = Int32::Parse(buttons[i]->Text);  // Get current button value

// If current handle is same as button, save the index value
if(button == buttons[i])                     
index = i;

}

int newValue = 0;                    // Store the new button value
// Check if it is different from the other button values
for(;;)                              // Loop until we get a good one
{
newValue = random->Next(lowerLimit, upperLimit);  // Generate a value
if(IsValid(newValue, values, values->Length))     // If it’s OK...
break;                                          // ...end the loop

}
values[index] = newValue;          // Store the new value at index

Array::Sort(values);                         // Sort the value
for(int i = 0 ; i < values->Length ; i++)    // and set the values
buttons[i]->Text = values[i].ToString();   // as text on the buttons

}

The first two function parameters are the button that is to have a new number and the array of buttons in
the group to which the first button belongs. The next two parameters specify the lower and upper limits
for the values. The current values of the buttons in the array are stored in the values array in the first loop.
This loop also finds the index value in the buttons array for the Button^ handle that is the first argu-
ment. You need this so you know which element of the values array is to be replaced by a new value.

The new value is created in the indefinite for loop. This is the same mechanism that you used to create
the values for the button in the first instance. After you have a valid new value, you store it in the values
array. You then sort the elements in the values array before storing them as the values for the Text prop-
erties for the buttons in the buttons array. You’ll be able to use this function for dealing with the Click
events for all of the buttons.

1254

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1254



If you have not already done so, double-click the first button on the Lotto tab to generate a Click event
handler function for it. You can edit the name of the handler function by opening the Properties tab 
for the button, selecting the Events button, and changing the value for the Click event. When you press
Enter, the code is updated with the new name. I changed the value to lottoValue_Click.

You can amend the Click event handler to call the SetNewValue() function you have just added to the
Form1 class:

System::Void lottoValue_Click(System::Object^  sender, System::EventArgs^  e) 
{
Button^ button = safe_cast<Button^>(sender);

// Create the array of button handles
array<Button^>^ buttons = {lottoValue1, lottoValue2, lottoValue3,

lottoValue4, lottoValue5, lottoValue6};

// Replace the value on button
SetNewValue(button, buttons, lottoUserMinimum, lottoUserMaximum);

}

The availability of the SetNewValue() function makes this handler function very simple. The first state-
ment stores the handle to the button that was clicked. The first parameter to the event handler is a handle
to the object that originated the event, so all that’s necessary is to cast it to the appropriate type. You then
just assemble the handles for the buttons in an array and call the new function — job done!

You still have to deal with the Click event for the other buttons on the Lotto tab, but this doesn’t require any
more code. Open the Properties window for the second button and then click the Events button. If you
click the Click event value, you’ll see a list of the existing event handlers. If you select lottoValue_Click
from the list, the event handler for the first button will be registered as the event handler for the second but-
ton, too.

You can repeat the process for the remaining four buttons on the Lotto tab so that the one event handler
is called in response to the Click event for any of the buttons on the Lotto tab.

The Click event handlers for the buttons on the Euromillions tab are going to be very easy. Double-click
the first of the five buttons in the Values group to create the event handler. Open the Properties window
for the button and change the value for the Click event to euroValue_Click. You can then modify the
code for the handler like this:

System::Void euroValue_Click(System::Object^  sender, System::EventArgs^  e) 
{
Button^ button = safe_cast<Button^>(sender);
array<Button^>^ buttons = {euroValue1, euroValue2, euroValue3,

euroValue4, euroValue5 };
SetNewValue(button, buttons, euroUserMinimum, euroUserMaximum);

}

This works exactly the same as the handler for the Lotto buttons. The array contains the handles to the five
buttons in the values group, and the SetNewValue() function does the rest. If you open the Properties
window for each of the remaining four buttons in the group, you can select this function to respond to the
Click event for each of them. Be sure you select euroValue_Click and not lottoValue_Click!

1255

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1255



Follow the same procedure for the Stars buttons on the Euromillions tab. You can implement the handler as:

System::Void euroStar_Click(System::Object^  sender, System::EventArgs^  e) 
{
Button^ button = safe_cast<Button^>(sender);
array<Button^>^ buttons = { euroStar1, euroStar2 };
SetNewValue(button, buttons, euroStarsUserMinimum, euroStarsUserMaximum);

}

Set the handler for the Click event for the second button to be euro_StarClick and you are done. If
you recompile the example, you should be able to generate a new value for any button on either tab just
by clicking it. The last piece to complete the example is to allow the user to enter a value for a button.

Responding to the Context Menu
Right-clicking a button brings up a context menu with a single menu item, Choose. When the user clicks
this item, the program should display a dialog box that allowed a suitable value to be entered. Click the
name of the context menu in the Design tab for Form1 and then double-click the menu item to create the
Click event handler.

The first problem is to determine which group of buttons was clicked to cause the event. Each group on
buttons is in its own GroupBox control, and the GroupBox class has a Controls property that returns a
reference to an object of type Control::ControlCollection that represents the collection of controls
in the group box. The Control::ControlCollection class defines the Contains() function that returns
true if the control that you pass as the argument is within the collection and false otherwise. Thus you
have a way to determine to which group of buttons the button causing the Click event belongs. An outline
implementation of the event handler looks like this:

System::Void chooseValue_Click(System::Object^  sender, System::EventArgs^  e) 
{
// Get the button that was clicked for the context menu, then...

if(lottoValues->Controls->Contains(theButton))
{
// the button is from the lotto group...

}
else if(euroValues->Controls->Contains(theButton))
{
// The button is in the Values group...

}
else if(euroStars->Controls->Contains(theButton))
{
// The button is in the Stars group...

}
}

That sorts out which group of buttons is involved, at least in principle. But there’s still a bit of a prob-
lem — how do you find out which button was right-clicked to open the context menu?

1256

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1256



The chooseValue_Click() handler is called when the Choose menu item is clicked, so the sender
parameter for the handler identifies the menu item, not the button. You need a handler that responds to
the original click on the button and you can create this by double-clicking buttonContextMenu in the
Design pane for Form1. You can complete the code for the handler function that is created like this:

System::Void buttonContextMenu_Opening(System::Object^  sender,
System::ComponentModel::CancelEventArgs^  e) 

{
contextButton = safe_cast<Button^>(buttonContextMenu->SourceControl);

}

This casts the sender handle to type Button^ and stores it in the contextButton member of the Form1
class. Because in this case the event is for the context menu, the sender parameter identifies the compo-
nent that was clicked to display it. Of course, you have yet to add the contextButton variable as a pri-
vate member of the Form1 class:

private:
Button^ contextButton;          // Button that was right-clicked for context menu

All you need to do now is figure out what to do next.

The Logic for Dealing with the Choose Menu Item
The process for responding to the Choose item being clicked can be the same whichever group of buttons
is involved, and it could work something like the following:

1. Display a dialog box to allow a value to be entered.

2. Check that the value is valid — that is, within range and different from the other buttons.

3. Display a message box if the value is not valid and allow the entry to be retired or the dialog
operation to be cancelled.

4. If the value is valid, update the button that was right-clicked with the new value.

The first step in implementing this process is to create a new dialog form.

Creating the Dialog Form 
Press Ctrl+Shift+A to display the Add New Item dialog box; then select UI as the category and Windows
Form as the template. Enter the name as UserValueDialog and click the Add button. You can now open
the Properties window for the form by pressing F4 and setting the property values to make it a dialog
box. Set the ControlBox, MinimizeBox, and MaximizeBox property values to False, and set the Text
property to “User Value Input”. You should also set the FormBorderStyle property value to
FixedDialog.

Add OK and Cancel buttons to the dialog form as well as a Label control and a TextBox control, as
shown in Figure 22-24.

1257

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1257



Figure 22-24

Set the Text and (Name) property values for the OK button to OK, and the value for the DialogResult
property should be set to OK. The values for the Text, (Name), and DialogResult properties for the Cancel
button should be Cancel. Set the value of the (Name) property for the TextBox control to be textBox and
the value for the TextAlign property as Center. The (Name) property for the Label control can be
label, and the Text property can be anything you like because you’ll change this in the code to suit
the circumstances.

You can now display the properties for the dialog form once again and set the values for the
AcceptButton and CancelButton properties to OK and Cancel, respectively.

Developing the Dialog Class
The value entered in the TextBox control must be available to the Form1 object, so add a property to the
UserValueDialog class to store it:

public:
property int Value;

This is an example of a trivial scalar property so get() and set() functions are supplied by default.

The dialog object needs to know what the limits are for the value because the handler for the OK button 
in the dialog class is verifying that the value is legal. For the same reason, the dialog object needs to know
what the current values on the buttons are to ensure they are not duplicated. You could add three further
property members to the UserValueDialog class to store the data:

public:
property int LowerLimit;
property int UpperLimit;
property array<int>^ Values;                   // Current button values

You won’t want to leave spurious values lying around in the text box after it has been used, so add the
following public function to the UserValueDialog class:

void ClearTextBox() 
{
textBox->Text = “”; 

}

1258

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1258



The Form1 object needs to be able to change the value of the Text property for the label control, depend-
ing on the limits in effect for button values when the dialog box is displayed; you can add a public member
function to the UserValidDialog class to do this:

public:
void SetLabelText(int lower, int upper)
{
label->Text = L”Enter your value between “ + lower +L” and “ + upper;

}

You could conceivably pick up the limits from the properties in the dialog object, but this would require
that the properties were always set first. By using parameters for the limits you remove this dependency.

You can create the dialog object in the Form1 class constructor, but you’ll need to add a private Form1
class member to store the handle:

private: UserValueDialog^ userValueDialog;

You’ll also need an #include directive for UserValueDialog.h in the Form1.h header file.

Adding the following line to the constructor creates the dialog object:

userValueDialog = gcnew UserValueDialog;

If you double-click the OK button in the UserValueDialog form, you’ll create the Click event handler
for the button. This function retrieves the value entered in the TextBox control, and checks that the value
is within the limits and is different from the current set of values. If the value is not valid for any reason,
the function displays a message box. Here’s how you implement that:

System::Void OK_Click(System::Object^  sender, System::EventArgs^  e) 
{
::DialogResult result;                    // Stores return value from Show()
if(String::IsNullOrEmpty(textBox->Text))  // Chheck for null or empty string
{
result = MessageBox::Show(this,

L”No input - enter a value.”,
L”Input Error”,
MessageBoxButtons::RetryCancel,
MessageBoxIcon::Error);

if(result == ::DialogResult::Retry)     // If Retry button clicked 
DialogResult = ::DialogResult::None;  // ...prevent dialog from closing...

else                                    // ...otherwise...
DialogResult = ::DialogResult::Cancel;// ...close the dialog.

return;
}

int value = Int32::Parse(textBox->Text);  // Get text box value
bool valid = true;                        // Indicator for valid entry

for each(int n in Values)                 // Check input against current values

1259

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1259



if(value == n)                          // If it’s the same...
{
valid = false;                        // ...it is invalid.
break;                                // Exit the loop              

}

// Check limits and result of previous validity check
if(!valid || value < LowerLimit || value > UpperLimit)
{
result = MessageBox::Show(this,

L”Input not valid.” +
L”Value must  be from “ + LowerLimit +
L” to “ + UpperLimit +
L”\nand must be different from existing values.”,
L”Input Error”,
MessageBoxButtons::RetryCancel,
MessageBoxIcon::Error);

if(result == ::DialogResult::Retry)
DialogResult = ::DialogResult::None;

else
DialogResult = ::DialogResult::Cancel;

}
else
Value = value;                            // Store the input in the property

}

A message box is displayed if the Text property for the text box is null or an empty string. The message
box shows an error message and has Retry and Cancel buttons instead of OK and Cancel for a change.
If Retry is clicked, the user wants another go at input so you prevent the dialog box from closing by set-
ting its DialogResult property to ::DialogResult::None. The only other possibility is that the user
clicked Cancel in the message box, in which case you set the DialogResult property for the dialog
object to ::DialogResult::Cancel, which has the same effect as clicking the Cancel button for the
dialog box.

The Text property for the TextBox control returns a handle of type String^. You convert this to an inte-
ger by passing the handle to the static Parse() function in the Int32 class. You compare the value from
the text box with the elements from the values array that represent the current set of button values. The
new value should be different from all of these, so if you find one that is the same, you set valid to false
and exit the loop.

The condition for the if statement following the for each loop checks the value against the limits and
the current value of valid by ORing the conditions together. If any of the three expressions are false, the
condition is false, and you display a message box. This works in the same way as the previous message
box and displays an error message and Retry and Cancel buttons. If the value does indeed turn out to be
valid you store it in the Value property for the dialog object ready for retrieval by the event handler in the
Form1 object that started the whole process off.

Handling the Click Event for the ChooseMenu
You are now going to complete the skeleton of the chooseValue_Click() handler function using the capa-
bilities that you have added to the UserValueDialog class. The handle for the button that was right-clicked

1260

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1260



is already stored in the contextButton member because the buttonContextMenu_Opening() handler
that you added earlier is executed first.

System::Void chooseValue_Click(System::Object^  sender, System::EventArgs^  e) 
{
array<int>^ values;                  // Array to store current button values
array<Button^>^ theButtons;          // Handle to aray of buttons

// Check if the button is in the lottoValues group box
if(lottoValues->Controls->Contains(contextButton))
{
// the button is from the lotto group...
array<Button^>^ buttons = {lottoValue1, lottoValue2, lottoValue3,

lottoValue4, lottoValue5, lottoValue6};
theButtons = buttons;              // Store array handle at outer scope
values = GetButtonValues(buttons); // Get array of button values

// Set up the dialog ready to be shown
userValueDialog->Values = values = GetButtonValues(buttons);
userValueDialog->LowerLimit = lottoUserMinimum;
userValueDialog->UpperLimit = lottoUserMaximum;
userValueDialog->SetLabelText(lottoUserMinimum, lottoUserMaximum);
userValueDialog->ClearTextBox();

}
// Check if the button is in the euroValues group box
else if(euroValues->Controls->Contains(contextButton))
{
// The button is in the Values group...
array<Button^>^ buttons = {euroValue1, euroValue2, euroValue3,

euroValue4, euroValue5};
theButtons = buttons;              // Store array handle at outer scope
values = GetButtonValues(buttons); // Get array of button values

// Set up the dialog ready to be shown
userValueDialog->Values = values;
userValueDialog->LowerLimit = euroUserMinimum;
userValueDialog->UpperLimit = euroUserMaximum;
userValueDialog->SetLabelText(euroUserMinimum, euroUserMaximum);
userValueDialog->ClearTextBox();

}
// Check if the button is in the euroStars group box
else if(euroStars->Controls->Contains(contextButton))
{
// The button is in the Stars group...
array<Button^>^ buttons = { euroStar1, euroStar2 };
theButtons = buttons;               // Store array handle at outer scope
values = GetButtonValues(buttons); // Get array of button values

// Set up the dialog ready to be shown
userValueDialog->Values = values;
userValueDialog->LowerLimit = euroStarsUserMinimum;
userValueDialog->UpperLimit = euroStarsUserMaximum;
userValueDialog->SetLabelText(euroStarsUserMinimum, euroStarsUserMaximum);

1261

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1261



userValueDialog->ClearTextBox();
}
// Display the dialog
if(userValueDialog->ShowDialog(this) == ::DialogResult::OK)
{
// Determine which button value should be replaced
for(int i = 0 ; i<theButtons->Length ; i++)
if(contextButton == theButtons[i])
{
values[i] = userValueDialog->Value;
break;

}
Array::Sort(values);               // Sort the values

// Set all the button values
for(int i = 0 ; i<theButtons->Length ; i++)
theButtons[i]->Text = values[i].ToString();

}
}

You first define two array variables, one to hold the buttons, the other to hold the button values. You need
to declare these here because these arrays are created within one or other of the if statement blocks and
you’ll want to access them outside the if blocks.

The first three if statements determine which group box contains the button that was right-clicked to open
the context menu. The processes within the three if blocks are essentially the same, but the arrays created
will be different. The array of buttons is created from the variables holding the handles to whichever set of
buttons the contextButton belongs. The array handle is then stored in theButtons to make it accessible
in the outer scope. You then call a function you have yet to add, GetButtonValues(), that returns an
array containing the integer values from the buttons. Finally, in the if block you set the three properties for
the dialog box object and call its SetLabelText() function to set the label text according to the applicable
limits. The contextButton has to belong to one of the three group boxes as these are the only buttons that
have the context menu available.

When one or other of the if blocks has executed, you display the dialog box by calling its ShowDialog()
function in the condition for the fourth if statement. If the ShowDialog() function returns
::DialogResult::OK, you execute the code in the if block. This first determines which button should
have its value replaced by comparing the contextButton handle with the handles in the theButtons
array. As soon as you find a match, you replace the corresponding element in the values array with the 
new value and exit the loop. After sorting the values, you update the Text property for each of the 
buttons in the theButtons array and you are done.

The implementation of the GetButtonValues() function in the Form1 class looks like this:

// Creates an array of button values from an array of buttons
array<int>^ GetButtonValues(array<Button^>^ buttons)
{
array<int>^ values = gcnew array<int>(buttons->Length);
for(int i = 0 ; i<values->Length ; i++)
values[i] = Int32::Parse(buttons[i]->Text);

return values;
}

1262

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1262



Here you create an array of integer values the same length as the array of button handles that is passed
as the argument. You then populate the values array with the int equivalents of the string returned by
the Text properties of the buttons, and return the handle to the values array.

After compiling the project once more, you should have a fully functional application. You can generate
lottery entries for a variety of lotteries with the range of values constrained or not. You can also elect to
generate new random individual values in an entry or choose your own. It has always worked but never
won for me; of course, working is a measure of success.

Summary
In this chapter, you assembled a Windows Form application that uses the controls that you are most likely
to need in the majority of programs. It should be apparent that Windows Forms programs are geared
exclusively to using the Design capability. All the code for a class goes into the class definition, so with a
very complex form the class is many lines of code. With a production application the code consists of a
number of large classes that are rather unstructured, and difficult to modify and maintain at the code level.
You should therefore always use the Design capability and the Properties window to expedite changes
wherever you can and whenever you need to access the code, use Class View to find your way around.

The key points to keep in mind from this chapter include:

❑ An application window is a form, and a form is defined by a class derived from the
System::Form class.

❑ A dialog window is a form that has its FormBorderStyle property value set to FixedDialog.

❑ A dialog box can be created as a modal dialog by calling its ShowDialog() function or as a
modeless dialog by calling its Show() function.

❑ You can control whether or not a dialog box closes by setting the DialogResult property value
for the dialog object.

❑ A ComboBox control combines the capabilities of a ListBox and a TextBox and allows selection
of an item from a list or a new item to be entered from the keyboard.

❑ A NumericUpDown control allows the entry of numeric data by stepping through values within
a given range with a given step increment.

❑ You can add the definition of a Click event handler for a control by double-clicking the control
in the Form Design tab.

❑ You can specify an existing function to be a handler for a given event for a control through the
Properties window. Clicking the Events button in the Properties window displays the list of
events for a control.

❑ You should only change the names of automatically generated class members through the
Properties window — not directly using the Code editor.

1263

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1263



Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Modify Ex22_01 so that it displays a dialog box that you created as a dialog form when the
Help > About menu item is clicked.

2. Modify Ex22_01 so that the dialog box that displays for the Choose context menu item uses a
ListBox control instead of the text box and displays the complete set of legal values that can 
be chosen.

3. Investigate the properties and functions available for the WebBrowser control and modify
Ex22_01 to allow a URL to be entered through a TextBox so that the WebBrowser control 
displays the page at the URL that was entered.

1264

Chapter 22: More on Windows Forms Applications

25905c22.qxd:WroxPro  2/21/08  9:26 AM  Page 1264



23
Accessing Data Sources 

in a Windows Forms
Application

In this chapter, you’ll investigate how you can develop form-based applications that will display
data from a variety of sources and specifically how you can create form-based programs to access
an existing database. In this chapter, you will learn about:

❑ What kind of classes are involved in encapsulating a data source

❑ How you can use the DataGridView control to display your own data

❑ How you can customize the appearance of a DataGridView control

❑ What the function of the BindingSource component is and how you use it with a
DataGridView control

❑ How you use a BindingNavigator control to navigate data from a source managed 
by a BindingSource control

❑ How you expedite updating of a database using a BindingNavigator control and a
BindingSource component

Visual C++ 2008 provides a high degree of automation for creating Forms-based applications that
access data sources but you will start by ignoring the automation and get a feel for how you can
work with components programmatically. With this approach, you’ll not only get a good insight
into how things work; you’ll also appreciate how much the automation is doing for you. 

25905c23.qxd:WroxPro  2/21/08  9:26 AM  Page 1265



Working with Data Sources
A data source is any source of data for your application; relational databases, Web services that access
data, and objects can all be data sources. When you are developing an application that will work with an
existing data source, you will usually need to identify the data source within your project. You’ll do this
through the Data Sources window that is displayed when you select Data > Show Data Sources
from the main menu or when you press Shift+Alt+D; note that this menu item is only available when
you have a project created.

A data source is represented by a class object, so adding a data source to your project inevitably adds
definitions for a number of classes. Take a brief look at what they are.

Clearly, with a database that involves several tables that each have a number of columns, you are going
to see quite a lot of code generated to represent a data source; certainly, tens of thousands of lines of code
are not uncommon in a practical context.

The classes I have identified in the previous table are solely to encapsulate data from a data source; they
do not provide the mechanism for connecting to a data source such as a database and accessing the data
within it. That capability is provided by a component class called a table adapter that will be generated
automatically. A table adapter establishes a connection to a database and executes the commands or SQL
statements that operate on the database. There is one table adapter class for each DataTable member in
the DataSet object, so if your application is going to work with three tables from a database, there are
three table adapter classes defined. A table adapter object populates a DataTable member of a DataSet
object with data and can update the table in the database when required.

Data Source A data source is defined by a class that is derived from the DataSet class that is
defined in the System::Data namespace. This class encapsulates an in-memory
cache of all the data from the database that is accessible in your project.

Database Tables Each table in the database is defined by a nested class in the DataSet class
that represents the database, and the class that defines a table is derived from
the System::Data::DataTable class. The classes representing tables also
define events that signal changes to the data in the table and properties, mak-
ing each of the values of the current database record available.

Each table in a data source is identified by a member in the DataSet class
that is a handle to the corresponding DataTable object.

Table Columns Each column in a given database table is identified by a member of the
DataTable class that defines the table. The members representing columns
are of type System::Data::DataColumn and define the characteristics of
the column, such as the column name and the type of data in the column.
These characteristics are collectively referred to as the schema for the column.

Table Rows A row in a table is represented by an object of type System::Data::DataRow.
A DataRow object contains the data in a row and has as many data items as there
are columns in the DataTable object.

1266

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:26 AM  Page 1266



Accessing and Displaying Data
There are three components defined in the System::Windows::Forms namespace that are designed to
be used together for accessing and displaying data in a Windows Forms application:

The BindingSource component is not a control as it has no graphical representation that a user can 
interact with, but it’s designed to complement and work with the DataGridView control and the
BindingNavigator in database applications. The BindingSource component provides the communica-
tions with the data source necessary to execute queries and update commands, the DataGridView controls
provides the user interface for viewing and entering the data and the BindingNavigator control provides 
a toolbar that simplifies data navigation. Using the BindingNavigator control is optional. If you prefer,
you can change records programmatically yourself.

Although these three components are designed to work as a team, the DataGridView control is a particu-
larly useful tool in its own right, as you can use it quite independently from the other two. It provides an
astonishing range of capabilities for changing the visual appearance of the grid that displays the data. You’ll
explore some of the ways in which you can customize the DataGridView control before going into how you
can use it combined with the BindingSource and BindingNavigator components.

Note that you can also use the SqlConnection, SqlDataAdapter, and DataSet controls for
accessing a data source. If you want to use these controls, then you may need to add them to the 
ToolBox yourself. You do this by selecting Tools > Choose ToolBox Items from the main 
menu and checking the controls in the list that you want to have added to the ToolBox.

Using a DataGridView Control
The DataGridView control enables you to display and modify a rectangular array of data from a wide
range of data sources. You can also use the DataGridView control to display almost any kind of data
that originates directly in a program. Under the covers it is a complex control that provides an enormous
amount of flexibility, and you can take advantage of its many features through its many properties, func-
tions, and events. At the same time, the DataGridView control can be remarkably easy to use. You can
ignore the complexity of the internals and use it through the Form Design capability that takes care of all

Component Description

DataGridView This control can display virtually any kind of data in a rectangular grid.
You can use this control quite independently of the other two components.

BindingSource This component is used to encapsulate data from a data source. The com-
ponent can manage accessing and updating the data source, and can be
used as the vehicle for displaying data in a DataGridView control.

BindingNavigator This control provides a toolbar containing controls for navigating and
manipulating data from a data source, typically a data source encapsu-
lated in a BindingSource control.

1267

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:26 AM  Page 1267



the basic detail for you. You’ll see later in this chapter how you can produce a complete working program
example to access the Northwind database with no programming at all on your part; the whole program
will be generated through the Form Design capability and by setting properties for components used in
the project.

The data in a DataGridView control is displayed in a rectangular array of cells that you can envisage as
a collection of rows or as a collection of columns. Each column of cells has a header cell at the top that
typically contains text that identifies it, and each row has a row header cell at the beginning, as shown 
in Figure 23-1.

Figure 23-1

You reference rows and columns of cells through properties of the DataGridView control object. The
Rows property returns a value of type DataGridRowCollection that is a collection of all the rows, and
you refer to a particular row using an index, as illustrated in Figure 23-1. Similarly, the Columns prop-
erty for the control returns a value of type DataGridViewColumnCollection that you can also index 
to reference a particular column. Rows and columns are indexed from zero. The Cells property for a
DataGridRowCollection object represents a collection containing the cells in the row, and you can
index the Cells property to access a specific cell in a row. Figure 23-1 shows an example of how you
reference the fourth cell in the third row.

The number of rows is available as the value of the RowCount property for the control, and the
ColumnCount property returns the number of columns. Initially, when the control is not bound to a data
source, it will have no columns or rows. You can set the number of columns and or the number of rows by
setting property values for the control, but when you use the control to display data from a data source,
this is taken care of automatically.

You can use the DataGridView control in three different modes, as shown in the following table.

unbound mode In unbound mode you transfer the data to the control yourself, typically using
the Add() function for the Rows property for the control. You would use this
mode for displaying relatively small amounts of data.

DataGridView^ gridCntrl = gcnew DataGridView;    //Creates the control

These are the 
row headers

gridCntrl->RowCount
is the number of rows

gridCntrl->Rows[2]
refers to a single row

Row0
Row1
Row2
Row3

gridCntrl->ColumnCount
is the number of columns

gridCntrl->Columns[3]
refers to a single column

Column0 Column1 Column2 Column3 Column4

These are the
column headers

gridCntrl->Rows
references the

collection of rows

gridCntrl->Rows[2]->Cells[3]
references the 4th cell

in the 3rd row

gridCntrl->Columns
references the

collection of columns

1268

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1268



In unbound mode, you can use the DataGridView control to display any data in your application that can
be displayed in a grid. This makes it a very convenient tool for displaying data in many different kinds of
applications. The next section looks into using the control in unbound mode in a little more depth.

Using a DataGridView Control 
in Unbound Mode

The data in DataGridView control is stored in a rectangular arrangement that is identified by the Rows and
Columns properties for the control. In unbound mode you’ll add the data to the control using the Add()
function for the Rows property, but before you can add rows to the control, the columns need to be defined,
at least to establish how many items are in a row. Setting the ColumnCount property for the control pro-
grammatically sets how many columns there are and determines that the control is to work in unbound
mode. The following statements create a control that you reference using the handle dataGridView and
then set the number of columns to 3:

DataGridView^ dataGridView = gcnew DataGridView;
dataGridView->ColumnCount = 3;         // Set number of columns

You can optionally label the columns in the control by specifying headers to identify the data in each col-
umn by setting the Name property for each column. Here’s how that could be done:

dataGridView->Columns[0]->Name = L”Name”;
dataGridView->Columns[1]->Name = L”Phone Number”;
dataGridView->Columns[2]->Name = L”Address”;

The Columns property for the control is an indexed property so you access individual columns using index
values starting from 0. Thus these statements label the three columns in the dataGridView control. You
can also set the column headers through the Properties window for the control, as you’ll see in the next
working example.

The value returned by the Rows property is a collection of type DataGridViewRowCollection, and this
type is defined in the System::Windows::Forms namespace. The Count property for the collection returns
the number of rows and there is also a default indexed property to return the row at a given index position.
The collection of rows has a large number of functions; I won’t go through them all here, but the following
table shows a few of the most useful ones for adding and deleting rows.

Continued

Add() Adds one or more rows to the collection. 

bound mode In this mode you identify a source for the data that is to be displayed by setting
a value for the DataSource property of the control. 

virtual mode In virtual mode you connect the control to a data cache in memory that you
fill with data from a separate data source. You would use this mode to display
data from a source where you want to manage data access in order to optimize
performance.

1269

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1269



The Add() function for the value returned by the Rows property comes in four overloaded versions that
enable you to add a row of data to the control in a variety of ways.

All versions of the Add() function return a value of type int that is the index of the last row that 
was added to the collection. If the DataSource property for the DataGridView control is not null, 
or the control has no columns, all versions of the Add() function throw an exception of type
System::InvalidOperationException.

You could add rows to the dataGridView control that has three columns with the following statements:

dataGridView->Rows->Add(L”Fred Able”, L”914 696 1200”,
L”1235 First Street, AnyTown”);

dataGridView->Rows->Add(L”May East”, L”914 696 1399”,
L”1246 First Street, AnyTown”);

Each of these statements adds a new row to the collection and the three arguments to the Add() function
correspond to the three columns in the control. The control must have sufficient columns to accommo-
date the number of items you add in a row. If you attempt to add more data items to a row than there are
columns in the control, the excess items are ignored.

You will first try unbound mode in a working example where you set up the DataGridView control by
setting its properties from the Form Design tab.

Add() Adds one new row to the collection.

Add(int rowCount) Adds rowCount new rows to the collection. An exception of
type System::ArgumentOutOfRangeException is thrown if
rowCount is zero or negative.

Add(DataGridViewRow^ row) Adds the row specified by the argument. A DataGridViewRow
object contains the collection of cells in a row as well as the
parameters that determine the appearance of the cells in the row.

Add(... Object^ object) Adds a new row and populates the cells in the row with the
objects specified by the arguments.

Insert() Inserts one or more rows in the collection.

Clear() Deletes all rows in the collection.

AddCopy() Adds a copy of the row specified by the argument.

InsertCopy() Inserts a copy of the row specified by the first argument at the position speci-
fied by the second argument.

Remove() Removes the row specified by the argument, which is of type
DataGridViewRow^.

RemoveAt() Removes the row specified by the index value you supply as the argument.

1270

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1270



Try It Out The DataGridView Control in Unbound Mode
This example displays a list of books where each book is specified by the ISBN, the title, the author, and the
publisher. Create a new Windows Form project with the name Ex23_01. Add a DataGridView control to
the form and click the arrow at the top-right of the control to display the pop-up menu shown in Figure 23-2.

If you click the bottom menu item, Dock in parent container, the control fills the client area of the
form. The top menu item is for selecting a data source, but you are not going to specify a data source this
time. If you click the AddColumn menu item, the dialog box shown in Figure 23-3 for entering columns
to the control is displayed.

Figure 23-2

Figure 23-3

The Unbound column radio button is checked because there is no data source identified for the control,
which is the way it should be for this example. The Name: entry is the value of the Name property for the

1271

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1271



column, and the Header Text: entry is the value of the HeaderText property, which corresponds to the
text that is shown in the control as the column heading. If you extend the list box that is for selecting the
Type: value, you’ll see you have a range of choices for the type of column. Here you should leave it as the
default choice — a TextBox column — because you’ll be adding strings as the data to be displayed. The
other column types in the list deal with provide for various controls in the cells representing the data:

To add a column to the control, you enter values for the Name: and Header Text:, select the Type: from
the list if you want other than the default type, and click the Add button. In this example, you can add
columns with the names ISBN, Title, Author, and Publisher. The Header Text: entry can be the
same as the name in each case. When you have entered the columns, click the Close button to close the
dialog (the Close button is visible after you have added at least one column). All the columns should now
be displayed in the control, so you can drag the right edge of the form so all four columns are visible.

You can edit the columns at any time by clicking the Edit Columns item in the pop-up menu; it displays
the dialog box shown in Figure 23-4.

Figure 23-4

DataGridViewButtonColumn This type is used to display a button in each cell in the 
column.

DataGridViewCheckBoxColumn This type is used when you want to store bool
values (System::Boolean objects) or
System::Windows::Forms::CheckState objects 
as checkboxes in the cells in the column.

DataGridViewComboBoxColumn This type is used when you want to display a drop-down
list in each cell in the column.

DataGridViewImageColumn You select this type when each cell in the column is to 
display and image in each cell in the column.

DataGridViewLinkColumn You use this type when each cell in the column is to display
a link.

1272

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1272



The Edit Columns dialog box enables you to resequence existing columns, to add new columns, or to
delete columns; you can also edit any of the properties for a column.

Return to the Design tab and change the Text property for the form to My Book List. If you display the
code for the form, you can modify the constructor to add data to the DataGridView control using the
Add() function for the Rows property, like this:

Form1(void)
{
InitializeComponent();
//
//TODO: Add the constructor code here
// Create book data, one book per array
array<String^>^ book1 = {L”0-09-174271-4”, L”Wonderful Life”,

L”Stephen Jay Gould”, L”Hutchinson Radius”};
array<String^>^ book2 = {L”0-09-977170-5”, L”The Emperor’s New Mind”,

L”Roger Penrose”, L”Vintage”};
array<String^>^ book3 = {L”0-14-017996-8”,L”Metamagical Themas”,

L”Douglas R. Hofstadter”, L”Penguin”};
array<String^>^ book4 = {L”0-201-36080-2”, L”The Meaning Of It All”,

L”Richard P. Feynman”, L”Addison-Wesley”};
array<String^>^ book5 = {L”0-593-03449-X”, L”The Walpole Orange”,

L”Frank Muir”, L”Bantam Press”};
array<String^>^ book6 = {L”0-439-99358-X”, L”The Amber Spyglass”,

L”Philip Pullman”, L”Scholastic Children’s Books”};
array<String^>^ book7 = {L”0-552-13461-9”, L”Pyramids”,

L”Terry Pratchett”, L”Corgi Books”};
array<String^>^ book8 = {L”0-7493-9739-X”, L”Made In America”,

L”Bill Bryson”, L”Minerva”};

// Create Array of books
array<array<String^>^>^ books ={book1, book2, book3, book4,

book5, book6, book7, book8};

// Add all the books to the control
for each(array<String^>^ book in books )
dataGridView1->Rows->Add(book);

//
}

There’s an array of type array<String^> created for each book, and the handle to each array is stored
in an array referenced by a variable of type array<array<String^>^>^. Each of the arrays of strings
has four elements that contain data items that correspond to the columns in the DataGridView control,
so each array defines a book.

For convenience, you assemble the handles to the arrays of strings into the books array. The type for
books looks a little messy because of the ^ repetitions, but it is simply a handle to an array of elements
where each element is of type array<String^>^. The books array enables you to set up all the data in
the control in a single for each loop. The Rows property for the DataGridView object returns a handle
of type DataGridViewRowCollection^ that references the collection of rows in the control. Calling the
Add() function for the object returned by the Rows property adds a complete row to the collection. Each

1273

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1273



element in the array that is passed as the argument corresponds to a column in the control, and the type
of data element must correspond with the type you selected for the column. Here all the columns have
the same type, so all the cells in a row can be passed in an array. If the columns were of different types,
you could specify the item for each column by a separate argument to the Add() function, or you could
use an array of elements of type Object^.

If you compile and execute the example by pressing Ctrl+F5, you should see the application window
shown in Figure 23-5.

Figure 23-5

If you reduce the size of the application window by dragging the lower-right corner, you get scrollbars
displayed automatically to enable you to scroll to see the rest of the control. If you increase the size of 
the window, eventually the scrollbars disappear.

It would be nice if the columns were wide enough to accommodate the maximum length of text they
contain. Changing the value of the AutoSizeColumnsMode property in the Layout group fixes that.
After you have closed the application, open the Properties window for the DataGridView control from
the Form1[Design] tab in the Editor pane and change the AutoSizeColumnsMode property value to
AllCells. If you recompile the program and run it again, you’ll see that the application window is
now as shown in Figure 23-6.

Figure 23-6

1274

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1274



Each column has its width set so that it accommodates the longest string that the column contains. Overall,
the resultant application window is not too bad, but you can do a lot more programmatically to personalize
how it looks.

Customizing a DataGridView Control 
As I said earlier in the chapter, the appearance of a DataGridView control is highly customizable. You
will explore aspects of this using the control in unbound mode, but everything you’ll learn in this con-
text applies equally well to using the control in bound mode. The appearance of each of the cells in a
DataGridView control is determined by an object of type DataGridViewCellStyle that has the prop-
erties shown in the following table.

Continued

Property Description

BackColor The value is a System::Drawing::Color object that determines the
background color of a cell. The Color class defines a range of stan-
dard colors as static members. The default value is Color::Empty.

ForeColor The value is a Color object that determines the foreground color of a
cell. The default value is Color::Empty.

SelectionBackColor The value is a Color object that determines the background color of a
cell when it is selected. The default value is Color::Empty.

SelectionForeColor The value is a Color object that determines the foreground color of a
cell when it is selected. The default value is Color::Empty.

Font The value is a System::Drawing::Font object that determines the
font to be used to display text in the cell. The default value is null.

Alignment The value determines the alignment of the contents of the cell. The
values are defined by the DataGridViewAlignment enumeration so
the value can be any of the following constants:

BottomCenter, BottomLeft, BottomRight,
MiddleCenter, MiddleLeft, MiddleRight,
TopCenter, TopLeft, TopRight, NotSet

The default value is NotSet.

WrapMode The value determines whether the text in the cell is wrapped when it
is too long to fit in the cell. The value is one of the constants defined
by the DataGridViewTriState enumeration and can be:

True, False, NotSet

The default value is NotSet.

1275

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1275



This is not an exhaustive list of the properties of a DataGridViewCellStyle object, just those that relate
to the appearance of a cell.

The way in which the appearance of a particular cell is determined is quite complicated because you have
a number of different properties that you can set in a DataGridView control that all determine how a
given cell or group of cells is displayed, and several of these can be in effect at any given time. For exam-
ple, you can set property values that specify the appearance of a row of cells, or a column of cells, or all
the cells in the control, and these can all be in effect concurrently. Clearly, because a row and column
always intersect, all three of these possibilities apply to any given cell, so you have an apparent conflict.

Each cell in a DataGridView control is represented by a System::Windows::Forms::DataGridViewCell
object, and the appearance of any given cell, including header cells, is determined by the value of its
InheritedStyle property. The value of the InheritedStyle property for a cell is arrived at by looking 
at all the possible properties that return a value that is a DataGridViewCellStyle object that applies to 
the cell and then considering these properties in a priority sequence; the first property in the sequence that 
is found to be set is the one that takes effect. The determination of the value of the InheritedStyle prop-
erty for header cells for rows and columns is handled differently from the InheritedStyle property for
other cells, so I’ll discuss them separately, starting with header cells.

Customizing Header Cells
The InheritedStyle property value for each header cell in the control is determined by considering the
values of following properties in sequence:

❑ The Style property for the DataGridViewCell object that represents the cell.

❑ The ColumnHeadersDefaultCellStyle property or the RowHeadersDefaultCellStyle
property for the control object.

❑ The DefaultCellStyle property for the control object.

So if the Style property value for the cell object has been set, the InheritedStyle property for the cell
takes this value and determines the appearance of the cell. If not, the next candidate takes effect if the value
for that has been set. If the second choice has not been set, the DefaultCellStyle property for the control
is applied.

Property Description

Padding The value is an object of type System::Windows::Forms::Padding
that determines the space between the cell contents and the edge of
the cell. The Padding class constructor requires an argument of type
int that is the padding measured in pixels. The default corresponds 
to no padding in the cell.

Format The value is a format string that determines how the content of the
string is formatted. This is the same kind of formatting as you have
been using in the Console::WriteLine() function. The default
value is an empty string.

1276

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1276



Don’t forget that the value of the InheritedStyle property is an object of type DataGridViewCellStyle,
which itself has properties that determine various aspects of the appearance of the cell. The process of going
through the priority sequence applies to each of the properties of the DataGridViewCellStyle object, so
overall there may be contributions from more than one of the properties in the priority sequence.

Customizing Non-Header Cells
The InheritedStyle property value for each non-header cell in the control (the non-header cells being
the cells containing data) is determined from the following properties in the DataGridView object in
sequence:

❑ The Style property for the DataGridViewCell object that represents the cell.

❑ The DefaultCellStyle property for the DataGridViewRow object that represents the row 
containing the cell. You would typically reference the DataGridViewRow object by indexing 
the Rows property for the control object.

❑ The AlternatingRowsDefaultCellStyle property for the control object; this applies only 
to cells in rows with odd index numbers.

❑ The RowsDefaultCellStyle property for the control object.

❑ The DefaultCellStyle property for the DataGridViewColumn object that contains the cell.
You would typically access a DataGridViewColumn object by indexing the Columns property
for the control object.

❑ The DefaultCellStyle property for the control object.

Potentially you could have a different DataGridViewCellStyle object for each cell, but for efficiency
you need to keep the number of such objects to a minimum.

The next Try It Out explores some of these possibilities in an example where you set up the DataGridView
object yourself.

Try It Out Setting the Appearance of the Control
Create a new CLR project using the Windows Forms template with the name Ex23_02. Add a
DataGridView control to the form in the Design tab and change its (Name) property to dataGridView.
This is the name of the handle in the class that references the control object. You can also change the Text
property for the form to “My Other Book List”. For the rest of the example, you are going to be work-
ing with the code in the constructor.

The data that you display is similar to that in the previous example, but to extend the possibilities a little,
you’ll add a date entry at the beginning of each row specifying a book, so the cells in the first column will
contain references to objects of type System::DateTime, and the remaining columns will be strings. The
DateTime class defines an instant in time that you typically specify as a date plus the time of day. In the
example, only the date is of interest, so you’ll use a constructor that accepts only three arguments: the
year, the month, and the day.

1277

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1277



Setting Up the Data
The first step is to create the data to be displayed. Add the following code to the Form1 constructor, after
the call to InitializeComponent():

// Create book data, one book per array
array<Object^>^ book1 = {gcnew DateTime(1999,11,5), L”0-09-174271-4”,

L”Wonderful Life”, L”Stephen Jay Gould”, L”Hutchinson Radius”};
array<Object^>^ book2 = {gcnew DateTime(2001,10,25), L”0-09-977170-5”,

L”The Emperor’s New Mind”, L”Roger Penrose”, L”Vintage”};
array<Object^>^ book3 = {gcnew DateTime(1993,1,15), L”0-14-017996-8”,

L”Metamagical Themas”, “Douglas R. Hofstadter”, L”Penguin”};
array<Object^>^ book4 = {gcnew DateTime(1994,2,7), L”0-201-36080-2”,

L”The Meaning Of It All”, L”Richard P. Feynman”, L”Addison-Wesley”};
array<Object^>^ book5 = {gcnew DateTime(1995,11,6), L”0-593-03449-X”,

L”The Walpole Orange”, “Frank Muir”, L”Bantam Press”};
array<Object^>^ book6 = {gcnew DateTime(2004,7,16), L”0-439-99358-X”,

L”The Amber Spyglass”, L”Philip Pullman”, L”Scholastic Children’s Books”};
array<Object^>^ book7 = {gcnew DateTime(2002,9,18), L”0-552-13461-9”,

L”Pyramids”, L”Terry Pratchett”, L”Corgi Books”};
array<Object^>^ book8 = {gcnew DateTime(1998,2,27), L”0-7493-9739-X”,

L”Made In America”, L”Bill Bryson”, L”Minerva”};

// Create Array of books
array<array<Object^>^>^ books = {book1, book2, book3, book4,

book5, book6, book7, book8};

The basic mechanics of this are the same as in the previous example. The differences here are due to each
book having an extra item of type DateTime in the specification, so the array elements are of type Object^.
You’ll recall that the Object class is a base class for every C++/CLI class so you can store a handle to an
object of any class type in an element of type Object^.

You can add the following statement to the constructor next:

array<String^>^ headers = {L”Date”, L”ISBN”, L”Title”, L”Author”, L”Publisher”};

This creates an array containing the text that is to appear as column headers in the control. You can add
these headers to the control by adding the following code to the constructor:

dataGridView->ColumnCount = headers->Length;          // Set number of columns
for(int i = 0 ; i<headers->Length ; i++)
dataGridView->Columns[i]->Name = headers[i];

The first statement specifies the number of columns in the control by setting the value of the ColumnCount
property; this also establishes the control in unbound mode. The for loop sets the Name property for each
column object to the corresponding string in the headers array. The Columns property for the control
returns a reference to the collection of columns, and you just index this to reference a particular column.

You can add the rows to the control in another loop:

for each(array<Object^>^ book in books)
dataGridView->Rows->Add(book);

1278

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1278



The for each loop selects each of the elements from the books array in turn add passes it to the Add()
method for the reference returned by the Rows property for the control. Each element in the books array
is an array of strings, and there are as many strings in the array as there are columns in the control.

The control has now been loaded with the data, so the number of rows and columns is determined and
the contents of the column headers have been specified. You can now set about customizing the appear-
ance of the control.

Setting Up the Control
You want the control to be docked in the client area of the form, and you can do this by setting the value
of the Dock property:

dataGridView->Dock = DockStyle::Fill;

The Dock property must be set to one of the constants defined by the DockStyle enumeration; other possi-
ble values are Top, Bottom, Left, Right, or None, and these specify the sides of the control that are docked.

You can also relate the position of the control to the client area of the form by setting the Anchor property
for the control.The value of Anchor property specifies the edges of the control that are to be attached to the
client area of the form. The value is a bitwise combination of the constants defined by the AnchorStyles
enumeration and can be any or all of Top, Bottom, Left, and Right. For example, to anchor the top and
left sides of the control, you would specify the value as AnchorStyles::Top & AnchorStyles::Left.
Setting the Anchor property fixes the position of the control plus its scrollbars within the container at a
given size, so when you resize the application window the control and its scrollbars remain at a fixed size.
If you set the Dock property as in the previous statement, resizing the application window exposes more or
less of the control and the scrollbars adjust accordingly, so that is much better in this case.

You want the width of the columns to be adjusted to accommodate the data in the cells, and you can put
this into effect by calling the AutoResizeColumns() function:

dataGridView->AutoResizeColumns();

This statement adjusts the width of all columns to accommodate the current contents, and this includes
header cells. Note that this is effective at the time the function is called, so the contents need to be there
when you call it. If the contents are changed subsequently, the column width is not adjusted. If you want
the column widths to be adjusted whenever the contents of the cells change, you should also set the
AutoSizeColumnsMode property for the control, like this:

dataGridView->AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode::AllCells;

The value must be one of the constants defined by the DataGridViewAutoSizeColumnsMode enumera-
tion, and the other possible values are ColumnHeader, AllCellsExceptHeader, DisplayedCells,
DisplayedCellsExceptHeader, Fill, and None. Of course, these are also the property values in the
list for this property that displays on the Properties page for the DataGridView control.

It may be that you want to allow only the columns width for specific columns to be automatically adjusted
when the contents change; in this case, you set a value for the AutoSizeMode property for the column object.

1279

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1279



There are two further overloaded versions of the AutoResizeColumns() function. One accepts an argu-
ment of type DataGridViewAutoSizeColumnsMode, and the cells affected are determined by the value
of the argument. The other overload is protected and, therefore, for use in functions in a derived class; it
accepts an additional argument of type bool that indicates whether the cell height is to be considered in
calculating a new width.

You can set the default background color of all cells in the control like this:

dataGridView->DefaultCellStyle->BackColor = Color::Pink;

This sets the background color as the standard color Pink that is defined as a static member of the Color
class. The properties of the DefaultCellStyle property for the control object only determine what applies
to a cell in the absence of any higher priority cell style being in effect.

You could also set the default foreground color for all cells:

dataGridView->DefaultCellStyle->ForeColor = Color::DarkBlue;

To identify when cells have been selected, you can specify selection colors for the foreground and back-
ground. Here’s how you could define the background color when a cell is selected:

dataGridView->DefaultCellStyle->SelectionBackColor = Color::Green;

Of course, the point of setting property values programmatically is that it happens at run-time so you
can set values depending on conditions and data values that you find when the application is running.
Property values that you set through the Properties pane in the IDE are set once and for all — unless
you have code that changes them subsequently.

That’s enough for the control for now. You’ll personalize the column headers next.

Setting Up the Column Headers
If you want to determine the appearance of the column headers yourself, you need to set the value of the
EnableHeadersVisualStyles property for the control to false:

dataGridView->EnableHeadersVisualStyles = false;

The controls in a WindowsForms application are usually drawn according to the visual styles theme that 
is in effect, and this theme determines the appearance of the controls. If you are running the application
under Windows XP, the controls are drawn according to the Windows XP theme; if you are using Windows
Vista then controls will be drawn in the Vista style. When the EnableHeadersVisualStyles property
value is true, the visual styles for the column headers will be set according to the visual styles theme in
effect for the application, and the styles you set are ignored.

You’ll be setting several properties for the appearance of the headers and an easy way to do this is to create
a DataGridViewCellStyle object for which you can set the properties as you want them, and then make
this object the one that determines the styles for the headers. You can create the DataGridViewCellStyle
object like this:

DataGridViewCellStyle^ headerStyle = gcnew DataGridViewCellStyle;

1280

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1280



It would be nice to have the header text in a larger font, and you can set the font by setting a value for the
Font property:

headerStyle->Font = gcnew System::Drawing::Font(“Times New Roman”, 12,
FontStyle::Bold);

The header text is now in 12-point bold characters in the Times New Roman font.

You can also set the background and foreground colors for the header cells:

headerStyle->BackColor = Color::AliceBlue;
headerStyle->ForeColor = Color::BurlyWood;

The text is now drawn in the color BurlyWood against an AliceBlue background. If you prefer some-
thing different, the Color class offers you a lot of choices, and Intellisense should show the list as you
complete typing the scope resolution operator.

To set the appearance of the header cells to correspond with the properties that you’ve set for the
headerStyle object, you need to add the following statement:

dataGridView->ColumnHeadersDefaultCellStyle = headerStyle;

This sets the value of the ColumnHeadersDefaultCellStyle property for the control to be the
headerStyle handle. This replaces the existing DataGridViewCellStyle object that was in effect
for the headers.

There is one other thing you should do in relation to the column headers. The larger font requires the
height of the cells to be adjusted to accommodate it. Calling the AutoResizeColumnHeadersHeight()
function for the control adjusts the heights of the header cells to accommodate their current contents:

dataGridView->AutoResizeColumnHeadersHeight();

The height of all header cells is adjusted to fit the largest cell contents. If you just want the height of a
particular column header to be adjusted, you can use the overloaded version of the function that accepts
an argument specifying the index of the column to be adjusted.

If you don’t want the row or column headers to be visible you can make them disappear by setting the
value of the RowHeadersVisible property and/or ColumnHeadersVisible property for the control 
to false.

Formatting a Column
The first column contains handles to a DateTime object. As it is, the application simply calls the
ToString() function for the objects to get something to display, but you can do better than that. 
You can set the Format property for the DefaultCellStyle property for the column, and this 
format specification is then used to display the contents of the cells:

dataGridView->Columns[0]->DefaultCellStyle->Format = L”y”;

1281

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1281



This sets the Format property to the string containing the y format specification for a DateTime object
that presents the object in the short date form as month plus year. There are several other format speci-
fiers for DateTime objects that you could use. For example, D displays the day as well as the month and
year, and f and F displays the time as well as the date.

If you have added all that code to the Form1 class constructor, it’s time to don the sunglasses and give
the example a whirl. If you compile and run it, you should see something like the application window
shown in Figure 23-7.

Figure 23-7

I have resized the width of the window in Figure 23-7 to show more of the columns. Unfortunately, in the
book the application window appears in shades of grey but you should see it on your screen in glorious
Technicolor.

If you click one of the row headers on the left of the control, you should see the row highlighted as shown
in Figure 23-8.

Figure 23-8

The background color in the cells in the row is the one you set for the SelectionBackColor property
of the DefaultCellStyle property for the control. You can also select an individual cell by clicking it,
and the background color of the cell changes to green.

1282

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1282



The ability to sort the rows based on any given column is built into the DataGridView control. You could
try clicking a column header and see the rows sorted by the column you select. If you click the column
header a second time, the rows are ordered in the opposite sense. You could add a tooltip to each of the
columns to explain the sort possibility. Adding this loop to the Form1 class constructor does this:

for each(DataGridViewColumn^ column in dataGridView->Columns)
column->ToolTipText = L”Click to\nsort rows”;

The Columns property value is a collection of columns where each column is an object of type
DataGridViewColumn. The loop iterates over each of the columns and sets the value of the
ToolTipText property. Figure 23-9 shows the tooltip for one of the column headers.

These tooltips display only when the mouse cursor is over a column header cell. You can set a tooltip for
any of the cells that display the data by setting the ToolTipText property for the cell object.

Figure 23-9

Customizing Alternate Rows
When you are displaying many rows that are similar in appearance, it can be difficult to see which row
you are looking at. You can color alternate rows differently to help overcome the problem by setting a
different color as the BackColor property for the AlternatingRowsDefaultCellStyle property for
the control object:

dataGridView->AlternatingRowsDefaultCellStyle->BackColor = Color::Blue;

You will probably want to change the ForeColor property for the AlternatingRowsDefaultCellStyle
property to get a reasonable contrast between the text and the background:

dataGridView->AlternatingRowsDefaultCellStyle->ForeColor = Color::White;

Now rows are displayed with colors alternating between pink and blue, as shown in Figure 23-10 (in
shades of grey, of course, as there is no color in the book).

Now it’s easy to separate the rows and the white text against a blue background is clear. You can still
select a row by clicking a row header and see the selected row in green. Clicking in the cell at the left end
of the column headers selects all the rows.

1283

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1283



Figure 23-10

Dynamically Setting Cell Styles
You have several possibilities for changing the appearance of cells by handling events for the
DataGridView control. The CellFormatting event for a DataGridView control fires when the 
contents of a cell need to be formatted ready to be displayed, so by adding a handler for this event 
you can adjust the appearance of any cell depending on what the contents are. I want now to explore
how you could extend Ex23_02 to do this.

Suppose, for example, that in Ex23_02 you wanted to set the background color of cells in the Date col-
umn to red if the date is before the year 2000. Recall from the discussion of events in Chapter 9 that to
register a handler for an event you add an instance of the delegate to the event. The delegate for the
CellFormatting event is of type DataGridViewCellFormattingEventHandler, and it expects 
two parameters: the first parameter is of type Object^ and identifies the source of the event and the
second parameter is a handle to an object of type DataGridViewCellFormattingEventArgs.

The second argument passed to a handler for the CellFormatting event provides additional information
about the event through the properties shown in the following table.

Property Description

Value The value is a handle to the contents of the cell that is being formatted.

DesiredType The value is a handle to an object of type Type that identifies the type of
the contents off the cell being formatted.

CellStyle Gets or sets the cell style of the cell that is associated with the formatting
event so the value is a handle to an object of type
DataGridViewCellStyle.

ColumnIndex The value is the column index for the cell that is being formatted.

RowIndex The value is the row index for the cell that is being formatted.

FormattingApplied The value, true or false, indicates whether formatting of the cell 
contents has been applied.

1284

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1284



These properties enable you to find out all you need to know about the cell being formatted — the row
and column for the cell, the current style in effect, and the contents of the cell.

The first step in handling the CellFormatting event is to define a handler function for it. The handler
code needs to be as short and efficient as possible because the function is called for every cell in the con-
trol whenever the cell needs to be formatted. You could add the following function to the Form1 class
that is a handler function for the CellFormatting event:

private:
void OnCellFormatting(Object^ sender, DataGridViewCellFormattingEventArgs^ e)
{
// Check if it’s the date column
if(dataGridView->Columns[e->ColumnIndex]->Name == L”Date”)
{
// If the cell content is not null and the year is less than 2000
// Set the background to red
if(e->Value != nullptr && safe_cast<DateTime^>(e->Value)->Year < 2000)
{
e->CellStyle->BackColor = Color::Red;
e->FormattingApplied = false;         // We did not format the data

}
}

}

Don’t forget, any code that you add manually to a form class definition must go after the #pragma
endregion directive. You first check whether the current column is the Date column because you are
interested only in modifying cells in that column. For cells in the Date column you check if the cell con-
tents actually exist, and if there is a DateTime object present, that the year is less than 2000. In this case
you set the BackColor property for the object returned by the CellStyle property to Color::Red. You
set the FormattingApplied property to false to indicate that you have not formatted the contents.
This is not strictly necessary because the value starts out as false. You would set it to true if you were
taking care of formatting the contents in the handler and this would prevent subsequent formatting
using the value of the Format property.

To register this function as a handler for the CellFormatting event, add the following statement to the
end of the Form1 class constructor:

dataGridView->CellFormatting += 
gcnew DataGridViewCellFormattingEventHandler(this, &Form1::OnCellFormatting);

The first argument to the delegate is the handle to the object containing the handler function and is the
current Form1 object. The second argument is the address of the function that is the new handler for the
event. If you recompile the example and execute it once again, you should see that all the cells in the
Date column that contain a date prior to the year 2000 have the background color red.

The DataGridView control defines CellMouseEnter and CellMouseLeave events that fire when the
mouse cursor enters or leaves a cell. You could implement handlers for these events to highlight the
cell that the mouse cursor is over by changing its background color. You could set new background
and foreground colors in the handler for the CellMouseEnter event and restore the original colors in
the handler for the CellMouseLeave event. There are a few tricky aspects to this, so it’s worth looking
into specifically.

1285

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1285



Try It Out Highlighting the Cell under the Mouse Cursor
This will be an extension to Ex23_02 including the latest addition of the CellFormatting event handler
rather than a new example from scratch. You’ll need to store the old background and foreground colors
somewhere, so add the following private data members to the Form1 class:

// Stores for old cell colors in mouse enter event handler
// for restoring later in mouse leave event handler
private: Color oldCellBackColor;             
private: Color oldCellForeColor;

You should initialize both of these to Color::Empty in the Form1 class constructor.

The first parameter to the delegate for either the CellMouseEnter or CellMouseLeave events is a handle
to the object originating the event, which is the DataGridView control. The second parameter to both dele-
gates is a handle to an object of type DataGridViewCellEventsArg that provides additional information
about the event. This object has RowIndex and ColumnIndex properties, and the values of these properties
enable you to locate the cell the mouse is entering or leaving; you can use the former to index the Rows
property to select the row that contains the cell and the latter to index the Cells property to select the cell
itself within the row. There’s one thing to note — the value of the RowIndex property is -1 when the mouse
cursor is in the column header row and the ColumnIndex property value is -1 when the mouse cursor is
over one of the row headers. You’ll need to check for these possibilities because attempting to use a nega-
tive index with the Rows property value causes an exception to be thrown, as does indexing the Cells
property for a row with a negative value.

You can now define a private handler function in the Form1 class for the CellMouseEnter event like this:

private:
void OnCellMouseEnter(Object^ sender, DataGridViewCellEventArgs^ e)
{
if(e->ColumnIndex >= 0 && e->RowIndex >= 0)    // Verify indexes non-negative 
{
// Identify the cell we have entered
DataGridViewCell^ cell =

dataGridView->Rows[e->RowIndex]->Cells[e->ColumnIndex];

// Save any old colors that are set
oldCellBackColor = cell->Style->BackColor;
oldCellForeColor = cell->Style->ForeColor;

// Set highlight colors
cell->Style->BackColor = Color::White;
cell->Style->ForeColor = Color::Black;

}
}

After establishing that both index values are non-negative, you obtain the handle for the cell that the
mouse cursor entered. You do this by first selecting the row by indexing the value of the Rows property
for the control with the RowIndex property value for the parameter e; you then index the Cells prop-
erty of the row using the ColumnIndex property of e to select the cell within the row.

1286

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1286



After you have the cell handle, it’s easy to save the values of the BackColor and ForeColor properties
from the Style property of the cell and set new colors to display the cell as black text on a white back-
ground. The Style property may not have been set, in which case accessing the property value creates a
new DataGridViewCellStyle object as the value that has BackColor and ForeColor property values
as Color::Empty. If the Style property for the cell has been set, you’ll get the object containing what-
ever properties have been set for it.

The handler function for the CellMouseEnter event has to restore the color back to what is was. You
can implement this handler function like this:

private:
void OnCellMouseLeave(Object^ sender, DataGridViewCellEventArgs^ e)
{
if(e->ColumnIndex >=0 && e->RowIndex >=0)
{
// Identify the cell we are leaving
DataGridViewCell^ cell =

dataGridView->Rows[e->RowIndex]->Cells[e->ColumnIndex];

// Restore the saved color values
cell->Style->BackColor = oldCellBackColor;
cell->Style->ForeColor = oldCellForeColor;

// Reset save stores to no color
oldCellForeColor = oldCellBackColor = Color::Empty;

}
}

Again you check that the index values are non-negative before doing anything. After identifying the cell as
in the previous handler, you restore the saved colors in the Style property for the cell. The way in which
the foreground and background colors for a cell are determined is by the priority list you saw earlier. If the
Style property had not been set for the cell, the values you restore are Color::Empty and this is ignored
when the colors for the cells are determined. Thus, the original color applies. If the Style property had
been defined with ForeColor and BackColor properties set, these are the values you restore, and they
determine the cell formatting colors.

To register the function handlers, add the following statements to the end of the Form1 class constructor:

dataGridView->CellMouseEnter +=
gcnew DataGridViewCellEventHandler(this, &Form1::OnCellMouseEnter);

dataGridView->CellMouseLeave +=
gcnew DataGridViewCellEventHandler(this, &Form1::OnCellMouseLeave);

The same delegate applies to all cell events, so you register both handlers using the
DataGridViewCellEventHandler delegate.

If you recompile the program a run it once again, you should see highlighting of cells in action, as illus-
trated in Figure 23-11.

Well, it certainly works — at least most of the time. However, the red cells in the Date column aren’t high-
lighted, so what’s going on?

1287

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1287



Figure 23-11

The sequence of events is at the root of the problem. The CellFormatting event is triggered after the
CellMouseEnter event, so the handler function that sets the background color to red has the last word
and overrides the effect of the handler for the CellMouseEnter event. What you want to happen is that
the CellFormatting event handler should recognize that the cell is highlighted and do nothing when
this is the case. You could provide for this by adding another member to the Form1 class that stores the
handle to the cell that is currently highlighted:

private: DataGridViewCell^ highlightedCell;     // The currently highlighted cell

You should also initialize this new member to nullptr in the Form1 class constructor.

You now need to amend the handler for the CellMouseEnter event to store the handle for the highlighted
cell in the new member:

void OnCellMouseEnter(Object^ sender, DataGridViewCellEventArgs^ e)
{
if(e->ColumnIndex >= 0 && e->RowIndex >= 0)    // Verify indexes non-negative 
{
// Identify the cell we have entered
highlightedCell = dataGridView->Rows[e->RowIndex]->Cells[e->ColumnIndex];

// Save any old colors that are set
oldCellBackColor = highlightedCell->Style->BackColor;
oldCellForeColor = highlightedCell->Style->ForeColor;

// Set highlight colors
highlightedCell->Style->BackColor = Color::White;
highlightedCell->Style->ForeColor = Color::Black;

}
}

You can change the implementation of the handler for the CellMouseLeave event to the following:

void OnCellMouseLeave(Object^ sender, DataGridViewCellEventArgs^ e)
{

1288

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1288



if(e->ColumnIndex >=0 && e->RowIndex >=0)
{

// Restore the saved color values
highlightedCell->Style->BackColor = oldCellBackColor;
highlightedCell->Style->ForeColor = oldCellForeColor;

// Reset save stores to no color
oldCellForeColor = oldCellBackColor = Color::Empty;

highlightedCell = nullptr;         // Reset highlighted cell handle
}

}

You no longer need to determine the cell handle, as it’s available in the highlightedCell member of
the Form1 class. You don’t even have to check it, because a CellMouseLeave event must always be pre-
ceded by a CellMouseEnter event. You reset the handle of the highlighted cell to null because it’s good
practice to do so.

You can now amend the handler for the CellFormatting event:

void OnCellFormatting(Object^ sender, DataGridViewCellFormattingEventArgs^ e)
{
// Check whether the cell is highlighted
if(dataGridView->Rows[e->RowIndex]->Cells[e->ColumnIndex] == highlightedCell)
return;

// Check if it’s the date column
if(dataGridView->Columns[e->ColumnIndex]->Name == L”Date”)
{

// If the cell content is not null and the year is less than 2000
// Set the background to red
if(e->Value != nullptr && safe_cast<DateTime^>(e->Value)->Year < 2000)
{

e->CellStyle->BackColor = Color::Red;
e->FormattingApplied = false;         // We did not format the data

}
}

}

If you rebuild the example, you should now see that any of the cells can be highlighted by moving the
mouse cursor over them.

You should now have a good idea of how you can implement an event handler for a DataGridView con-
trol. There are a multitude of other events, so you have huge scope for doing many more things dynami-
cally to customize the control to your application needs.

1289

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1289



Using Bound Mode
In bound mode, the source of the data that a DataGridView control displays is specified by the value of
its DataSource property, which in general you can set to be any ref class object of a type that imple-
ments any of the interfaces shown in the following table.

You can obviously design your own classes so that they implement one or other of these interfaces, and
then you’ll be able to use them as a data source for a DataGridView control in bound mode. Most of the
time, though, you’ll want to access an existing data source without having to go to the trouble of creating
your own classes to access the data in which case the BindingSource component is likely to be your first
choice.

The BindingSource Component
You use the BindingSource component as an intermediary between controls on a form and a table in a
data source. You have the option of binding the component to a DataGridView control that displays the
contents of the table, or to a set of individual controls where each displays a column from the table. You
can also add data programmatically to a BindingSource component, in which case it acts as the data
source and behaves essentially as a list.

Interface Description

System::Collections::Ilist A class that implements this interface represents a collection
of objects that can be accessed through a single index. All
C++/CLI one-dimensional arrays implement this interface,
so a DataGridView object can use any one-dimensional
array as the source of the data that is displayed.

The IList interface inherits the members of the
ICollection and IEnumerable interface classes that 
are defined in the System::Collections namespace.

System::ComponentModel::
IListSource

A class that implements this interface makes the data
available as a list that is an IList object. The list can 
contain objects that also implement the IList interface.

System::ComponentModel::
IBindingList

This interface class extends the IList interface class to allow
more complex data binding situations to be accommodated.

System::ComponentModel::
IBindingListView

Adds sorting and filtering capabilities to the IBindingList
interface.

The BindingSource class that you’ll meet a little later in
this chapter defines a control that implements this interface.

1290

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1290



You’ll first look at how you use a BindingSource component as the data source for a DataGridView
control. There is a high degree of automation possible in creating a program that uses a BindingSource
component, but to get an idea of how the component hooks up with the control, you’ll assemble the
components on the form manually in the first instance. To make a BindingSource component the data
source for a DataGridView control, you set the value of the DataSource property for the control to be
the handle that references the BindingSource component.

Note that at the time of writing a bug in Visual Studio 2008 prevents the creation of the next example,
Ex23_03; this also affects the succeeding examples, Ex23_04 and Ex23_05. The symptoms of the 
bug are that the Data Source Configuration Wizard dialog that you use to associate a database with 
the DataGridView component in the application only displays the icon that you use to choose an
object as the data source, so you have no possibility to choose a database. 

The example can be created with Visual Studio 2005 and has been tested in that environment. The rest
of screenshots shown in this chapter are also from Visual Studio 2005, but the screenshots from Visual
Studio 2008 should be virtually identical. Hopefully by the time you are reading this, the bug will be
fixed and will not be apparent in your version of Visual Studio 2008. If you do experience the bug, it 
is a good idea to see whether there are any updates for the product by selecting the Check for Updates
menu item from the Help menu.

Try It Out Using a BindingSource Component
Here you’ll put together a simple program to view a database table. I’ll describe the process assuming you
are using the Northwind database that you used back when you were working with the MFC, but you can
use any database you have available on your system.

Create a new Windows Forms project with the name Ex23_03 and change the Text property for the form
to something helpful such as Using a Binding Source Component. Add a DataGridView control to
the client area of the form and change its Name property to dataGridView. You can also set the Dock
property value for the control to FILL. At the moment, the DataGridView control is unbound, so you
need to add a data source to the project that you can bind to the control, and this process will create the
BindingSource component along the way. Click the small arrow at the top right of the control to dis-
play its menu, click the arrow for the list box adjacent to the Choose Data Source menu item, and click
the Add Project Data Source link. This displays the dialog box shown in Figure 23-12.

The same dialog box is displayed if you select the Data > Add New Data Source menu item from the
main menu, but this only adds the data source to the project — it does not associate it with a control. As
you see, you have a choice of two locations for the data source, but here you want to click the Database
option. The second option allows you to specify an object that provides the data source defined either
within the project or within some other assembly that you have created.

After selecting the Database option and clicking the Next button, you’ll see the dialog box shown in
Figure 23-13.

The existing data connections that you have set up appear in the drop-down list, and you can choose one
of those. You can also click the New Connection button to set up a new connection to a data source. This
displays the Add Connection dialog box shown in Figure 23-14.

1291

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1291



Figure 23-12

Figure 23-13

1292

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1292



Figure 23-14

Here you can enter the data source specification as a name, or you can enter a connection string for the
data source by clicking the second radio button. After you have entered any necessary login information,
you can test that the connection really does work by clicking the Test Connection button. On my system,
the ODBC source is preselected, but if you don’t want the default that you see displayed, you can click the
Change button to display the Change Data Source dialog box shown in Figure 23-15.

Figure 23-15

The dialog box displays the types of data sources that you have available, and you choose the type of data
source that you want to work with and click the OK button. You’ll then return to the dialog box shown in
Figure 23-14 where you can complete the identification and verification of the data source before clicking

1293

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1293



the OK button to return to the dialog shown in Figure 23-13. When you click the Next button, you are likely
to see a message box asking if you want to add the data source to the project; clicking the Yes button then
displays the dialog box shown in Figure 23-16 where you can choose the objects in the database that you
want to work with.

Here you can choose which database objects you want added to the project. You do this by expanding the
tree so you can select the individual tables you want to work with, or even individual fields within a table.
For this example, you can keep it simple and choose just the Customers table. You can also change the
name of the dataset — I changed it to Customers. When you click the Finish button, the wizard creates
the code that you need to access the database.

The database is encapsulated in a class derived from the DataSet class. Each database table that 
you select results in a class derived from the DataTable class being defined as an inner class to the
DataSet class. There is also a table adapter class for each DataTable in the DataSet class that has
the job of establishing the connection to the database and loading the data from the database table
into the corresponding DataTable member of the DataSet object. This results in a considerable
amount of code being generated; with just the Customers table in the Northwind database selected
you get nearly 2000 lines of code. It also adds a BindingSource component to the project that pro-
vides the interface between the Customers table in the Northwind database and the DataGridView
control. The Design tab in the editing window should look like Figure 23-17.

You can see that three objects have been added to the project as a result of adding the data source: the
NorthWindDataSet object that encapsulates the database, the CustomersTableAdapter object that
accesses the data in the Customers table in the database, and the CustomersBindingSource object that
manages the communications between the database and the DataGridView control.

Figure 23-16

1294

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1294



Figure 23-17

The application is now complete, and so far you have not written a single line of code. That’s quite remark-
able considering the amount of function you have in the program; however, when I ran the program, the
column headers look a little cramped. I prefer the column widths to be set to accommodate the text in the
rows, so I couldn’t resist adding the following two lines of code to the Form1 class constructor:

dataGridView->AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode::AllCells;
dataGridView->AutoResizeColumnHeadersHeight();

The application window now looks as shown in Figure 23-18.

Figure 23-18

1295

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1295



You can use the scrollbars to navigate the data and your mouse wheel should scroll the rows. The
BindingNavigator control could improve things a bit, so next you’ll see how to use that.

Using the BindingNavigator Control
The BindingNavigator control has been specifically designed to work with a BindingSource compo-
nent. To use a BindingNavigator control to navigate the data from a data source could not be simpler;
you just add the control to the form and set the value of the BindingSource property for the control to the
variable encapsulating the BindingSource component. The next Try It Out extends Ex23_03 to do that.

Try It Out Using a BindingNavigator Control
Click the BindingNavigator control in the Toolbox window and then click in the client area of the form
to add it to the project. If you open the Properties window for the control, you are able to set the value
for the BindingSource property to customersBindingSource, which is the name of the handle to the
BindingSource control that encapsulates the Customers table. That’s it; you’re done. If you recompile
and rerun the application, you see that the application window now has a toolbar for navigating the data,
as shown in Figure 23-19.

Figure 23-19

You can click the button arrows to progress forward and backward through the data records, and there are
also buttons to go to the first or last records. If you type a record sequence number in the text box on the
toolbar and press Enter, you’ll go directly to that record. The ability to navigate through the records works
in whatever sequence they are in. You could sort the records in country order by clicking the header for the
Country column to sort the records, and you’ll then be able to navigate through them in that sequence. The
BindingNavigator control also provides buttons for adding a new record and deleting a record.

Each of the buttons provided by the BindingNavigator control connects to a member of the
BindingSource object being navigated.

1296

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1296



Thus clicking a button on the navigator toolbar initiates an action in the BindingSource object that is
managing the data source, but none of the default operations change the database that the BindingSource
component is managing. To do that you must write some code.

Try It Out Updating a Database
You are going to have to do something extra when the user clicks a button in the BindingNavigator
control to add a new record or to delete a record. The way to do this is to implement a handler function
to deal with a Click event for the buttons.

Toolbar Control Action

Move First Calls the MoveFirst() function for the BindingSource control
object, which changes the current record for the underlying data
source to be the first record.

Move Previous Calls the MovePrevious() function for the BindingSource con-
trol object, which changes the current record for the underlying
data source to be the previous record if there is one.

Current Position Corresponds to the value of the Current property for the
BindingSource object, which is the current record in the underly-
ing data source.

Total Number of Items Corresponds to the value of the Count property value for the
BindingSource object, which corresponds to the number of
records in the underlying data source.

Move Next Calls the MoveNext() function for the BindingSource control
object, which changes the current record for the underlying data
source to be the next record if there is one.

Move Last Calls the MoveLast() function for the BindingSource control
object, which changes the current record for the underlying data
source to be the last record.

Add New Calls the AddNew() function for the BindingSource object. This
has the effect of calling EndEdit() to execute any pending edit
operations for the underlying data source and creates a new record
in the list maintained by the BindingSource object. This does not
update the underlying data source.

Delete Calls the RemoveCurrent() function for the BindingSource
object to remove the current record from the list. This does not
modify the underlying data source.

1297

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1297



As you already know, you can add a Click event handler for a button by double-clicking the button in
the Design tab, so add handler functions for the Add New and Delete buttons on the toolbar. When you
click either button at the moment, everything has been put in place in the BindingSource component to
allow the database to be updated. All you have to do is call the Update() function for the table adapter
object for the table that is to be updated. This function throws an exception if things go wrong, so you
must put the call in a try block and catch any exception that may be thrown. Here’s how you can
implement the handler function for the Add New button Click event:

System::Void bindingNavigatorAddNewItem_Click(System::Object^  sender,
System::EventArgs^  e) 

{
try
{
CustomersTableAdapter->Update(Customers->_Customers);

}
catch (Exception^ ex)
{
MessageBox::Show(L”Update Failed!\n”+ex,

L”Database Record Update Error”,
MessageBoxButtons::OK,
MessageBoxIcon::Error);

}
}

The argument to the Update() function must be the name of the data table that contains the values that
are to be written to the database, so in this case it’s the _Customers member of the Customers object in
the Form1 class. If things don’t go as well as expected, you display a message box explaining the prob-
lem. The message box shows the text from the Exception object that was thrown, and this explains the
cause of the problem.

The implementation of the Click event handler for the Delete button is almost identical:

private: System::Void bindingNavigatorDeleteItem_Click(System::Object^  sender,
System::EventArgs^  e) 

{
try
{
CustomersTableAdapter->Update(Customers->_Customers);

}
catch (Exception^ ex)
{
MessageBox::Show(L”Delete Failed!\n”+ex,

L”Database Record Delete Error”,
MessageBoxButtons::OK,
MessageBoxIcon::Error);

}
}

The only difference is in the text in the message box. With these two handler functions in place, you
should be able to add new customer records and delete existing records.

1298

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1298



Binding to Individual Controls
You can also create a Windows Forms application that binds each column on a database table to a separate
control; what’s more, you’ll find this easier and quicker than the previous example. Start by creating a new
CLR project using the Windows Forms Application template with the name Ex23_04. The next step is to
add a data source to the project, and again you will be working with a single table. Press Shift+Alt+D to
display the Data Sources window and click Add New Data Source. You can use the Northwind database
or a database of your choice, but keep in mind that you have a separate control on the form for each column
in the table that you choose. To keep the number of controls manageable, for the Northwind database I sug-
gest you select the Order Details table, as shown in Figure 23-20, because it has only five columns.

Figure 23-20

When you click the Finish button, the Data Sources window shows the Northwind database as the
data source with just the Order Details table available. Click the Order Details table name to select
it and then click the down arrow to the right to display the menu shown in Figure 23-21.

The top three menu items enable you to choose the controls to be used with the table when you add the
data source to the form. If you click the DataGridView item from the menu, you are selecting that con-
trol as the one to be for displaying the table, whereas clicking on the Details item indicates you want
one control per table column. If you click the [None] item, you are indicating you want no controls to
be created when you add the data source to the form. The last menu item opens a dialog box for chang-
ing the default control for the table from the current default of DataGridView and for customizing the
choice of controls. In this instance, you should just click Details because you want one control for
each table column.

1299

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1299



Figure 23-21

You now have to decide which control you want to use for each table column. You can extend the tree
that shows the column names in the Order Details table name by clicking the + symbol to the left of
the table name. If you then click the first column name to select it, you’ll see that you can display a menu
for that, too, by clicking the down arrow. The menu is shown in Figure 23-22.

Figure 23-22

You can choose any of the controls shown in the menu, but I suggest a TextBox control is most appro-
priate for the OrderID column. You need to repeat the process for each table column; you can choose a
NumericUpDown control for the Quantity column and select a TextBox control for each of the others.

Note that selecting the Customize menu option in the Data Sources pane shown in Figure 23-22 dis-
plays the Options dialog box in which you can change the selection of controls available for displaying

1300

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1300



different types of data. You can also change the control to be selected by default when you drag an item
from the Data Sources pane to a form. Figure 23-23 shows the Options dialog box.

Figure 23-23

Figure 23-23 shows the controls associated with displaying a list, and there is a separate list of associated
controls for each of the data types you can select. I have checked the ComboBox and ListBox controls in
addition to the DataGridView default, so all three controls are options for displaying a list of data items.
You can choose other data types in the drop-down list box at the top of the dialog box for which you want
to modify the choice of controls available.

The final step to create the program is to drag the Order Details table from the Data Sources win-
dow to the client area of the form window. The Design tab in the Editor pane will then look similar to
that shown in Figure 23-24.

I have changed the Text property for the form to make the text in the title bar a little more relevant, and I
repositioned the controls slightly so they are better located within the client area. I also rearranged the
items in the grey area at the bottom to make them all visible in the Design pane. You can see that five
controls corresponding to the five table columns have been added automatically to the form as well as
label controls to indicate which is which. There’s a BindingNavigator control at the top of the client
area for navigating the table data. Below the form you can see that the application has a BindingSource
component that links the database to the controls, and the DataSet and table adapter classes are also
identified.

If you press Ctrl+F5 to build and execute the program, you’ll have a complete working program for
viewing and editing the Order Details table in the Northwind database. There is a Save button that
has been added to the BindingNavigator toolbar that you click to store any changes you make back in
the database table. Figure 23-25 shows the application window.

1301

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1301



Figure 23-24

Figure 23-25

You could create a program that uses the DataGridView control to display a table in essentially the same
way. If you want to try it, just create another project and add the data source as in the previous example.
If you then immediately drag the table from the Data Sources window to the form, the application is
complete. You need only set the Text property for the form for the title bar text and set the value of the
Dock property for the DataGridView control before compiling and running the program.

Working with Multiple Tables
Creating an application that works with multiple tables is almost as easy as the previous example. In this
example, you’ll use a tab control to allow three different tables in the Northwind to be accessed. Create a
new Forms project with the name Ex23_05, and press Shift+Alt+D to open the Data Sources window.
Add the Northwind database to the project with the Customers, Products, and Employees tables checked.

1302

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1302



Add a TabControl control from the Containers group in the Toolbox window to the form and set the
Dock property value for the tab control to Fill. If you click the arrow at the top right of the control, you’ll
be able to add a third tab page to the control. You can move between the tabs on the TabControl control
using the Tab key, or by clicking the tab page label twice; take care not to double-click the control or you’ll
generate handler functions for it. Move to the first tab page and set its Text property value to Employees.
You can then set the Text property value for the other two tabs to Customers and Products.

You should also add a Panel control to each tab page with its Dock property value set to Fill. This is nec-
essary to locate the BindingNavigator and DataGridView controls properly on the tab page. If you add
them directly to the tab, setting the DataGridView Dock property to Fill with the BindingNavigator
control docked to the top of the tab page, the column headers for the DataGridView control are hidden by
the BindingNavigator control. This won’t happen within a Panel container. You might also want to
change the Text property value for the form to something relevant — I made it “Accessing Multiple
Tables”.

You can now drag the Customer table from the Data Sources window to the panel on the tab page
labeled Customers. A DataGridView control is added to the panel, and a BindingNavigator control
appears at the top of the form. You’ll want each tab page to have its own BindingNavigator control, so
having it placed on the form is not convenient. You’ll need to move it to the panel on the tab page. You
can do this by first setting the Dock property value for the BindingNavigator control to None and then
dragging the control on to panel on the Customers tab page.

After you have added the table to the Customers tab page, switch to the next tab before dragging the next
table on to its panel from the Data Sources window. When you have added the appropriate table to the
panels on the other two tab pages, they each contain a DataGridView control, but no BindingNavigator
control — this was not added because you have one already from adding the Customers table. You could
add BindingNavigator controls to these tab pages from the Toolbox window, but there’s a shortcut you
can use. Click the BindingNavigator control on the Customers tab page and press Ctrl+C to copy it to
the Clipboard. Switch to one of the other tab pages, select its panel, and press Ctrl+V to copy the control
from the Clipboard to the panel on the tab page. Switch to the third tab page, select its panel, and then
press Ctrl+V once more to add a BindingNavigator control to the panel on that tab page. You can then
set the Dock property value for each of the three BindingNavigator controls to Top and the Dock prop-
erty value for each of the DataGridView controls to Fill.

The two BindingNavigator controls that are copies have their BindingSource property values set
incorrectly, so select the value field for the property for each of these controls and select the correct
BindingSource component from the drop-down list. You should select EmployeesBindingSource for
the control on the Employees tab page, and ProductsBindingSource for the control on the Products
tab page.

If you press Ctrl+F5 to build and execute the example, you should see the application window shown
in Figure 23-26.

This all works with no coding at all. I think you’ll agree that this is an amazing capability for generating
applications to access data sources.

1303

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1303



Figure 23-26

Summary
This has been a brief introduction to the capabilities you have for accessing data sources in a Windows
Forms application. There’s a great deal more you can do, but you should find that you now have a good
idea of how you use the design capability to assemble controls on a form and how the controls involved 
in data access work together. You’ll have few problems getting into other areas by yourself.

The key points you have learned about in this chapter include:

❑ A data source can be a relational database, a Web service, or an object.

❑ A class derived from the System::Data::DataSet class is used to encapsulate a data source,
and a class derived from the System::Data::DataTable class table encapsulates a table in a
data source.

❑ A row of data in a DataTable object is represented by an object of type
System::Data::DataRow, and the schema for a column is described by an object of type
System::Data::DataColumn.

❑ A connection to a data source and the commands to access the data are encapsulated in a 
component called a table adapter.

❑ You use a DataGridView control on a form to display data in the form of a rectangular grid.

❑ You can bind a DataGridView control to a data source to display the contents of a table. You
can also use a DataGridView control in unbound mode to display data originating in your 
program.

❑ You can customize a DataGridView control to modify how rows, columns, headers, and indi-
vidual cells are displayed.

❑ A BindingSource component provides an interface between a data source and controls on a
form. A BindingSource component can link the columns in a table to individual controls on 
a form, or it can link the contents of a table to a DataGridView control.

❑ A BindingNavigator control provides a toolbar for navigating data that you access via a
BindingSource component.

1304

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1304



Exercises
You can download the source code for the examples in the book and the solutions to the following exercises
from www.wrox.com.

1. Modify Ex23_04 so that the column headers are displayed in a 12-point italic font.

2. Modify Ex23_05 so the columns are wide enough to accommodate the text in each cell.

3. Modify Ex23_05 so that alternate rows of data on each tab page appear shaded. 

4. Create a Windows Forms application that displays the Suppliers table from the Northwind
database.

1305

Chapter 23: Accessing Data Sources in a Windows Forms Application

25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1305



25905c23.qxd:WroxPro  2/21/08  9:27 AM  Page 1306



A
C++ Keywords

Keywords have been assigned special significance within the C++ language, so you must not use
them as names within your programs. The Visual C++ 2008 compiler compiles programs written in
ISO/ANSI C++ and programs written for the CLR that conform to the C++/CLI specification, so the
compiler recognizes the set of keywords defined by ISO/ANSI C++ as well as the additional set of
keywords defined by C++/CLI. However, when programming in native C++, you need be concerned
only with the ISO/ANSI C++ keywords. When writing programs for the CLR, you need to be aware
of both sets of keywords.

ISO/ANSI C++ Keywords
The ISO/ANSI C++ language specification defines the following keywords.

asm do if return try

auto double inline short typedef

bool dynamic_cast int signed typeid

break else long sizeof typename

case enum mutable static union

catch explicit namespace static_cast unsigned

char export new struct using

class extern operator switch virtual

const false private template void

const_cast float protected this volatile

continue for public throw wchar_t

default friend register true while

delete goto reinterpret_cast

25905bapp01.qxd:WroxPro  2/21/08  9:30 AM  Page 1307



C++/CLI Keywords
The C++/CLI language specification defines the following keywords in addition to those defined for
ISO/ANSI C++.

enum class interface class ref struct

enum struct interface struct value class

for each nullptr value struct

gcnew ref class

Note that the word pairs are keywords, not necessarily the individual words; for example, for each
is a keyword, but each is not.

The C++/CLI language also defines a number of identifiers that are not keywords but have a context-
sensitive meaning in some circumstances. These are shown in the following list.

abstract in override

delegate initonly property

event internal sealed

finally literal where

generic

In principle you can still use these identifiers as names in your code because the context determines when
they have special significance, but I recommend that you treat them as keywords and do not use them for
other purposes. In that way you avoid any possibility for confusion on the part of someone else who may
be reading your code.

1308

Appendix A: C++ Keywords

25905bapp01.qxd:WroxPro  2/21/08  9:30 AM  Page 1308



B
ASCII Codes

The first 32 ASCII (American Standard Code for Information Interchange) characters provide con-
trol functions. In the following table, only the first 128 ASCII characters have been included. The
remaining 128 characters include further special symbols and letters for national character sets, so
there are many varieties of these to suit a wide range of language contexts.

Continued

Decimal Hexadecimal Character Control

000 00 null NUL

001 01 ☺ SOH

002 02 � STX

003 03 ♥ ETX

004 04 ♦ EOT

005 05 ♣ ENQ

006 06 ♠ ACK

007 07 � BEL (Audible bell)

008 08 Backspace

009 09 HT

010 0A LF (Line feed)

011 0B VT (Vertical tab)

012 0C FF (Form feed)

013 0D CR (Carriage return)

25905bapp02.qxd:WroxPro  2/21/08  9:31 AM  Page 1309



Decimal Hexadecimal Character Control

014 0E SO

015 0F ¤ SI

016 10 DLE

017 11 DC1

018 12 DC2

019 13 DC3

020 14 DC4

021 15 NAK

022 16 SYN

023 17 ETB

024 18 CAN

025 19 EM

026 1A → SUB

027 1B ← ESC (Escape)

028 1C ∟ FS

029 1D GS

030 1E RS

031 1F US

032 20 space

033 21 !

034 22 “

035 23 #

1310

Appendix B: ASCII Codes

25905bapp02.qxd:WroxPro  2/21/08  9:31 AM  Page 1310



Continued

Decimal Hexadecimal Character Control

036 24 $

037 25 %

038 26 &

039 27 ‘

040 28 (

041 29 )

042 2A *

043 2B +

044 2C ,

045 2D -

046 2E .

047 2F /

048 30 0

049 31 1

050 32 2

051 33 3

052 34 4

053 35 5

054 36 6

055 37 7

056 38 8

057 39 9

1311

Appendix B: ASCII Codes

25905bapp02.qxd:WroxPro  2/21/08  9:31 AM  Page 1311



Decimal Hexadecimal Character Control

058 3A :

059 3B ;

060 3C <

061 3D =

062 3E >

063 3F ?

064 40 @

065 41 A

066 42 B

067 43 C

068 44 D

069 45 E

070 46 F

071 47 G

072 48 H

073 49 I

074 4A J

075 4B K

076 4C L

077 4D M

078 4E N

079 4F O

1312

Appendix B: ASCII Codes

25905bapp02.qxd:WroxPro  2/21/08  9:31 AM  Page 1312



Continued

Decimal Hexadecimal Character Control

080 50 P

081 51 Q

082 52 R

083 53 S

084 54 T

085 55 U

086 56 V

087 57 W

088 58 X

089 59 Y

090 5A Z

091 5B [

092 5C \

093 5D ]

094 5E ^

095 5F _

096 60 ‘

097 61 a

098 62 b

099 63 c

100 64 d

101 65 e

1313

Appendix B: ASCII Codes

25905bapp02.qxd:WroxPro  2/21/08  9:31 AM  Page 1313



Decimal Hexadecimal Character Control

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j

107 6B k

108 6C l

109 6D m

110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

121 79 y

122 7A z

123 7B {

1314

Appendix B: ASCII Codes

25905bapp02.qxd:WroxPro  2/21/08  9:31 AM  Page 1314



The Unicode codes that have the same numerical code values as the ASCII codes in the table represent
the same characters. You’ll find comprehensive information on the Unicode character coding system at
www.unicode.org.

Decimal Hexadecimal Character Control

124 7C |

125 7D }

126 7E ~

127 7F delete

1315

Appendix B: ASCII Codes

25905bapp02.qxd:WroxPro  2/21/08  9:31 AM  Page 1315



25905bapp02.qxd:WroxPro  2/21/08  9:31 AM  Page 1316



C
Windows Message Types

The Windows operating system defines the type of system message that it sends to your applica-
tion by a symbolic constant such as WM_PAINT. The symbolic constant is composed of two parts: 
a prefix, WM in this case, that identifies the type of window that can process the message, and the
rest, PAINT in this case, that specifies what the window should do when the message is received.
The following table shows the message prefixes and the corresponding target window category.

Continued

Message Prefix Target Window Type

ABM Application desktop toolbar control

BM Button control

CB Combo box control

CBEM Extended combo box control

CDM Common dialog box control

DBT Device

DL Drag list box control

DM Default push button control

DTM Date and time picker control

EM Edit control

HDM Header control

HKM Hot key control

25905bapp03.qxd:WroxPro  2/21/08  9:32 AM  Page 1317



The symbolic constants that identify system messages have values in the range 0 to WM_USER-1, so this
range of values is reserved. An application can create messages for its own purposes and such messages
can have identifiers with values in the range from WM_USER (that corresponds to the value 0x0400) to
0x7FFF.

Message Prefix Target Window Type

IPM IP address control

LB List box control

LVM List view control

MCM Month calendar control

PBM Progress bar control

PGM Pager control

PSM Property sheet

RB Rebar control

SB Status bar control

SBM Scroll bar control

STM Static control

TB Toolbar

TBM Trackbar

TCM Tab control

TTM Tooltip control

TVM Tree view control

UDM Up-down control

WM General window

1318

Appendix C: Windows Message Types

25905bapp03.qxd:WroxPro  2/21/08  9:32 AM  Page 1318



In
de

x

Index

A
abstract classes, 539–542
abstract keyword, virtual functions in 

C++/CLI, 556
access control

access levels for inherited class members,
522–523

class inheritance and, 513–514
classes, 344

access specifiers, for classes and interfaces, 566
ActiveX Data Objects (ADO), 1120–1121
Add Event Handler, 816
Add Member Variable Wizard, 820–821
addition operators

concatenating strings, 473–476
overloading, 432–436

addition operators, C++/CLI, 494
AddNew(), CRecordset update operations,

1168–1169
addresses, returning, 265–266
address-of operators, 175–176
ADO (ActiveX Data Objects), 1120–1121
AFX_EXT_CLASS keyword, 1108
algorithms, 674–676
copy(), 669–672
fill(), 674
find(), 675
overview of, 605
replace(), 674
sort(), 623–624
transform(), 675–676

Alt+F9, setting breakpoints, 701
American National Standards Institute (ANSI), 5.

See also ISO/ANSI C++
American Standard Code for Information

Interchange (ASCII)
characters, 53–54
code, 1309–1315

analytical operators, 451–452
AND bitwise operators, 80–81

AND operators, 127
animate control, 988
anonymous unions, 419
application class (CWinApp), 772
application start-up, Windows Forms, 835
Application Verifier option, Debug menu, 703
Application Wizard

in automatically generated console programs,
47–48

creating applications, 28–30, 748
creating Win32 console applications, 14–19
creating Windows Forms applications, 30–33
creating simple C++ programs, 38
defined, 9
DLLs and, 1095
file menu print options, 1064
location of project files, 790–791
message maps, 806–807
print preparation and, 1070
serialization built into, 1048
tools for creating MFC-based Windows programs,

784
applications, writing, 3–4
Arc(), CCircle class, 855, 884
arguments
main(), 258–260, 275–276
omitting, 286–287
passing to functions, 247–251
pointers as, 283–285

arithmetic
calculations, 65–70
expressions, defined, 45
expressions, evaluating, 323–325
function objects for arithmetic operations, 673
pointers, 187–189

arithmetic operators, 449–451
arrays, 161–206
address-of operators, 175–176
buffer arrays, 300
char, 179–181
character arrays and string handling, 168–169

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1319



arrays (continued)
constant pointers and pointers to constants,

185–187
counting characters, 191–192
declaring, 163–166
defined, 162–163
delete operators, 195
dynamic memory allocation and, 194–199
exercises, 238
for arrays, 195–196
free store, using, 196–198
free store vs. heap, 194
helper functions, 913
indirect data access. See indirect data access
indirection operators, 176
initializing, 166–167
initializing pointers, 178–179
library functions for strings, 200–206
multidimensional. See multidimensional arrays
multiple data values of same type, 162–174
names as pointers, 189–191
new operators, 195
null-terminated strings, 200–206
of objects, 371–372
overview, 161, 911–912
passing to functions, 251–253
pointer arithmetic and, 187–189
of pointers, 181–183, 285
pointers, declaring, 175
pointers, generally, 174, 187–192
pointers, working with, 176–178
programming with strings, 170–171
references, declaring and initializing, 199–200
sizeof operators, 183–185
storing multiple strings, 173–174
string input, 169–171
summary, 236–237

arrays, C++/CLI, 206–238
arrays of arrays, 221–223
CLR, 209–213
comparing strings, 229
exercises, 238
interior pointers, 233–237
joining strings, 224–225
modifying strings, 227–229
multidimensional, 217–221
one-dimensional, searching, 215–217
one-dimensional, sorting, 213–214
overview, 206–207
searching strings, 230–233

sorting associated, 214
strings in, 224–227
summary, 236–237
tracking handles, 207–209
tracking references, 233

ASCII (American Standard Code for Information
Interchange)

characters, 53–54
codes, 1309–1315

assemblies
C++/CLI programming language, 565
defined, 25

assertions
C++/CLI debugging, 735–737
native C++ debugging, 708–709

assign()
deleting elements from a list, 634
replacing contents of a vector, 618

assignment operators
implementing for C++/CLI reference types, 503
overloading, 427–431

assignment statements
calculations, 65
casting, 77–78
defined, 45

associated arrays, C++/CLI, 214
associative containers, 651–665

defined, 606
map containers. See map containers, STL/CLR
multimap containers, 664–665
multiset containers, 651
overview of, 651
set containers, 651

associative containers, STL/CLR, 685–692
at(), accessing elements in vectors, 615–616
Attach to Process option, Debug menu, 704
attributes

defined, 6
GDI (Graphical Device Interface), 849

Audio Video Interleaved (AVI), 988
automatic variables, in storage duration and 

scope, 89
Automation, MFC extension DLLs, 1100
Autos window, debugger, 705–707
AVI (Audio Video Interleaved), 988

B
back(), accessing elements in vectors, 616
bad pointers, 263–264

1320

arrays (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1320



Base address, hash values and, 919–920
base classes

accessing private members of base class in a
derived class, 513–516

classed derived from, 510–511
indirect, 542–544
overriding functions in, 570
overview of, 509–510
pointers to, 535–537
references to, 537
specifying virtual functions, 532–533

begin(), random access iterators and, 609
BEGIN_MESSAGE_MAP(), 806–807
BeginTrans(), CDatabase transaction

operations, 1171–1172
binary predicates, 606
binary serialization, CLR, 1078–1079
binding, to individual controls, 1299–1302
BindingNavigator component

overview of, 1296
in System::Windows::Forms namespace, 1267
updating a database, 1297–1298
working with, 1296–1297

BindingSource component, 1290–1296
overview of, 1290–1291
in System::Windows::Forms namespace, 1267
working with, 1291–1296

bitmap images, adding to toolbar buttons, 842–843
bitwise operators, 79–86
AND, 80–81
exclusive OR, 83
NOT, 84
OR, 82–83
overview, 79
shift operators, 84–86

block scope, of automatic variables, 86
blocks, 47
body of functions

defined, 44
overview, 242–243

Boolean variables, 55
BooleanSwitch, switching debugging/tracing

on/off, 735–736
borders, window elements, 745
bound mode, DataGridView controls. See

DataGridView controls, in bound mode
bounding rectangles, CLine class, 877–880
boxing/unboxing class type values, C++/CLI

programming language, 554
breakpoints

advanced, 701–704

disabling, 701
setting, 700–701
tracepoints, setting, 702–703

brushes
creating, 859
creating in CLR, 1039
interior color created with, 855
using, 860

buddy controls, 1001
buffer arrays, 300
bugs

common, 697–698
defined, 695
finding next, 722
program, 696–697

Build Solution
building DLLs, 1105
Ctrl+Shift+B (Build), 797

Button controls
Windows Forms, 831
working with, 1224–1226

buttons
click events, 1238–1239
click-handler, 1253–1256
controlling visibility of, 1180–1181
labels, 1180

C
C++/CLI programming, defined, 5–6
calculations, 65–76

arithmetic operations as, 65–70
assignment statements, 65
const modifiers in, 67–68
constant expressions in, 68
displaying results of, 70
for input from keyboards, 68–69
lvalues in, 65
modifying variables, 71–72
operator precedence in, 74–76
overview, 65
for remainders, 70–71
for results, 69–70
rvalues in, 65
sequence of, 74–76
using increment and decrement operators, 72–74

calculators, 299–315
analysis for, 300–302
assembling program for, 309–311
blanks from strings, eliminating, 302
expressions, evaluating, 303–305

1321

calculators

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1321



calculators (continued)
extending program for, 311–312
functions in, 303
modified programs for, 314–315
numbers analysis, 306–309
overview, 299–300
substrings, extracting, 312–314
value of terms, 305–306

calculators, C++/CLI programming, 322–328
arithmetic expressions, 323–325
input strings, removing spaces from, 323
numbers evaluation, 325–326
substrings, extracting, 327–328
value of terms, 325

call stack, debugging programs and, 715–716
cancel button

controlling visibility, 1180–1181
implementing cancel operation, 1185

CancelUpdate(), CRecordset update
operations, 1168–1169

capacity(), vector containers, 611
CArchive class, 1050–1052
CArray template class

helper functions, 913
overview of, 911–912

case labels, 132
case values, 131
cases, sharing, 133–134
<cassert> header, 708
casting, 76–79

assignment statements, 77–78
explicit, 78–79
old-style, 79
operands, rules for, 76–77

catch block, 289–291
Category ID field, in relational database application,

1115
CBox class, 508–509
CBox class

adding data members, 456–457
adding function members, 458–462
adding global functions, 463–465
addition operators, overloading, 432–436
analyzing CBox objects, 451–452
basic operations, 447
combining CBox objects, 449–451
comparing CBox objects, 448–449
constructor, 457
defining, 455–456

implementing, 447–448
multifile project, 453–455
simple destructor, 410–412
using, 465–468

CBox objects
analyzing, 451–452
combining, 449–451
comparing, 448–449
operator function and, 421

CBrush objects
creating, 859
setting color with, 855
using, 860

CButton class, 987
CCircle class

constructor for, 883–884
drawing circles, 884
implementing, 883
overview, 882

CClientDC class, 852, 888
CCmdUI, member functions, 825
CCurve class

defining, 925–927
drawing, in a window, 884–885
exercising, 925–927
implementing, 927–928

CCustomerView dialog, 1205–1207
CDatabase class, 1128, 1171–1172
CDate class, 1207
CDC class

circles, 854–856
displaying graphics, 852–853
drawing modes, 886
lines, 853–854
overview of, 852

CDialog class
adding, 990–992
developing, 1258–1260
for edit boxes, 1023–1024
for list boxes, 1019–1020
overview of, 986

CDocument class, 780
CElement class. See also elements

adding pen widths to elements, 
999–1000

class definitions, 874–875
CText derived from, 1026
defining element classes, 870–873
getting elements to move themselves, 961

1322

calculators (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1322



serializing element classes, 1048, 1058–1059
storing temporary elements, 873–874

cell styles
DataGridView cell style properties, 1275–1276
dynamically setting for DataGridView control,

1284–1289
headers, customizing, 1276–1277
nonheaders, customizing, 1277

CellFormatting events, 1284–1289
CFile object, CArchive class and, 1050
CFont class, 1030
CFrameWnd class, 773
char, 179–181
char array, 412
character

ASCII codes, 1309–1315
data types, 53–54

character arrays,  string handling an, 168–169
child windows, window elements, 745
Choose menu item

click event, 1260–1263
dealing with, 1257

Circle class, defining circles for CLR drawings,
903–904

circles
defining for CLR drawings, 903–904
drawing, 854–856, 884

class constructors, 351–358
adding to CBOX class, 351–353
C++/CLI programming, 557
calling, 516–519
CCircle class, 883–884
CLine class, 875
CRectangle class, 881
defaults, 353–355
defined, 351–358
in derived classes, 516–519
initializing, 358
modifying, 823
parameter values, assigning, 355–356
parameter values, supplying, 356–357
working with, 351–353

class definitions
CElement class, 874–875
message handlers, 807–809
serialization in document class and, 1048–1049

class destructors
for CMessage class, 413–415
default destructor, 410–412
overview of, 409–410

class hierarchy, multiple levels of, 544
class inheritance, 507–599

access control, 513–514
access levels, for inherited class members,

522–523
accessing private members of base class, 514–516
base classes, 509–510
constructors, in derived classes, 516–519
copy constructors, in derived classes, 524–528
defined, 509
derived classes, 510–513
exercises, 597–599
friend classes, 530
multiple levels of, 542–544
native C++ compared with C++/CLI, 558
OOP basic concepts, 507–509
overview of, 507
protected members, 519–522
summary, 596–597
virtual functions. See virtual functions
working with inherited functions, 531–532

class inheritance, C++/CLI, 555–558
access specifiers, 566
boxing/unboxing class type values, 554
class libraries, creating, 566–568
class libraries, using, 568–570
classes, generic, 585–588
classes and assemblies and, 565
collection classes, generic, 590–595
delegates, calling, 574–576
delegates, creating, 571–574
delegates, declaring, 571
delegates, overview, 571
delegates, unbound, 576–579
derived reference classes, 558–560
destructors and finalizers, in reference classes,

583–585
event handling, 581–583
events, 571
events, creating, 580–581
exercises, 597
functions, specifying new, 570–571
interface classes, defining, 561–562
interface classes, generic, 589–590
interface classes, implementing, 562–565
overview of, 553–554
summary, 596–597
virtual functions, 555–558
visibility specifiers, 565

class interface, 446–447

1323

class interface

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1323



class libraries, C++/CLI
creating, 566–568
using, 568–570

class members
access levels for inherited, 522–523
as friends, 528–529, 530
interface classes, 561
private, 513
protected, 519–522
public, 513

class objects
pointers to, 535–537
storing in vector containers, 618–622

class properties, C++/CLI, 390–403
indexed properties, complex, 401–402
indexed properties, defining, 397–398
indexed properties, working with default, 398–401
overview, 390–403
reserved property names, 403
scalar properties, defining, 390–393
scalar properties, working with, 393–397
static properties, 402–403
trivial scalar properties, 393

class templates
defining, 438–440
member functions, 440–441
with multiple parameters, 444–446
objects created from, 441–444
overview of, 438

Class View, defining CBox class, 455–456
Class View tabs, 17
Class Wizard, adding dialog class with, 990
classes, 343–351

access control, 344
adding to MFC extension DLLs, 1103–1104
addition operators, overloading, 432–436
anonymous unions, 419
arrays of objects of, 371–372
assignment operators, overloading, 427–431
casting between, 550
CBox class, adding data members, 456–457
CBox class, adding function members, 458–462
CBox class, adding global functions, 463–465
CBox class, analyzing CBox objects, 451–452
CBox class, combining CBox objects, 449–451
CBox class, comparing CBox objects, 448–449
CBox class, constructor for, 457
CBox class, defining, 455–456
CBox class, implementing, 447–448
CBox class, multifile project with, 453–455
CBox class, using, 465–468

class definitions, 793–797
class interface, 446–447
class templates, 438
class templates, defining, 438–440
class templates, member functions, 440–441
class templates, objects created from, 441–444
class templates, with multiple parameters,

444–446
CMessage class, 413–415
comparison operators, overloading, 424–426
const objects of, 368–371
constructors, 351
constructors, modifying, 823
context menus, associating with, 945–946
copy constructors, 415–417
data members of, 345–347
declaring objects of, 344–345
default destructor, 410–412
defining, 344
destructors, 409–410
document templates, 783
dynamic memory allocation, 412–413
exercises, 504–505
first, 340–342
incomplete definitions, 538
increment and decrement operators, overloading,

436–437
inline functions, 350–351
member function definitions, positioning, 349–350
member functions of, 347–349
menu messages, 817
nested classes, 550–553
operations on, 342–343
operator overloading, 420–423
overview, 340–343
overview of, 409
pointers to objects of, 376–379
private members, 358–366
program code, file names, 470–471
program code, organizing, 468
references to objects of, 376–379
serialization, 1054
serialization, preparing for, 1080–1081
static members, 373–376
STL templates, 601
strings, accessing/modifying, 476–480
strings, comparing, 480–484
strings, concatenating, 473–476
strings, creating string objects, 471–473
strings, overview, 471
strings, searching, 484–489

1324

class libraries

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1324



strings, sorting words from text, 489–494
summary, 503–504
terminology of, 343
this pointer, 366–368
typeid(), for determining class type, 1063
unions, between variables, 417–419
unions, in classes and structures, 419
viewing, 792–793
Windows applications, 783–784

classes, C++/CLI, 494, 565–568
access specifiers for, 566–568
assignment operators, implementing, 503
decrement operators, overloading, 499–500
exercises, 504–505
reference classes, overloading, 500–502
reference types, implementing, 503
summary, 503–504
value classes, overloading, 494–498
visibility specifiers for, 565

ClassView context menu, 785, 792–793
ClassWizard, 806
clear(), deleting elements from a list, 633
CLI (Common Language Infrastructure), 2
click events

buttons, 1238–1239, 1253–1256
Choose menu item, 1260–1263
context menus, 1256–1257
input validation, 1242–1244

client area
drawing, 765–766
drawing in a window and, 848
redrawing, 758, 869–870
window elements, 745

client coordinates
dealing with, 940–941
overview of, 939
pixels for measuring, 1009

CLine class
bounding rectangles, 877–880
constructor for, 875
drawing lines, 875
implementing, 875
Move(), 961
normalized rectangles, 880
overview of, 875

CList class, 913–918
adding elements to a list, 913–915
deleting objects from a list, 917
drawing a curve, 924–925
helper functions for a list, 917–918
iterating through a list, 916

overview of, 913
searching a list, 916–917
working with, 923

CLR (Common Language Runtime)
arrays, 209–213
calculator program for, 322–328
console applications, 7
console projects, 24–26
debugging CLR programs, 731
defined, 2–3
fruity console program, 100–102
function arguments, variable numbers of, 275
heap, 381–385
nested if statements, 153–154
standards and, 5–6
Windows Forms program executing CLR project,

775–777
writing C++ applications and, 3–4

CLR sketch application
context menus, 976–977
Element Move operation, 979
highlighting elements for selection, 972–976
moving elements, 979–981

CMap class, 918–920
helper functions, 919–920
overview of, 918–919

CMenu class, 950
CMessage class

class destructor for, 413–415
copy constructors, 415–417

CMultiDocTemplate, 783
CMyApp class, Windows application classes,

783–784
CMyDoc class, Windows application classes,

783–784
CMyView class, Windows application classes,

783–784
CMyWnd class, Windows application classes,

783–784
CObject class

as base class for element classes, 870
functionality of, 1052
serialization and, 1049

code
ASCII characters, 1309–1315
closing dialog boxes, 994–995
debugging code, 709–714
displaying dialog boxes, 994
object code, 9
source code, 17–19
Unicode characters, 1315

1325

code

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1325



Code Definition windows, 10–11
collections, 910
CArray template class, 911–912
CCurve class, defining, 925–927
CCurve class, exercising, 925–927
CCurve class, implementing, 927–928
CList template class, drawing a curve, 924–925
CList template class, overview, 913–918
CList template class, using, 923
CMap template class, 918–920
CTypedPtrList template class, 921–923
generic C++/CLI classes, 590–595
helper functions, 913
overview of, 909
typed pointer, 920
types of, 910
type-safe, 911

collocation, sorting words from text, 489
color drawings, 857–860

brushes, creating, 859
brushes, using, 860
defining color for CLR drawings, 899
pens, creating, 857–858
pens, using, 858–859

Color menu, adding to menu bar, 815
columns, DataGridView

formats, 1281–1283
headers, 1280–1281
types of, 1272

columns, System::Data::DataColumn
namespace, 1266

COM, 1120–1121
combo box controls, 1035–1037
comma operators, 73–74
command messages

adding data members to class definitions, 820–821
creating menu message functions, 817–820
message categories and, 809–810
MFC handling, 810
overview of, 816–817
processing, 810–811

command-line arguments
accessing, 276
receiving, 259–260

comments, in programs, 42
CommitTrans(), CDatabase transaction

operations, 1171–1172
common controls
Button controls, 1224
overview of, 988
WebBrowser control, 1226

Common Language Infrastructure (CLI), 2
Common Language Runtime. See CLR (Common

Language Runtime)
Common Type System (CTS), 3
comparison operators

comparing CBox objects, 448–449
full support for, 424–426
pair objects and, 653
strings, 480–484
testing extended class in program debugging,

720–722
using with SQL SELECT statements, 1117

comparisons, function objects for, 672–673
comparisons, values. See values, comparing
compilation time, precompiled headers and,

797–798
compiler, ISO/ANSI C++, 455
compound statements, 47
concatenating strings, 473–476
conditional operators, 130–131
configurations, 20
console applications

automatically generated, 47–48
files created by building, 19
overview of, 6–7

const modifiers
in calculations, 67–68
using, 257–258

const objects, of classes
member functions and, 369–371
overview, 368–369

constant expressions, 68
constant pointers, 185–187
constructors. See class constructors

defining for CBox class, 457
new operator and, 412

container adapters, 603
containers. See also associative containers;

sequence containers
container adapters, 603
double-ended queue containers, 626–629
list containers. See list containers, STL/CLR
map containers. See map containers, STL/CLR
multimap containers, 664–665
multiset containers, 651
overview of, 602–603
priority queue containers, 643–648
queue containers. See queue containers
set containers, 651
stack containers, 649–651
vector containers. See vector containers

1326

Code Definition windows

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1326



containers, STL/CLR
defining curves, 967–968
double-ended queue containers, 680–684
list containers, 684–685
overview of, 677

context menus
adding to Windows Forms applications, 1228
associating with a class, 945–946
choosing, 946–948
creating in CLR, 976–977
exercising pop-ups, 949–950
highlighting elements for selection, 952–956
identifying selected element, 948–949
implementing, 943–945
menu items, checking, 950–952
overview of, 943
responding to, 1256–1257

ContextMenuStrip controls, 1228
continue statements, 142–143
control menu, window elements, 745
control notification messages, 809–810
control variables, 1004
controls

adding to dialog boxes, 988–990
adding to dialog resources, 1193–1196
ASCII codes for, 1309–1315
binding to, 1299–1302
common controls, 988
DataGridView control, in unbound mode,

1279–1280
dialog controls, 1248–1251
edit boxes. See edit box controls
edit controls, enabling/disabling, 1178–1180
exercises, 1045
initializing, 996–997
input controls, disabling, 1251
linking to recordsets, 1136–1138
list boxes. See list box controls
overview of, 986–987
spin button control. See spin button control
status bars. See status bar controls
summary, 1044–1045
tab sequence, 1004
types of, 986–987
variables, 1004

controls, CLR
combo boxes, 1035–1037
drawing text, 1038
exercises, 1045
fonts, choosing, 1039–1040
fonts, creating, 1039

overview of, 1030–1031
summary, 1044–1045
text boxes, 1042–1043
text elements, creating, 1037, 1043
TextElement class, 1041

Controls property, GroupBox controls, 1233
cooperative multitasking, Windows programs, 759
coordinate system transformations, CLR, 965–967
coordinates

comparing logical, client, and screen, 1009
logical coordinates and client coordinates, 

939–941
printing documents and, 1075–1077

copy(), 669
copy constructors

default, 364–366
implementing, 379–380, 415–417
reference class types, 389–390

copy constructors, in derived classes, 524–528
fixing, 526–527
how it works, 525
overview of, 524–526

copying null-terminated strings, 203–204
count(), accessing objects in a map, 655
counting characters, 191–192
CPen objects

creating pens, 857–858
overview of, 857
using pens, 858–859

CPoint class, 924
.cpp file, 806
CPrintInfo class, 1066–1068
CProductView class, 1132–1133
Create(), 992
CreateElement(), 889, 1000–1001
CreateWindow(), 756
CRecordset class

checking legality of update operations, 1169
creating recordsets and, 1128
database update operations, 1168–1169
record locking, 1170
sorting, 1138–1139

CRecordView class
creating, 1144–1147
initializing, 1149–1150
overview of, 1132–1134

CRectangle class
constructor for, 881
drawing rectangles, 881–882

_crtDbgFlag, free store debugging, 725–726
crtdbg.h, 723

1327

crtdbg.h

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1327



_CrtSetReportFile(), free store debugging,
726–727

_CrtSetReportMode(), free store debugging,
726–727

CScaleDialog class, 1005, 1018
CScrollView class, 1012
CSingleDocTemplate class, 783
CSketcherDoc class, 820–821
CSScrollView class, 935–937
CStatic class, 987
CStatusBar class, 1014
CString class, 1024–1025
CstringW class, 1130
CText class

constructor for, 1027–1028
derived from CElement class, 1026
drawing CText object, 1028
implementing, 1027
moving CText object, 1028

CTextDialog class, 1023
Ctrl+Alt+X (Toobox window), 836
Ctrl+D (tab sequence), 1004
Ctrl+F5 (Execute), 797–798
Ctrl+Shift+B (Build), 797
Ctrl+Shift+N (New Project), 785, 1100
Ctrl+T (test), 990
CTS (Common Type System), 3
CTypedPtrList class, 921–923

creating sketch document with, 929–931
functions, 921–923
overview of, 921

current position, graphics displayed relative to, 852
Curve class, 967–968
curve collections, 884–885

defining, 925–927
exercising, 925–927
implementing, 927–928

curves
drawing with CList template class, 924–925
STL/CLR containers for defining, 967–968

customer recordset
adding, 1156–1157
filtering, 1160–1163

customer resource dialog
creating, 1157–1158
linking to order dialog, 1163–1165

customer view class, 1158–1160
CView class

scrolling views, 937–939

UpdateAllViews(), 935–937
views in frame windows, 781

CWinApp class, 772

D
data

corruption, common bugs, 697
retrieving with SQL, 1116–1117
setting up for DataGridView control, 1278–1279

data access, indirect. See indirect data access
data exchange, spin button control, 1006
data members

adding for CBox class, 456–457
adding to class definitions, 820–821, 1230–1231
CPrintInfo class, 1066–1067
defined, 341
dialog box support, 995–996
initializing new, 821–823
nonserializable, 1079

data sources. See database applications
data sources, accessing from Windows Forms. See

Windows Forms, data source access
Data Sources window, 1266
data types, 51–60

Boolean variables, 55
character, 53–54
class constructors, 351
for enumeration constants, 109–110
floating-point numbers, 55–56
integer variables, 52–53
in ISO/ANSI C++, 56–57
literals, 57–58
multiple data values of same type. See multiple

data values, of same type
options for use in loops, 143–145
overview, 51–52
synonyms for, 58
type modifiers, 54–55
variables with specific sets of values, 58–60
Windows, 748–749

data types, C++/CLI, 97–112
enumerations, 107–112
fruity CLR console program and, 100–102
input from keyboards, 106–107
output, formatting, 103–106
output to the command line, 102
overview, 97–100
safe_cast, using, 107
value class types, 98

1328

_CrtSetReportFile()

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1328



data types, defining, 331–380
arrays of class objects, 371–372
classes, operations on, 342–343
classes, understanding, 343–351
const objects, 368–371
exercises, 406–407
first class, 340–342
indirect member selection operators, 340
IntelliSense and, 337–338
objects, 340–342
overview, 331
pointers, to class objects, 376–379
pointers, to structs members, 339–340
private members, of classes, 358–366
references to class objects, 376–379
static members, of classes, 373–376
structs, accessing members of, 333
structs, initializing, 333
structs, overview of, 332–333
structs, working with, 334–337
structures generally, 332–340
summary, 405–406
terminology in, 343
this pointer, 366–368

data types, defining in C++/CLI, 381–407
class properties. See class properties, C++/CLI
exercises, 406–407
initonly fields, 403–404
literal fields, 385–386
overview, 381
reference class types, copy constructors for,

389–390
reference class types, defining, 386–387
reference class types, working with, 387–389
static constructors, 405
summary, 405–406
ToString() function in classes, 384–385
value class types, defining, 381–382
value class types, working with, 383–384

database applications
creating, 1122
customer recordset, adding, 1156–1157
customer recordset, filtering, 1160–1163
customer resource dialog, creating, 1157–1158
customer resource dialog, linking to order dialog,

1163–1165
customer view class, creating, 1158–1160
data transfer between database and recordset,

1131–1132
database viewer, exercising, 1165–1166

exercises, 1166
exercising example, 1138
MFC supported, 1120–1121
multiple table views, accessing, 1150–1151
ODBC classes, 1121–1122
ODBC database, registering, 1122–1124
ODBC program, generating, 1124–1125
overview of, 1113–1116
product orders, viewing, 1151–1155
queries, 1129–1131
record view class, adding, 1143–1147
record view class, initializing, 1149–1150
record view class, overview, 1132–1134
recordset class, adding, 1141–1143
recordsets, creating, 1127–1129
recordsets, filtering, 1147–1148
recordsets, linking controls to, 1136–1138
recordsets, sorting, 1138–1139
recordsets, using second recordset object,

1140–1141
snapshot vs. dynaset records, 1126
summary, 1166
view dialog, creating, 1134–1136
views, switching, 1151–1155
window caption, modifying, 1139–1140

databases, SQL. See SQL (Structured Query
Language)

databases, update operations
BindingNavigator component, 1297–1298
button labels, changing, 1180
cancel button, visibility of, 1180–1181
cancel operation, 1185
CDatabase transaction operations, 1171–1172
checking legality of operations, 1169
controlled updating, 1185–1186
CRecordset supporting, 1168–1169
customizing application for, 1173–1174
dialog resources, adding controls, 1193–1196
dialog switching, implementing, 1197–1200
edit controls, enabling/disabling, 1178–1180
example of, 1172–1173
exercises, 1215
expediting the update, 1183–1184
how it works, 1174–1175
implementing update mode, 1177–1178
managing, 1175–1177
order data, storing, 1205–1207
order entry process, 1186–1187
Order IDs, creating, 1200–1205
orders, adding new, 1209–1214

1329

databases

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1329



databases (continued)
overview of, 1167–1168
products, selecting, 1207–1209
record locking and, 1169–1170
Record menu, disabling, 1181–1183
recordset views, creating, 1188–1193
recordsets, creating, 1188
resources, creating, 1187–1188
summary, 1214
tables, adding rows to, 1186–1187
transactions, 1170

DataGridView controls
modes, 1268–1269
overview of, 1267–1268
in System::Windows::Forms namespace, 1267

DataGridView controls, in bound mode
binding to individual controls, 1299–1302
BindingNavigator component, 1296–1297
BindingSource component, 1290–1296
overview of, 1269, 1290
tables, working with multiple, 1302–1304
updating database, 1297–1298

DataGridView controls, in unbound mode,
1269–1275

cell styles, dynamically setting, 1284–1289
column formats, 1281–1283
column headers, setting up, 1280–1281
control, setting up, 1279–1280
customizing, 1275–1277
data, setting up, 1278–1279
overview of, 1268
rows, customizing alternate, 1283–1284

DataSet class, in System::Data namespace,
1266

dates, setting, 1207
DDV (Dialog Data Validation), 1006
DDX (Dialog Data Exchange), 1006
Debug classes, C++/CLI

overview of, 732
working with, 737–741

Debug menu, 703–704
_DEBUG preprocessor symbol, 709–710
Debug toolbar, 701–703
debugger

basic debugging operations, 699–700
overview of, 698
starting, 700

debugging code, adding, 709–714
debugging techniques, 695–731

assertions, 708–709

basic operations, 698–700
breakpoints, advanced, 701–704
breakpoints, setting, 700–701
common bugs, 697–698
debugging code, adding, 709–714
debugging dynamic memory. See dynamic memory

allocation
debugging programs. See programs, debugging
overview of, 695–696
program bugs, 696–697
starting debugging, 703–705
summary, 741–742
tracepoints, setting, 702–703
variable values, changing, 707
variable values, inspecting, 705–707

debugging techniques, C++/CLI
assertions, 736
Debug and Trace, classes, 732
Debug and Trace, working with, 737–741
output, controlling, 735–736
output, generating, 732–733
output, indenting, 734
output destination, 734
overview of, 731–732
summary, 741–742
trace output in Windows Forms 

applications, 741
decimals, ASCII codes, 1309–1315
decision making, 117–153. See also loops

comparing values, 117–119
conditional operators, 130–131
continue statements, 142–143
data types, options for use in loops, 143–145
do-while loops, 148–149
exercises, 159–160
extended if statements, 122–124
floating-point loop counters, 145–146
if statements, 119–120
indefinite for loops, 140–141
logical operators and expressions, 126–129
for loop, using, 136–137
for loop, variations on, 138
multiple counters, using, 139–140
nested if statements, 120–122
nested if-else statements, 124–126
nested loops, 149–152
overview, 117
repeating blocks of statements generally, 135
summary, 159
switch statements, 131–134

1330

databases (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1330



unconditional branching, 134
while loops, 146–148

decision making, C++/CLI. See also loops, C++/CLI
decisions making, C++/CLI, 153–160
for each loops, 156–159
exercises, 159–160
nested if statements, 153–154
overview, 153
summary, 159

declarations
arrays, 163–166
defined, 43–44
delegates, C++/CLI, 571
friend classes, 530
namespaces, 94–96
object classes, 344–345
pointers, 175
pointers to functions, 280–283
references, 199–200
tracking handles, 207–209
variables, 50–51, 89

DECLARE_DYNAMIC(), serialization macro, 1052
DECLARE_DYNCREATE(), serialization macro,

1049, 1052
DECLARE_MESSAGE_MAP(), 806–807
DECLARE_SERIAL(), serialization macro,

1052–1053
decorated names, DLLs, 1104
decrement operators ( — )

overloading, 436–437
overloading in C++/CLI, 499–500
working with, 72–74

default destructor, 410–412
defaults

class constructors, 353–355
copy constructors, 364–366
indexed properties, 397
mapping mode, 850
parameter values for constructor arguments,

supplying, 356–537
parameter values in classes, assigning, 355–356
type modifiers, 54

delegates, C++/CLI
calling, 574–576
creating, 571–574
declaring, 571
event handlers as, 838
overview of, 571
unbound, 576–579

Delete(), CRecordset update operations,
1168–1169

delete operators, 195
deque. See double-ended queue containers
derived classes

accessing private members of base class in,
513–516

constructors in, 516–519
copy constructors in, 524–528
defined, 509
deriving from base class, 510–511
pointers to, 535–537
specifying new functions, 570–571
working with, 511–513

derived classes, C++/CLI
overview of, 553
reference classes, 555, 558–560

Design window, 976
destructors

calling wrong, 545–548
MFC documents, 931
virtual, 544

destructors, C++/CLI, 583–585
destructors, class

default destructor, 410–412
overview of, 409–410

device context
GDI (Graphical Device Interface), 849
linking device-independent Windows API output

functions to drivers and devices, 765–766
preparing for printing documents, 1072–1073

device coordinates. See client coordinates
Device Points to Logical Points (DPtoL), 940–941
dialog boxes

buttons added to, 1187–1188
code for closing, 994–995
code for displaying, 994
controls added to, 988–990, 1193–1196
creating, 988
customer resource dialog, 1157–1158
data members supporting, 995–996
dialog class (CDialog), adding, 990–992
dialog class (CDialog), developing, 1258–1260
dialog form, creating, 1257–1258
displaying, 992–993, 1021
elements, creating in view, 1000–1001
exercises, 1045
for file operations, 1086
initializing, 996–997, 1006–1007

1331

dialog boxes

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1331



dialog boxes (continued)
linking order dialog to customer resource dialog,

1163–1165
modal and modeless, 992
overview of, 985–986
pen dialog example, 1001
pen width dialog, adding to document, 998–999
pen width dialog, adding to elements, 999–1000
radio buttons, message handling for, 997–998
summary, 1044–1045
switching between, 1197–1200
testing, 988–990
view dialog, for database, 1134–1136
for viewing records, 1143–1144

dialog boxes, CLR
adding, 1031
customizing, 1031–1032
displaying, 1032–1033, 1043
exercises, 1045
overview of, 1030–1031
pen widths, setting, 1033–1035
summary, 1044–1045
text dialog, creating, 1042

dialog boxes, Windows Forms application
adding second, 1245–1248
creating, 1235–1236
handling button events, 1238–1239
using, 1240–1242

dialog class (CDialog)
adding, 990–992
developing, 1258–1260
for edit boxes, 1023–1024
for list boxes, 1019–1020

dialog controls, getting data from, 1248–1251
Dialog Data Exchange (DDX), 1006
Dialog Data Validation (DDV), 1006
dialog forms, creating, 1257–1258
dialog objects, creating, 1239–1240
direct base classes, 509
direct member selection operators, 345
DispatchMessage(), retrieving Windows

messages, 759–760
display content, linking Windows API output

functions to drivers and devices, 765–766
.dll file, 1107
dllexport attribute, 1108
DllImport, 1110–1111
DLLMain(), 1098, 1102–1103
DLLs (Dynamic Link Libraries), 1093–1112

contents of a DLL file, 1098

DLLMain(), 1102–1103
exporting symbols from, 1109–1111
exporting variables and functions from, 1108
extension DLLs, adding classes to, 1103–1104
extension DLLs, applying in Sketcher application,

1106–1107
extension DLLs, building, 1105
extension DLLs, exporting classes from,

1104–1105
extension DLLs, writing/using, 1100–1102
files required in order to use, 1107
how they work, 1095–1096
importing symbols into a program, 1109–1110
interface, 1098
main(), 1098
overview of, 1093–1095
runtime dynamic linking, 1097–1098
SDI applications and, 787
types of, 1098–1099
when to use, 1099–1100

dockable toolbars, 12–13
docking controls, 1279–1280
document, recording document changes, 1055
document class, serialization in, 1048–1050
document objects, altering, 1055
document size

printing documents and, 1068–1069
scale factor and, 1009–1010

document storage. See serialization
document templates

classes, 783
overview of, 782–783

document views
logical coordinates and client coordinates, 939–941
MM_LONGENGLISH mapping mode, 941–943
scrolling views, 937–939
updating multiple views, 935–937

documentation, 13
documents, MFC

adding elements, 933–934
creating with CTypedPtrList template class,

929–931
document destructors, implementing, 931
drawing sketch document, 931–933
exercising sketch document, 934–935
interfaces, 780
linking documents and views, 781–782
overview of, 780
templates, 782–783

documents, printing. See printing documents

1332

dialog boxes (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1332



document/view concept, in MFC, 780
DoDataExchange(), 1006, 1136
DoFieldExchange(), 1131
DoPreparePrinting(), 1070
double-ended queue containers, 626–629
double-ended queue containers, STL/CLR, 680–684
do-while loops, 148–149
DPtoLP() (Device Points to Logical Points),

940–941
Draw()
CLine class, 877
coordinate system transformations and, 966
Graphics class in CLR, 899–900
highlighting elements for selection, 952–956
MFC sketch document, 931–933

drawing, in a window, 847
brushes, creating, 859
brushes, using, 860
CCircle class, constructor for, 883–884
CCircle class, drawing circles, 884
CCircle class, implementing, 883
CCircle class, overview of, 882
CCurve class, 884–885
CDC class, 852
CElement class, 874–875
circles, 854–856
client area, overview, 848
client area, redrawing, 869–870
CLine class, bounding rectangles, 877–880
CLine class, constructor for, 875
CLine class, drawing lines, 875
CLine class, implementing, 875
CLine class, normalized rectangles, 880
color drawings, 857
CRectangle class, constructor for, 881
CRectangle class, drawing rectangles, 881–882
deleting and moving shapes, 943
device context, 849
displaying graphics, 852–853
drawing mode, selecting, 886–887
elements, creating, 889–891
elements, defining classes for, 870–873
elements, storing temporary, 873–874
exercises, 907
GDI (Graphical Device Interface), 848–849
lines, calculating enclosing rectangle for, 880
lines, overview, 853–854
mapping modes, 849–851
mouse, drawing with, 861–862, 867–869
mouse, messages from, 864–865

mouse, programming, 863–864
mouse message handlers, 865–867, 885
mouse messages, capturing, 893–895
mouse properties, 865
OnDraw() member function, 851–852
OnMouseMove() handler, 887–889
overview of, 847–848
pens, creating, 857–858
pens, using, 858–859
running the Sketcher example, 892–893
summary, 906–907
View class, 851
WM_LBUTTONUP messages, dealing with, 891–892

drawing, in a window (CLR)
circles, defining, 903–904
colors, defining, 899
element class, defining, 897–898
exercises, 907
forms, drawing on, 895
lines, defining, 898–899
lines, drawing, 899–900
mouse event handlers, adding, 895–897
MouseMove event handler, implementing, 904–905
MouseUp event handler, implementing, 905
overview of, 895
Paint event handler, implementing, 905–906
pens, defining, 900–902
pens, standard, 902
rectangles, defining, 902–903
summary, 906–907

drawing mode, selecting, 886–887
drawing text, CLR controls and, 1038
DrawString(), Graphics class, 1038
drivers, ODBC, 1121
dynamic memory allocation, 194–199

class destructors and, 409
classes, 412–413
for arrays, 195–196
free store, using, 196–198
heap, 194
multidimensional arrays, 198–199
new and delete operators, 195
overview, 194

dynamic_cast operator, 550
dynaset records, vs. snapshot, 1126

E
eatspaces()function, 302–303
Edit(), CRecordset update operations,

1168–1169

1333

Edit()

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1333



edit box controls
creating, 1022–1023
CString class, 1024–1025
CText class, 1027–1028
dialog class for, 1023–1024
overview of, 1021
text element, creating, 1028–1029
text element, defining, 1026–1027
text menu item, adding, 1025–1026

edit controls, enabling/disabling, 1178–1180
Editor windows, 10–11
Element class, C++/CLI, 897–898
Element menu

adding event handlers to, 838
adding menu items to, 814–815
completing, 815
positioning, 813

Element Move operation, implementing in CLR, 979
elements, 1000–1001

adding to documents, 933–934
adding to list collections, 913–915
class definitions, 870–873
creating, 889–891
deleting, 957–958, 978
getting elements to move themselves, 961–963
hash values and, 919–920
highlighting, 952–956
identifying selected, 948–949
masked, 964–965
moving, 958–959
moving in CLR, 979–981
serializing element classes, 1058–1059
storing temporary, 873–874
text element, defining, 1026–1027

Ellipse(), CCircle class, 855, 884
empty console projects, 21–23
encapsulation, defined, 343
end(), random access iterators and, 609
END_MESSAGE_MAP(), 806–807
enum classes, visibility specifiers, 565
enumerations, C++/CLI, 107–112

defining, 58, 108–109
as flags, 111–112
native, 112
operations on constants, 110–111
overview, 107–109
types for constants, specifying, 109–110
values for constants, specifying, 110

erase()
deleting elements from a list, 633–634

deleting elements from a map, 655
deleting elements from a multimap container, 664
deleting elements in a vector, 617

errors
dealing with, 23–24
stepping over to errors, 716–720
syntactic and semantic, 697

escape sequences, 63–64
Event Handler Wizard

adding message handlers to user interface,
824–825

creating menu message functions, 817–820
for menu messages, 815–816

event handlers
implementing, 839–840
for menu messages, 815–816

event handlers, Windows Forms application
creating, 1228–1229
for Limits menu, 1235, 1252–1253
for menu items, 1229–1230
for Play menu item, 1231–1235

event-driven programming
defined, 7–8
Windows OSs, 746

events, 7–8
events, C++/CLI

creating, 580–581
handling, 581–583
overview of, 571

exceptions
catching, 290–291
defined, 287–288
throwing, 289
working with, 288–289

exclusive OR operators, 83
.exe file extension, 1095
executable modules, creating and running in MFC,

797–801
Execute (Ctrl+F5), 797–798
executing program versions, 20–21
explicit boxing, 554
explicit casting, 69, 78–79
exporting classes, from extension DLLs, 1104–1105
expr() function, 303–305
extended if statements, 122–124
extension DLLs

adding classes, 1103–1104
applying in Sketcher application, 1106–1107
building, 1105
exporting classes, 1104–1105

1334

edit box controls

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1334



types of DLLs, 1099
Windows Sockets and, 1099
writing/using, 1100–1102

extract()function, 312–314
extraction operators (>>), 60, 1051

F
F10 (Step Over), stepping over to errors, 716–720
fields

defined, 332, 343
nonserializable, 1079–1081
in relational databases, 1114

file extensions, options for DLLs, 1095
file names, program code, 470–471
file operations

creating dialogs, 1086
implementing for a sketch, 1086–1088
open, 1087–1088
overview of, 1086
print, 1089–1090
save, 1086–1087
save as, 1088

file scope, 89
FileMode enumeration values, 1081–1082
files, required in order to use DLLs, 1107
fill(), algorithms, 674
filters/filtering

customer recordset, 1160–1163
defining filter parameters, 1148–1149
list containers, 636–639
recordsets, 1147–1148

finalizers, C++/CLI reference classes, 583–585
find()

algorithms, 675
objects in a map, 654–655
objects in a multimap container, 654–655
strings, searching, 484–489

Find(), searching list collections, 916–917
FindIndex(), searching list collections, 917
first class, 340
flags, enumerations as, 111–112
floating toolbars, 12
floating-point loop counters, 145–146
floating-point numbers, 55–56
fonts

choosing, 1039–1040
creating, 1039
defining, 1030

for each loops, 156–159

for loops
indefinite, 140–141
using, 136–137
variations on, 138

foreign keys, in relational databases, 1115
Form Design capability, 1228
Form1 class

adding members, 1230–1231
creating dialog objects, 1239–1240

Format property, columns, 1281–1283
forms. See also Windows Forms applications

defined, 831
drawing in CLR drawings, 895

frame windows
MFC window class, 773
views appearing in, 781

free store
vs. heap, 194
using, 196–198

free store, debug operations
checking, 723–724
controlling, 725–726
output, 726–727

friend, of a class, 528–529
friend classes, 530
friend functions

definitions, placing, 364
overview, 362–364
working with, 362–364

front(), accessing elements in vectors, 616
fruity CLR console program, 100–102
function adapters, 606
function headers, 241–242
function members, 343

adding for CBox class, 458–462
function objects

for arithmetic operations, 673
for comparisons, 672–673
overview of, 605–606

functional notation, 51
functions

addresses returned by, 265–266
arguments, omitting, 286–287
arguments, pointers as, 283–285
arguments, to main(), 258–260
arguments, variable numbers of, 260–262,

274–275
arguments passed to, 247–251
arrays of pointers to, 285
arrays passed to, 251–253

1335

functions

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1335



functions (continued)
assert(), 708–709
bad pointers returning, 263–264
body of, 242–243
calculator example. See calculators
coding for menu messages, 820
command-line arguments, accessing, 276
command-line arguments, receiving, 259–260
const modifiers, 257–258
CTypedPtrList template class, 921–923
defined, 36–37
exceptions, catching, 290–291
exceptions, defined, 287–288
exceptions, throwing, 289
exceptions, working with, 288–289
exercises, 277–278
exporting from DLLs, 1108
headers, 241–242
inherited, 531–532
map containers, 656
memory allocation errors and, 292–293
for menu messages, 817–820
multidimensional arrays passed to, 253–255
need for, 241
nested try blocks, 290–291
overloading, 293–296
overview, 239–240, 279
parameters, initializing, 285–287
pass-by-pointer, 249–251
pass-by-reference, 255–257
pass-by-value, 247–249
pointers, notation when passing arrays, 252–253
pointers, returning, 263–264
pointers as arguments to, 249–251
pointers to, 279–285
pointers to, declaring, 280–283
priority queue containers, 643
prototypes, 243–247
queue containers, 640
recursive, 271–274
references, as arguments to, 255
references, returning, 266–268
return statements, 243
stack containers, 649
static variables in, 269–270
structure of, 241–243
summary, 277
templates, 296–299
templates in STL, 601

try blocks, 289–291
using, 243–247
values returned from, 263–268
virtual. See virtual functions

functions, C++/CLI, 315–329
arguments to main(), 275–276
arithmetic expressions, evaluating, 323–325
calculator program for CLR, 322–328
exercises, 277–278
functions, specifying new, 570–571
generic, 316–322
input strings, removing spaces from, 323
numbers, evaluating, 325–326
overview, 274–275, 315–316
parenthesized substrings, extracting, 327–328
summary, 277
value of terms, 325

fundamental data types. See data types

G
GDI (Graphical Device Interface)

device context, 849
mapping modes, 849–851
overview of, 848–849

generic classes, C++/CLI
collection classes, 590–595
interface classes, 589–590
overview of, 585–588

generic functions, C++/CLI, 316–322
defining, 317
overview, 316
working with, 317–322

GetDocExtent(), for determining document size,
1068–1069

GetMessage(), retrieving Windows messages,
759–761

global functions,  for CBox class, 463–465
global scope, 89
global variables, 89–92
Graphical Device Interface (GDI)

device context, 849
mapping modes, 849–851
overview of, 848–849

graphical user interface (GUI)
methods for creating interactive Windows

applications, 744
Windows Forms applications, 

1217–1218

1336

functions (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1336



Graphics class 
coordinate system transformations and, 965–967
Draw(), 899
DrawString(), 1038

graphics display modes, 852–853
group box, pen width options, 989
GroupBox controls
Controls property, 1233
Windows Forms, 831
working with, 1222–1224

GUI (graphical user interface)
methods for creating interactive Windows

applications, 744
Windows Forms applications, 1217–1218

H
.h file, DLL file requirements, 1105
handles, integer values for identifying objects, 752
hash values, map keys and, 919–920
header files, 43
headers

column headers, for DataGridView control,
1280–1281

DataGridView controls, customizing, 1276–1277
function headers, 241–242
STL container adapters, 603
STL containers, 602

heap vs. free store, 194
Help>About menu items, Windows Forms

applications, 1253
helper functions

array collections, 913
list collections, 917–918
map collections, 919–920

hexadecimal, ASCII codes, 1309–1315
highlighting elements

cell under mouse cursor, 1286–1289
for selection, 952–956
for selection in CLR, 972–976

Hungarian notation
MFC and, 771
Windows notation and, 750

I
IComparable, interface class, 561
IContainer, interface class, 562–565
IController, interface class, 562

IDE (Integrated Development Environment)
compiler in, 9
components of, 9
console applications, files created by building, 19
debugging and releasing program versions, 20
defined, 9–10
dockable toolbars, 12–13
documentation in, 13
editor in, 9
error handling, 23–24
executing program versions, 20–21
libraries in, 10
linker in, 9
MFC applications, building and executing, 30
MFC applications, creating, 27–29
options, setting, 26–27
projects, creating CLR console, 24–26
projects, creating empty console, 21–23
projects, creating Win32 console application, 14–19
projects, defining, 14
projects and solutions, 13–14
solutions, building, 19
source code, modifying, 17–19
summary, 33–34
toolbar options, 11–12
Windows applications, 27–30
Windows Forms applications, 30–33
working with, 10–11

identifiers, 49
if statements, 119–126

basic, 119–120
extended, 122–124
nested, 120–122, 153–154
nested if-else, 124–126

IMPLEMENT_DYNCREATE() macro, 1049–1050
implicit boxing, 554
implicit casts, 69
#include statements, 43, 309, 512
incomplete definitions, classes, 538
incorrect results, common bugs, 698
increment operators (++), overloading, 436–437
indefinite for loops, 140–141
Indent(), indenting debug output, 734
indexed properties, C++/CLI

complex, 401–402
defined, 390
defining, 397–398
working with default, 398–401

indirect base classes, 509

1337

indirect base classes

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1337



indirect data access, 174–194
address-of operators, 175–176
array names as pointers, 189–191
arrays of pointers, 181–183
char, 179–181
constant pointers and pointers to constants,

185–187
counting characters, 191–192
declaring pointers, 175
defined, 174
indirection operators, 176
initializing pointers, 178–179
multidimensional arrays, pointer notation with,

193–194
multidimensional arrays, using pointers with,

192–193
pointer arithmetic, 187–189
pointers, defined, 174
pointers and arrays, 187–192
sizeof operators, 183–185
using pointers, 176–178

indirect member access operators, 340
indirect member selection operators, 340
indirection operators, 176
inheritance. See class inheritance
initial values, for variables, 51
initializing

arrays, 166–167
defined, 51
multidimensional arrays, 172–173
parameters, 285–287
pointers, 178–179
references, 199–200
structs, 333

InitInstance(), SDI application, 799–800
initonly fields, 403–404
input, analyzing, 300–302
input, keyboard

C++/CLI, 106–107
for calculations, 68–69
generally, 60

input controls, disabling, 1251
input stream iterators, 665–668
input strings, 323
input validation, Windows Forms applications,

1242–1244
input/output operations, 60–64

escape sequences, 63–64
input from keyboards, 60

output, formatting, 61–62
output to command lines, 60–61

insert()
elements in a list, 630–631
elements in a vector, 616–617
elements into multimap containers, 664
pairs into a map, 653–654
string objects, 478–479

inserter iterators, 669–672
insertion operators (<<), CArchive class, 1051
instances, 340–342

of class templates, 438
instantiation, 343

of class templates, 438
integer type modifiers, 54–55
integer variables, 52–53
Integrated Development Environment. See IDE

(Integrated Development Environment)
IntelliSense, 337–338
interface, DLL, 1098
interface class keyword, 561
interface classes, C++/CLI, 561–565

defining, 561–562
generic, 589–590
implementing, 562–565
overview of, 561

interface struct keyword, 561
interfaces

class interface, 446–447
DLLs, 1105
document interfaces, MFC, 780
GDI (Graphical Device Interface). See GDI (Graphical

Device Interface)
GUI (graphical user interface), 744, 1217–1218

interfaces, C++/CLI
access specifiers for, 566–568
visibility specifiers for, 565

interior pointers, 233–237
intermediate languages, 2
internal, C++/CLI access specifier, 566–568
ISO/ANSI C++

compiler, 455
fundamental data types, 56–57
keywords, 1307–1308
learning about, 5
standards, 5–6

iterators
begin()and end(), 609
categories of, 604

1338

indirect data access

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1338



input stream iterators, 665–668
inserter iterators, 669–670
output stream iterators, 670–672
overview of, 604–605

J
joining strings

C++/CLI, 224–225
null-terminated, 201–203

joins, table
table joins, 1118–1120
table joins in, 1116

K
key presses, C++/CLI, 154–156
keyboard input

C++/CLI, 106–107
for calculations, 68–69
generally, 60

keyboards, in event-driven programs, 7–8
keys, hashing and, 919–920
keywords

C++, 1307
C++/CLI key, 1308
operator keyword, 421
variables, 50

L
late binding (runtime dynamic linking), 

1097–1098
length, of null-terminated strings, 200–201
Length bytes, hash values and, 919–920
Length class

implementing assignment operator, for reference
types, 503

overloading increment and decrement operators,
499–500

overloading operators, in reference classes,
500–502

overloading value classes, 494–498
less than operator, 720–722
.lib files, DLL file requirements, 1105
libraries. See also STL (Standard Template Library)

functions stored in, 1093
MFC (Microsoft Foundation Classes), 10
MSDN (Microsoft Development Network) Library, 13
.NET library, 833

Standard C++ Library, 10, 43
string functions in, 200–206

Limits menu, event handlers, 1235, 1252–1253
Line class, defining CLR lines, 898
lines

calculating enclosing rectangle, 880
defining for CLR drawings, 898–899
drawing, 853–854, 875
drawing in CLR drawings, 899–900

LineTo(), 853–854
list box controls

adding list to, 1237–1238
creating, 1018
dialog class for, 1019–1020
displaying dialog for, 1020
overview of, 1018

list collections
adding elements, 913–915
deleting objects, 917
drawing a curve, 924–925
helper functions, 917–918
iterating through, 916
overview of, 913
searching, 916–917
using, 923

list containers, STL/CLR, 630–639
accessing elements in, 631
adding elements, 630–631
filtering, 636–639
operations performed on, 633–636
overview of, 630
for storing values types, 684–685
working with, 631–633

ListBox objects, 1239
listeners, setting output destination with, 734
literal fields, 385–386
literals, 57–58
load-time dynamic linking (early binding), DLLs 

and, 1097
local scope, of automatic variables, 86
logical coordinates

coordinate systems, 939–941
mapping mode and, 1009

logical operators
AND, 127
combining, 129
NOT, 128
OR, 128

logical variables, 55

1339

logical variables

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1339



loops, 135–152
continue statements, 142–143
defined, 135
do-while, 148–149
for each, 156–159
floating-point loop counters, 145–146
for, 136–138
indefinite for, 140–141
key presses and, 154–156
multiple counters, using, 139–140
nested, 149–152
for repeating blocks of statements, 135
types in, other, 143–145
variations on for, 138
while, 146–148

loops, C++/CLI, 153–160
for each loops, 156–159
exercises, 159–160
nested if statements, 153–154
overview, 153
summary, 159

lvalues, 65

M
main()function

arguments to, 258–260, 275–276
defined, 44
for implementing calculators, 310–311

make_pair(), helper function for creating pair
objects, 653

managed C++, 3–4
manipulators, 62
map collections, 918–920

helper functions, 919–920
overview of, 918–919

map containers, STL/CLR, 652–664
accessing objects, 654–655
functions, 656
implementing phone book using map, 686–692
operations performed on, 655–656
overview of, 652
storing objects, 652–654
working with, 656–664

mapping modes
GDI (Graphical Device Interface), 849–851
scalable, 1008–1009
scaling and, 1008
settings, 1010–1012

masked elements, 964–965

MDI (Multiple Document Interface)
command messages, processing, 811
creating MDI applications, 801–802
overview of, 780

member access operators, 333
member functions

class templates, 440–441
definitions, 369–371

member selection operators, 333
members

of classes, 343
defined, 332

memory, debugging dynamic
free store debug operations, checking, 723–724
free store debug operations, controlling, 725–726
free store debug operations, output, 726–727
leak detection, 727–731
overview of, 723

memory, sharing between variables, 417
memory allocation errors, 292–293
memory leaks

causes of, 723
detecting, 724, 727–731
difficulty in detecting, 723

menu bar
adding menu items to, 813
Color menu added to, 815
as window element, 746

menu items
adding to Element menu, 814–815
adding to menu bar, 813
adding to spin button control, 1002–1003
Choose menu item, 1257
in context menus, 950–952
event handlers for, 1229–1230
Help>About, 1253
Limits menu, 1235, 1252–1253
Menu Strip container for, 836–837
modifying existing, 815
Reset, 1245
text, adding, 1025–1026

menu items, CLR
checks, 840–842
event handlers, 838–839

menu messages
classes, 817
coding functions, 820
creating functions, 817–820
deleting elements, 957–958
event handlers, 816

1340

loops

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1340



exercising, 963
getting elements to move themselves, 961–963
modifying WM_MOUSEMOVE handler, 959–961
moving elements, 958–959
servicing, 956

Menu Strip container,  for menu item, 836–837
menus

adding to programs, 811
completing the menu for Sketcher application, 815
creating and editing menu resources, 812
elements of, 812
submenus, 1219–1220

menus, CLR, 836–838
Menus & Toolbars group, Toolbox window,

1228
merge(), deleting elements from a list, 635–636
message handlers

class definitions and, 807–809
coding update handler, 825–827
exercising update handler, 827
mouse, 865–867, 885
radio buttons, 997–998
for updating user interface, 824–825

message loop, retrieving Windows messages,
758–759

message maps, established by MFC Application
Wizard, 806–807

message pump, retrieving Windows messages,
758–759

message queues, Windows messages, 747
MessageBox class, 1253
messages

categories of, 809–810
message type relationship to menu items, 816
MFC handling, 810
from mouse, 864–865

messages, Windows. See Windows messages
methods, 343
MFC (Microsoft Foundation Classes), 779–804

application class (CWinApp), 772
Application Wizard, location of project files,

790–791
applications, creating, 27–29
applications, executing, 30
basic classes, for Windows applications, 783
class definitions, 793–797
classes, viewing, 792–793
database applications. See database applications
defined, 3–4
DLLs and, 1095

document templates, 782–783
documents, 780
document/view concept in, 780
executable modules, 797–801
exercise creating MFC application, 771–775
exercises, 803–804
extension DLLs. See extension DLLs
as library, 10
linking documents and views, 781–782
MDI applications, 801–802
notation, 771
OnDraw() member function, 851–852
overview of, 770–771, 779–780
project files, viewing, 792
SDI applications, 786–790
structure of MFC programs, 771
summary, 803
views, 780–781
window class (CFrameWnd), 773
Windows applications, creating, 785–786
Windows applications, interactive, 744
Windows applications, tools for creating, 784–785
in Windows OSs, 10

Microsoft Development Network (MSDN)
library, 13
updates and fixes from, 697

Microsoft Foundation Classes. See MFC (Microsoft
Foundation Classes)

Microsoft Intermediate Language (MSIL), 2
MM_ANISOTROPIC, 1008–1009, 1068
MM_ISOTROPIC, 1008–1009
MM_LONGENGLISH

document views, 941–943
mapping modes, 850–851
multipage printing and, 1068

MM_TEXT, as default mapping mode, 850
modal dialog boxes, 992
modeless dialog boxes, 992
mouse

drawing with, 867–869
event handlers for CLR drawings, 895–897
in event-driven programs, 7–8
highlighting cell under cursor, 1286–1289
message handlers, 865–867, 885
messages, capturing, 893–895
messages from, 864–865
programming, 863–864
properties, 865
using for graphics, 861–862

MouseMove event handler, CLR drawings, 904–905

1341

MouseMove event handler

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1341



MouseUp event handler, CLR drawings, 905
Move(), getting elements to move themselves, 961
MoveTo(), displaying graphics and, 853
MSDN (Microsoft Development Network)

library, 13
updates and fixes from, 697

MSIL (Microsoft Intermediate Language), 2
multidimensional arrays

in C++/CLI, 217–221
defined, 171–172
dynamic allocation of, 198–199
initializing, 172–173
passing to functions, 253–255
pointer notation with, 193–194
pointers with, 192–193

multifile project, CBox class, 453–455
multimap containers, 664–665
multipage printing, 1066–1068
multiple counters, 139–140
multiple data values, of same type, 162–174

arrays, declaring, 163–166
arrays, defined, 162–163
arrays, initializing, 166–167
character arrays and string handling, 168–169
multidimensional arrays, defined, 171–172
multidimensional arrays, initializing, 172–173
multiple strings, storing, 173–174
overview, 162
programming with strings, 170–171
string input, 169–171

Multiple Document Interface (MDI)
command messages, processing, 811
creating MDI applications, 801–802
overview of, 780

multiple namespaces, 96–97
multiple parameters, class templates, 444–446
multiple strings, 173–174
multiple top-level document architecture, MFC

document interfaces, 780
multiset containers, 651
multitasking, Windows programs, 759
multop number, 301

N
named indexed properties, 397
names

functions, 241
as pointers, 189–191

program files, 470–471
variables, 49

namespaces
declaration and, 43–44
declaring, 94–96
defined, 25–26
multiple, 96–97
.NET library, 833
overview, 93–94
structure of C++ programs, 43–44

native C++ programs, defined, 2–5
native enumerations, 112
NDEBUG preprocessor symbol, 708
nested classes

overview of, 550–552
working with, 552–553

nested if statements, 120–122
nested if statements,  C++/CL, 153–154
nested if-else statements, 124–126
nested loops, 149–152
nested try blocks, 290–291
.NET Framework, 2, 1078
.NET library namespaces, 833
new keyword, 570–571
new operators

constructors and, 412
dynamic memory allocation and, 195

noarg constructors, 353
non-queued messages, Windows programs, 758
normalized rectangles, CLine class, 880
NOT operators, 84, 128
notation

MFC (Microsoft Foundation Classes), 771
pointers, 193–194
Windows programming, 749–750

null pointer, 705
null-terminated strings

comparing, 204
copying, 203–204
joining, 201–203
length of, 200–201
searching, 204–206

number() function, calculators, 306–309, 311–312
numbers, evaluating, 325–326

O
object code, 9
object files, 9

1342

MouseUp event handler

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1342



object-oriented programming. See OOP (object-
oriented programming)

objects
accessing in map containers, 654–655
CBox objects, analyzing, 451–452
CBox objects, combining, 449–451
CBox objects, comparing, 448–449
CLR serialization, 1081–1082
created from class templates, 441–444
creating string objects, 471–473
as data source, 1266
data types, 340–342
overview of, 343
storing in map containers, 652–654

objects, collections of
CArray template class, 911–912
CList template class, 913–918
CMap template class, 918–920
overview of, 911

.ocx (OLE Custom Extension), 1095
ODBC (Open Data Base Connectivity)

database application. See database applications
drivers, 1121
generating ODBC program, 1124–1125
MFC classes supporting, 1121–1122
registering ODBC databases, 1122–1124
updating data sources. See databases, update

operations
old-style casting, 79
OLE Custom Extension (.ocx), 1095
OLE DB, database support in MFC, 1120
OnContextMenu(), 946–947
OnDraw(), MFC, 851–852, 931–933
one-dimensional arrays, C++/CLI

searching, 215–217
sorting, 213–214

OnInitDialog(), 996–997, 1006
OnMouseMove()

coding mouse move message handler, 887–889
identifying selected element, 948–949
message handler, 885

OnPreparePrinting(), 1069
OnPrint(), printing documents, 1073–1077
OOP (object-oriented programming)

basic concepts, 507–509
overview, 341–343
polymorphism and, 535

open, file operations, 1087–1088
Open Data Base Connectivity. See ODBC (Open Data

Base Connectivity)

operations, checking legality of database update
operations, 1169

operator()(), 421, 605–606
operator keyword, 421
operator overloading

addition operators, 432–436
assignment operators, 427–431
comparison operators, 424–426
implementing, 420–423
increment and decrement operators, 436–437
overview of, 420

operator overloading, C++/CLI
decrement operators, 499–500
reference classes, 500–502
value classes, 494–498

operator<(), operator overloading, 424–426
operator>(), operator overloading, 422–423
operators

addition operators, overloading, 432–436
analytical operators, 451–452
arithmetic operators, 449–451
assignment operators, overloading, 427–431
comparison operators, 448–449
comparison operators, overloading, 424–426
increment and decrement operators, overloading,

436–437
overloading, 420–423
precedence of, 74–76
strings, 1024–1025

operators, C++/CLI
decrement operators, overloading, 499–500
reference classes, 500–502
value classes, 494–498

optimistic mode, record locking, 1170
options, setting, 26–27
OR operators, 82–83, 128
ORDER BY, sorting recordsets, 1138–1139
Order Details table, customizing, 1173–1174
order dialog, linking to customer resource dialog,

1163–1165
Order IDs

creating new, 1201–1204
initiating ID creation, 1204–1205
overview of, 1200
storing, 1201

orders/ordering, in database application
adding new, 1209–1214
customizing Orders Details table, 1173–1174
entry process, 1186–1187
order data, storing, 1205–1207

1343

orders/ordering

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1343



orders/ordering (continued)
Order IDs, creating, 1200–1205
products, selecting for orders, 1207–1209

ordinal values, DLLs, 1104
output

to command lines, 60–61, 102
conditional operators with, 130–131
formatting, 61–62, 103–106
free store debug operations, 726–727
statements, 45

output, C++/CLI debugging
controlling, 735–736
destination, 734
generating, 732–733
indenting, 734

output stream iterators, 670–672
overloading functions, 293–296
overriding operator precedence, 76

P
packaging problems, class interfaces and, 446–447
page coordinates. See logical coordinates
Paint event handler

CLR drawings, 905–906
drawing sketch with, 971–972

panes, status bars, 1013
parameters

class templates with multiple parameters, 444–446
defined, 240–242
initializing, 285–287
insert(), 478–479
parameter values, for constructor arguments,

356–357
parameter values, in classes, 355–356

parameters, SQL filters
defining, 1148–1149
overview of, 1147–1148

parent windows, window elements, 745
parenthesized substrings, extracting, 327–328
parts, status bars, 1015
pass-by-pointer, 249–251
pass-by-reference, 255–257
pass-by-value, 247–249
passing

arguments to functions, 247–251
arrays to functions, 251–253
multidimensional arrays to functions, 253–255

pdo_it function, 282–283
Pen class, 900–902

Pen width dialog box
exercising, 1001
pen width, adding to document, 998–999
pen width, adding to elements, 999–1000

pens
creating, 857–858
defining for CLR drawings, 900–902
pen width options, 989
setting drawing width, 1033–1035
standard for CLR drawings, 902
using, 858–859

pessimistic mode, record locking, 1170
pfun() statement, 280–281
Play menu event, 1231–1235
playMenuItem_Click(), 1231
pointer notation when passing arrays, 252–253
pointers

for accessing members of structs, 339–340
address-of operators, 175–176
as arguments to functions, 249–251
arithmetic, 187–189
array names as, 189–191
and arrays, 187–192
arrays of, 181–183
causes of bad pointers, 698
char, 179–181
to class objects, 376–379, 535–537
constants and, 185–187
counting characters, 191–192
declaring, 175
declaring to functions, 280–283
defined, 174
dynamic_cast operator and, 550
to functions, 279–285
indirect data access and, 174
indirect member selection operators, 340
indirection operators, 176
initializing, 178–179
multidimensional arrays and, 192–193
notation, when passing arrays, 252–253
notation, with multidimensional arrays, 193–194
null pointer, 705
returning, 263–264
sizeof operators, 183–185
storing in vector containers, 624–626
with structs, 338–340
working with, 176–178

polymorphism, virtual functions and, 535
pop_back(), deleting elements in a vector, 616

1344

orders/ordering (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1344



pop-up menus
context menus, 943
exercising, 949–950
flags, 946
Popup property and, 813

Popup property, 813
POSITION values, list collections, 915–916
precompiled headers, compilation time and,

797–798
predicates

for filtering a list, 636–639
overview of, 606

pre-emptive multitasking, Windows programs, 759
prefixes

Windows messages, 1317–1318
Windows notation, 749–750

preprocessor directives, adding debugging code
with, 709

primary keys, in relational databases, 1114
print, file operations, 1089–1090
Print(), generating debugging output with, 733
print preview, for documents, 1077
PrintDocument component, 1089
printing documents

cleaning up after, 1072
CPrintInfo class, 1066–1068
document size and, 1068–1069
exercises, 1091–1092
logic and functions involved in printing process,

1065–1066
multipage, 1066–1068
overview of, 1064–1065
preparing device context for, 1072–1073
preparing for, 1070–1072
print preview, 1077
process of, 1073–1077
storing print data, 1069–1070
summary, 1090–1091

printing documents, CLR
overview of, 1089
print operation, 1089–1090
PrintDocument component, 1089

priority queue containers, 643–648
functions, 643
overview of, 643–644
working with, 644–648

private classes,  C++/CL, 565
private keyword, class membership and, 513
private members, of classes, 358–366

access levels for inherited members, 522–523

accessing, 361
accessing private members of base class in a

derived class, 513–516
default copy constructors, 364–366
friend functions and, 362–364
overview, 358–359
working with, 359–361

private protected keyword, C++/CLI access
specifiers, 566–568

Product ID, in relational databases, 1114
products

selecting for orders, 1207–1209
viewing product orders, 1151–1155

Products table
querying, 1129
in relational databases, 1114

program code
file names, 470–471
organizing, 468

programming mouse, 863–864
programs

bugs, 696–697
comments, 42
hangs/crashes, 698
named indexed properties, 397
statements, 44–46
structure. See structures
Windows. See also Windows programming

programs, debugging
call stack, 715–716
finding next bug, 722
overview of, 715
program versions, 20
stepping over to errors, 716–720
testing extended class, 720–722

project files
location of, 790–791
viewing, 792

project folders, 13
projects
Ctrl+Shift+N (New Project), 785, 1100
defining, 14
solutions and, 13–14

properties
C++/CLI class properties. See class properties,

C++/CLI
cell styles, 1275–1276
columns, 1281–1283
controls, 1233
defined, 390

1345

properties

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1345



properties (continued)
modifying Windows Forms application, 834–835
mouse, 865
read-only, 390
reserved property names, 403
toolbar buttons, 829–830
write-only, 390

Property Manager tabs, 17
protected keyword, class membership and,

519–522
protected members

access levels for inherited class members,
522–523

creating elements and, 889
prototypes, function, 243–247
public classes, specifying in C++/CLI, 565
public data, accessing, 783
public keyword, class membership and, 513
public members

access control and, 513
access levels for inherited class members,

522–523
interface classes, 561

public protected keyword, C++/CLI access
specifiers, 566–568

pure virtual functions
abstract classes, 539–542
overview of, 538–539

push_back()
adding elements to lists, 630
adding elements to vector containers, 608

push_front(), adding elements to lists, 630

Q
queries, 1129–1131
queue containers, 640–648

functions, 640
priority queue containers, 643–648
working with, 640–643

queued messages, Windows programs, 758

R
R2_NOTXORPEN, 887, 1062
radio buttons

adding to group box, 989–990
initializing, 996–997
message handling, 997–998

Raster OPeration (ROP), 886

rbegin(), reverse iterators, 610
RDBMS (relational database management systems),

1115
read-only properties, 390
Record Field Exchange, RFX_(), 1131–1132
record locking, 1169–1170
Record menu, disabling, 1181–1183
record view class

creating, 1144–1147
initializing, 1149–1150
overview of, 1132–1134

records
choosing SQL records, 1117
in relational databases, 1114
sorting SQL records, 1120

recordsets
adding filters to, 1147–1148
creating, 1127–1129, 1188
customer recordset, adding, 1156–1157
customer recordset, filtering, 1160–1163
data transfer between database and recordset,

1131–1132
linking controls to, 1136–1138
recordset class, 1141–1143
second recordset object, 1140–1141
SELECT statements resulting in, 1116–1117
snapshot vs. dynaset records, 1126
sorting, 1138–1139
views, for database update, 1188–1193

Rectangle(), CRectangle class, 881–882
rectangles

calculating enclosing rectangle for lines, 880
defining for CLR drawings, 902–903
drawing, 881–882
RECT structure, 338

recursive function calls, 271–274
reference classes, C++/CLI

base class for, 553
copy constructors, 389–390
defining, 386–387
derived classes and, 558–560
destructors and finalizers, 583–585
implementing assignment operator for, 503
overloading, 500–502
storing reference class objects, 680–684
working with, 387–389

references
as arguments to functions, 255
to base classes, 537
to class objects, 376, 379–380

1346

properties (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1346



declaring and initializing, 199–200
defined, 199
dynamic_cast operator and, 550
returning, 266–268
using, 199–200
to virtual functions, 537–539

references, C++/CLI, 555
RegisterClassEx(), creating program window,

756–757
registering window class, 756
Regular DLL, dynamically linked to MFC, 1099
Regular DLL, statically linked to MFC, 1099
relational database management systems (RDBMS),

1115
relational databases. See also database 

applications
components of, 1114
as data source, 1266
overview of, 1113
RDBMS (relational database management systems),

1115–1116
relational operators, 117
releases, program versions, 20
remainders, 70–71
remove(), deleting elements from a list, 634
remove_if(), deleting elements from a list, 636
rend(), reverse iterators, 610
repeating blocks of statements. See loops
replace()

algorithms, 674
string objects, 479–480

reserve(), increasing container capacity, 609
reserved property names, 403
Reset menu item, 1245
resize(), vector containers, 612
Resource Editors, tools for creating MFC-based

Windows programs, 785
resource files, as window element, 746
Resource View

adding Tooltips, 831
creating view dialogs, 1134–1136, 1143–1144
customer resource dialog, 1157–1158
customer resource dialog, linking to order dialog,

1163–1165
extending toolbar resources, 827–828
IDE windows, 10–11
overview of, 17
switching from Solution Explorer to, 812

resources
adding buttons to dialog boxes, 1187–1188
adding controls to dialog resources, 1193–1196

creating and editing menu resources, 812
extending toolbar resources, 827–828

results, displaying, 69–70
return statements, 243
return values, 241
reverse iterators, 610
RFX_() (Record Field Exchange), 1131–1132
roll back, of transactions, 1170
Rollback(), CDatabase transaction operations,

1171–1172
ROP (Raster OPeration), 886
rows

adding to tables, 1186–1187
customizing, 1283–1284
DataGridView functions for, 1269–1270
System::Data::DataRows namespace, 1266

rules
for casting operands, 76–77
for returning addresses, 265–266
for returning references, 268

Run(), SDI application, 800–801
Run to Cursor option, Debug menu, 704
runtime dynamic linking (late binding), 1097–1098
rvalues, 65

S
safe_cast, 107
save, file operations, 1086–1087
save as, file operations, 1088
scalable mapping modes, 1008–1009
scalar properties, C++/CLI

defining, 390–393
trivial, 393
working with, 393–397

scale dialog
displaying for spin button control, 1002
removing, 1018
scale dialog class, 1004–1005

scale factor
document size settings, 1009–1010
mapping mode settings, 1010–1012
overview of, 1008
scalable mapping modes and, 1008–1009
scrolling with scaling, 1012–1013

scale menu item, adding to spin button control,
1002–1003

scope resolution operators
in classes, 349
defined, 43
storage duration and scope, 91–92

1347

scope resolution operators

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1347



screen coordinates, pixels for measuring, 1009
scrolling

scaling and, 1012
scroll bar controls, 1012–1013
views, 937–939

SDI (Single Document Interface)
Build Solution, 797
class definitions, 793–797
command messages, 810
creating SDI applications, 786–790
executable modules, 797–801
location of project files, 790–791
overview of, 780
precompiled headers and, 797–798
viewing classes, 792–793
viewing project files, 792

searches
Find(), searching list collections, 916–917
FindIndex(), searching list collections, 917
null-terminated strings, 204–206
one-dimensional arrays, 215–217
strings, 224–225, 230–233, 484–489

SELECT statements
filters, 1147
in relational database, 1116
snapshot vs. dynaset records, 1126
sorting records, 1120
table joins, 1118
WHERE clause, 1117

SelectObject(), 858
SelectView(), 1151–1152
semantic errors, 697
Send-To-Back operation, in CLR, 978
sequence, of calculations, 74–76
sequence containers, 607–651

basic types, 607
defined, 606
double-ended queue containers, 626–629
list containers, 630–639
overview of, 607–608
queue containers, 640–648
stack containers, 649–651
vector containers. See vector containers

sequence containers, STL/CLR
double-ended queue containers for storing reference

class objects, 680–684
list containers for storing values types, 684–685
overview of, 677
vectors for storing handles, 678–680

Serializable attribute, 1083

serialization
CArchive class, 1050–1052
CObject class, 1052
collections and, 910
DECLARE_SERIAL() macro, 1052–1053
in document class definition, 1048–1049
in document class implementation, 1049–1050
exercises, 1091–1092
exercising, 1061–1062
how it works, 1053–1054
implementing for a class, 1054–1055
overview of, 1047–1048
recording document changes, 1055
Serialize(), for documents, 1056–1057
Serialize(), for elements, 1058–1059
Serialize(), for shapes, 1059–1061
Serialize(), overview of, 1050
summary, 1090–1091

serialization, CLR
binary serialization, 1078–1079
fields that are not serializable, 1079–1081
file operations, for a sketch, 1086–1088
object serialization, 1081–1082
overview of, 1078
sketch serialization, 1083–1086

Serialize()
definition of, 1050
document objects and, 1049
how it works, 1053–1054
implementing for documents, 1056–1057
implementing for elements, 1058–1059
implementing for shapes, 1059–1061

set containers, 651
SetCapture(), capturing mouse messages,

893–895
SetCheck(), CCmdUI class, 826
SetROP2(), 886
SetTextAlign(), 1077
SetValues(), 1233–1234
shapes

of collections, 910
deleting and moving, 943
serialization, 1059–1061

shift operators, 84–86
Shift+Alt+D (Show Data Sources item), 1266
Show(), 1242–1243
Show Data Sources item (Shift+Alt+D), 1266
ShowDialog(), 1240–1241
ShowWindow(), 757–758
Single Document Interface. See SDI (Single

Document Interface)

1348

screen coordinates

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1348



size(), vector containers, 611
sizeof operators, 183–185
Sketcher application

CLR version. See Windows applications, CLR-based
MFC version. See Windows applications, MFC-based

sketchs, CLR serialization, 1083–1086
snapshot, vs. dynaset records, 1126
SOAP serialization, 1078
Socket class, in STL, 601
Solution Explorer

IDE windows, 10–11
overview of, 16
switching to Resource View, 812

solutions, 13–14, 19
sort(), 623–624
sorting elements, 623–624
sorting recordsets, 1138–1139
sorting SQL records, 1120
sorting vector elements, 623–624
sorting words from text, 489–494
source code, modifying, 17–19
spin button control

creating, 1003–1004
defined, 988
dialog data exchange and validation, 1006
displaying, 1007–1008
initializing the dialog, 1006–1007
overview of, 1001–1002
scale dialog class, 1004–1005
scale menu item, 1002–1003
tab sequence, 1004
toolbar buttons, 1002–1003

splice(), deleting elements from a list, 635
SQL (Structured Query Language)

overview of, 1116
records, 1117
retrieving data with, 1116–1117
SELECT statements. See SELECT statements
sorting records, 1120
table joins, 1118–1120

stack containers
functions, 649
STL (Standard Template Library), 649–651

stacks, in automatic variables, 86–87
Standard C++ Library, 10, 43
standard libraries, 1093. See also libraries
Standard Template Library. See STL (Standard

Template Library)
standards, learning, 5–6
Start Debugging, Debug menu, 703, 722

state
of free store, 724
of ListBox objects, 1239

statement blocks, 47
statements, 44–46
#include, 43, 309, 512
assignment, 45, 65, 77–78
extended if statements, 122–124
if statements. See if statements
loops. See loops
nested if statements, 120–122
nested if statements,  C++/CL, 153–154
nested if-else statements, 124–126
pfun() statement, 280–281
SELECT statements. See SELECT statements
throw statement, 289–291

static constructors, 405
static members, of classes, 373–376

data members, 373–374
function members, 376
instances, counting, 374–375

static properties, 402–403
static storage duration, 89–93
static variables

in functions, 269–270
storage duration and scope, 93

statically linked functions, DLLs compared with,
1093–1095

status bar controls
adding to frames, 1014–1015
overview of, 1013–1014
panes, 1013
parts, 1015–1017
updating, 1017–1018

std namespace, 601
Step Into option, Debug menu, 704
Step Over (F10), Debug menu, 704–705, 705,

716–720
STL (Standard Template Library), 601–693

algorithms, 605, 674–676
associative containers. See associative containers
container adapters, 603
containers, 602–603
double-ended queue containers, 626–629
exercises, 693
function adapters, 606
function objects, 605–606, 672–673
input stream iterators, 665–668
inserter iterators, 669–670
iterators, 604–605

1349

STL (Standard Template Library)

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1349



STL (Standard Template Library) (continued)
list containers. See list containers, STL/CLR
map containers. See map containers, STL/CLR
multimap containers, 664–665
output stream iterators, 670–672
overview of, 601–602
queue containers. See queue containers
sequence containers. See sequence containers
stack containers, 649–651
summary, 692–693
vector containers. See vector containers

STL/CLR, 676–692
associative containers, 685–692
containers, 677
overview of, 676–677
sequence containers. See sequence containers,

STL/CLR
storage

class objects, in vector containers, 618–622
handles, in vector containers, 678–680
multiple strings, 173–174
objects, in map containers, 652–654
order data, 1205–1207
Order IDs, 1201
pointers, in vector containers, 624–626
print data, 1069–1070
reference class objects, 680–684
temporary elements, 873–874
values types, in list containers, 684–685

storage, duration and scope, 86–93
automatic variables in, 89
declarations, positioning variable, 89
global variables, 89–92
for multiple strings, 173–174
overview, 86
scope resolution operators, 91–92
static variables, 93

strcat(), debugging programs and, 715–716
strcpy(), 413
strcpy(), compared with strcpy_s(), 714
strcpy_s() 

compared with strcpy(), 714
as derived class, 511

stream input data incorrect, common bugs, 698
stream iterators

input, 665–668
output, 670–672

strings, 200–206
accessing characters in, 156–160
accessing/modifying, 476–480
comparing, 480–484

comparing null-terminated strings, 204
concatenating, 473–476
copying null-terminated strings, 203–204
creating string objects, 471–473
handling, 168–169
input, 169–171
joining null-terminated strings, 201–203
length of null-terminated strings, 200–201
overloaded operators, 1024–1025
overview, 200, 471
programming with, 170–171
searching, 484–489
searching null-terminated strings, 204–206
sorting words from text, 489–494

strings, C++/CLI, 224–233
comparing, 229
joining, 224–225
modifying, 227–229
overview, 224
searching, 230–233
working with, 225–227

strlen(), 413
Stroustrup, Bjarne, 342
structs, 332–340

accessing members of, 333
defining, 332–333
indirect member selection operators, 340
initializing, 333
pointers with, 338–340
RECT, 338
working with, 334–337

structure, C++/CLI. See functions, C++/CLI
Structured Query Language. See SQL (Structured

Query Language)
structures, 42–48. See also functions

automatically generated console programs, 47–48
comments, 42
declarations, 43–44
header files, 43
main () function, 44
MFC programs, 771
namespaces, 43–44
#include directive, 43
overview, 36–42
statement blocks, 47
statements, 44–46
unions in, 419
whitespace, 46–47
Windows programs as, 750–751

submenus, Windows Forms applications,
1219–1220

1350

STL (Standard Template Library) (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1350



sumarray()function, 284–285
swap(), swapping contents of two vectors, 618
switch statements, 131–134
symbols

exporting from DLLs, 1109–1111
importing into a program, 1109–1110

synonyms, for data types, 58
syntactic errors, 697
System, 833
system menu, window elements, 745
System::Collections, 833
System::Collections::Generic, 590
System::ComponentModel, 833
System::Data, 833, 1266
System::Data::DataColumn, 1266
System::Data::DataRows, 1266
System::Data::DataTable, 1266
System::Diagnostics, 732
System::Drawing, 833
System::Drawing, 895
System::Drawing::Brush, 1039
System::Drawing::Color, 839, 899
System::Drawing::Font, 1039–1040
System::Drawing::FontStyle, 1039
System::Drawing::Graphics, 899
System::Drawing::Pens, 900–902
System::Drawing::Rectangle, 903
System::IO::Stream, 1081
System::Object, 553, 554, 555
System::Runtime::Serialization, 1079
System::Runtime::Serialization::Formatte

rs::Binary, 1082, 1086
System::Windows::Forms, 833, 1267
System::Windows::Forms::Form class, 775

T
tab controls, adding to Windows Forms application,

1220–1222
tab sequence controls, 1004
TabControl controls

adding, 1220–1221
working with multiple tables, 1302–1304

table adapters, 1266
table joins

in relational database application, 1116
SQL, 1118–1120

table views
accessing multiple views, 1150–1151
switching, 1151–1154

tables
adding rows, 1186–1187
customizing Orders Details table, 1173–1174
in relational databases, 1114
System::Data::DataTable namespace, 1266
working with multiple, 1302–1304

template classes. See also STL (Standard Template
Library)

CArray, 911–912
CList, 913–918
CMap, 918–919
CTypedPtrList, 920–923
overview of, 911

template libraries, C++/CLI. See STL/CLR
templates, function, 296–299
term() function, 305–306
ternary operators, 130
testing, dialog boxes, 988–990
text

base and derived classes, 1026
constructor for CText class, 1027–1028
drawing text, 1028
drawing text, in CLR, 1038
implementing, 1027
moving text objects, 1028, 1062–1064
strings sorting words from text, 489–494
text dialog, in CLR, 1042
text elements, creating, 1028–1029
text elements, for CLR controls, 1037
text elements, for CLR text boxes, 1043
text elements, for edit boxes, 1026–1027

text alignment, printing documents and, 1076
text box controls

overview of, 1042–1043
Windows Forms and, 831

Text Editor
creating MFC-based Windows programs, 785–786
viewing variables in, 707

text elements
for CLR controls, 1037
for CLR text boxes, 1043
creating, 1028–1029
for edit boxes, 1026–1027

text menu item, adding to edit controls, 1025–1026
TextElement class

creating, 1043
defining, 1041

this pointer, 366–368
throw statement, 289–291
title bar icon, window elements, 745

1351

title bar icon

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1351



title bars, window elements, 745
to main() function, 258–260, 275–276
toolbar buttons

adding, 827–828, 992
editing properties, 829–830
exercising, 830
for spin button control, 1002–1003

toolbars
options, 11–12
as window element, 746

toolbars, CLR, 842–844
Toolbox window

displaying, 1220
Menus & Toolbars group, 1228
standard dialog boxes, 1235–1236
View menu, 836

ToolStrip controls, 842
tooltips, 830
ToString(), 384–385, 553
trace

outputting trace information, 741
switching debugging/tracing on/off, 735

Trace classes, C++/CLI
overview of, 732
working with, 737–741

tracepoints, 702–703
TraceSwitch, 735–736
tracking handles, 207–209
tracking references, 233
transactions
CDatabase class, 1171–1172
overview of, 1170

transform(), algorithms, 675–676
transformations, coordinate system, 965–967
TranslateMessage(), retrieving Windows

messages, 759–760
tree controls, 988
try blocks, 290–291
type modifiers

const, 67–68
defined, 54–55

type safe collections
CArray template class, 911–912
CList template class, 913–918
CMap template class, 918–920
overview of, 910–911

typed pointer collections
CTypedPtrList template class, 921–923,

929–931
overview of, 920

typed pointer list collections, 921–923
creating sketch document with, 929–931
functions, 921–923
overview of, 921

typeid(), determining class type with, 1063
types. See data types

U
unary predicates, 606
unbound mode, DataGridView controls, see

DataGridView controls, in unbound mode
unconditional branching, 134
unhandled exceptions, 698
Unicode codes, 1315
unions

anonymous unions, 419
in classes and structures, 419
between variables, 417–419

unique(), deleting elements from a list, 634
unmanaged C++, 3–5
Update(), CRecordset update operations,

1168–1169
update handlers

coding command update handler, 825–827
exercising, 827
updating user interface, 824–825

update messages, 816–817
update mode, 1177–1178
UPDATE_COMMAND_UI. See update handlers
UpdateAllViews(), 935–937
updating database operation. See databases, update

operations
user interfaces. See also interfaces

class interface, 446–447
GDI (Graphical Device Interface). See GDI (Graphical

Device Interface)
GUI (graphical user interface), 744, 1217–1218
message handlers for updating, 824–825

V
validation

input validation for Windows Forms, 1242–1244
spin button control, 1006

value classes
base class for, 553
types of, 98

value classes, C++/CLI
defining, 381–382

1352

title bars

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1352



overloading, 494–498
working with, 383–384

value of terms C++/CLI, 325
values

enumeration constants, 110
ISO/ANSI C++, 56–57
returning, 263–268
variable, 58–60, 705–707

values, comparing, 117–134
conditional operators, 130–131
extended if statements, 122–124
generally, 117–119
if statements, 119–120
logical operators and expressions, 126–129
nested if statements, 120–122
nested if-else statements, 124–126
switch statements, 131–134
unconditional branching, 134

values types, storing in a list, 684–685
variable declarations

defined, 44, 50–51
positioning, 89

variable numbers, of arguments
accepting, 274–275
defined, 260–262

variable values
changing, 707
inspecting, 705–707
with specific sets of variables, 58–60

variables
assignment statements, 77–78
Boolean type, 55
casting, 76–79
data types and. See data types
declaring, 50–51
defined, 48–49
explicit casts, 78–79
exporting from DLLs, 1108
floating-point numbers, 55–56
initial values for, 51
integer type, 52–53
keywords, 50
modifying, 71–72
naming, 49
old-style casts and, 79
operands, rules for casting, 76–77
sharing memory between, 417
unions between, 417–419
values, 58–60, 705–707

.vbx (Visual Basic Extension), 1095

vector containers
accessing elements in, 615–616
capacity and size of, 611–615
creating, 608–610
inserting/deleting elements, 616–618
sorting elements, 623–624
storing class objects, 618–622
storing pointers, 624–626

vector containers, STL/CLR, 678–680
versions, of programs, 20–21
View class, 851–852
View menu, Toolbox window, 836
viewport, coordinates and, 1009
views

activation, 1154–1155
updating multiple, 935–937

views, database
creating, 1188–1193
customer view class, 1158–1160
dialogs for, 1134–1136
multiple table views, 1150–1151
record view class, adding, 1143–1147
record view class, initializing, 1149–1150
record view class, overview of, 1132–1134
switching, 1151–1155

views, MFC
linking documents and views in MFC, 781–782
overview of, 780–781

virtual destructors
calling wrong destructor, 545–548
how it works, 548–550
overview of, 544, 544–545

virtual functions
abstract classes, 539–542
exercises, 597–599
incomplete class definitions, 538
indirect base classes, 542–544
overview of, 530–531
pointers to class objects, 535–537
polymorphism and, 535
pure virtual functions, 538–539
references with, 537–538
summary, 596–597
virtual destructors, 544–550
what it is, 532–535
working with inherited functions, 531–532

virtual functions, C++/CLI, 555
virtual keyword, 532
virtual machine environments, 2
virtual mode, DataGridView controls, 1269

1353

virtual mode

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1353



visibility specifiers
cancel button and, 1180–1181
for classes and interfaces, 565

Visual Basic Extension (.vbx), 1095
Visual C++ 2008, overview, 1–34

applications, writing, 3–4
attributes, 6
CLR and, 2–3
CLR console, 24–26
console application files, 19
console applications, 6–7
debugging and releasing program versions, 20
dockable toolbars, 12–13
documentation, 13
empty consoles, 21–23
error handling, 23–24
executing program versions, 20–21
IDE for. See IDE (Integrated Development

Environment)
introduction, 1
learning about, 4–9
MFC-based applications, 27–30
.NET framework, 2
options, setting, 26–27
projects, 13–14
solutions, 19
source code, 17–19
standards, 5–6
summary, 33–34
toolbar options, 11–12
Win32 console applications, 14–19
Windows applications, 27–30
Windows Forms applications, 30–33
Windows programming concepts and, 7–9

W
watch, setting for variables, 705
Watch windows, debugger, 707
Web services, as data source, 1266
WebBrowser control, 1226–1227
WHERE clause, in SELECT statements, 1117
while loops, 146–148
whitespace, 46–47
Win32 API, 1095
Win32 console applications, 7, 14–19
WINDCLASSEX structure, 753–755
window caption, modifying, 1139–1140
window class (CFrameWnd), MFC, 773
WindowProc()

code for complete function, 767–768

decoding Windows messages, 764–765
organization of Windows programs and, 769–770
processing Windows messages, 763–764
redrawing client area, 758
redrawing client area for Windows programs,

765–766
structure of Windows programs and, 750
WindowProc(), 766

windows, in Windows OSs
creating program windows, 756–757
elements of, 744–746
initializing program windows, 757–758
structure for defining program windows, 753–755
target windows for Windows messages, 1317–1318
terminology regarding, 746

Windows API
creating simple, 768–769
drawing process, 847–848
methods for creating interactive Windows

application, 744
overview of, 747–748

Windows applications
basic classes, 783
creating and executing, 27–30
MDI (multiple document interface) application,

801–802
MFC tools for creating, 784–785
MFC-based, 786–790
process of creating, 785–786
SDI (single document interface) application,

creating, 786–790
Windows applications, CLR-based

event handlers, implementing, 839–840
menu items, adding event handlers for, 838–839
menu items, setting checks, 840–842
menus, adding, 836–838
summary, 845
toolbars, adding, 842–844

Windows applications, MFC-based, 786–790
adding menus to, 811
command messages, processing, 810–811
completing the menu, 815
creating, 785–786
data members, adding to class definitions,

820–821
data members, initializing new, 821–823
handling messages, 810
handling Windows messages, 805–806
interactive, 744
MDI applications, 801–802
menu items, adding to Element menu, 814–815

1354

visibility specifiers

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1354



menu items, adding to menu bar, 813
menu items, modifying existing, 815
menu messages, classes for, 817
menu messages, coding functions for, 820
menu messages, creating functions for, 817–820
menu messages, event handlers for, 816
menu resources, creating and editing, 812
message categories, 809–810
message handler definitions, 807–809
message handlers, coding update handler, 825–827
message handlers, exercising update handler, 827
message handlers, for updating user interface,

824–825
message maps, 806–807
running, 802, 823–824
summary, 845
toolbar buttons, adding, 827–828
toolbar buttons, editing properties of, 829–830
toolbar buttons, exercising, 830
tools for creating, 784–785
tooltips, adding, 830

Windows client area, 765–766. See also client area
Windows Forms Application template, 832
Windows Forms applications, 1217–1264
Button controls, 1224–1226
buttons, click events, 1238–1239
buttons, event handlers, 1253–1256
Choose menu item, click events, 1260–1263
Choose menu item, dealing with, 1257
context menus, adding, 1228
context menus, responding to, 1256–1257
creating, 30–33
dialog boxes, adding second, 1245–1248
dialog boxes, creating, 1235–1236
dialog boxes, getting data from, 1248–1251
dialog boxes, using, 1240–1242
dialog class, developing, 1258–1260
dialog form, creating, 1257–1258
dialog objects, creating, 1239–1240
event handlers, creating, 1228–1229
event handlers, for buttons, 1231–1235
event handlers, for Limits menu, 1235,

1252–1253
event handlers, for menu items, 1229–1230
event handlers, for Play menu event, 1231–1235
example, operation of, 1227–1228
exercise creating, 775–777
exercises, 1264
GroupBox controls, using, 1222–1224
GUI, creating, 1217–1218
Help>About menu items, 1253

input controls, disabling, 1251
input validation, 1242–1244
ListBox controls, adding list to, 1237–1238
ListBox objects, state of, 1239
members, adding to Form1 class, 1230–1231
methods for creating interactive Windows

application, 744
operations in development of, 831–832
outputting trace information from, 741
overview of, 775, 832–834
properties, 834–835
Reset menu item, handling, 1245
start-up, 835
submenus, 1219–1220
summary, 1263
tab controls, adding, 1220–1222
WebBrowser control, using, 1226–1227

Windows Forms, data source access, 1265–1305
accessing/displaying data, 1267
binding to individual controls, 1299–1302
BindingNavigator component, 1296–1297
BindingSource component, 1290–1296
cell styles, dynamically setting, 1284–1289
column formats, 1281–1283
column headers, setting up, 1280–1281
control, setting up, 1279–1280
data, setting up, 1278–1279
DataGridView controls, 1267–1269
DataGridView controls, customizing, 1275–1277
DataGridView controls, in bound mode, 1290
DataGridView controls, in unbound mode,

1269–1275
overview of, 1265
rows, customizing alternate, 1283–1284
summary, 1302–1304
tables, working with multiple, 1302–1304
updating database, 1297–1298
working with data sources, 1266

Windows Forms, library for, 10
Windows messages

message categories, 809–810
MFC handling, 805–806, 810
overview of, 747
processing functions, 763–765
queues, 758–761
types of, 1317–1318

Windows programming, 743–778. See also
WinMain()

concepts, 7–9
data types, 748–749
DLLs and, 1095

1355

Windows programming

In
de

x

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1355



Windows programming (continued)
ending programs, 766–767
event-driven programming and, 746
message processing functions, 763–765
message queues, 758–761
messages, 747
methods for creating interactive Windows

application, 744
MFC for. See MFC (Microsoft Foundation Classes)
notation, 749–750
organization of Windows programs, 769–770
overview of, 743
program window, creating, 756–757
program window, initializing, 757–758
program window, specifying, 753–755
structure of a Windows program, 750–751
summary, 778
Window client area, drawing, 765–766
window elements, 744–746
WindowProc(), 767–768
Windows API, 747–748, 768–769
Windows Forms and, 775–777
Windows OS and, 746

Windows Sockets, MFC extension DLLs, 1101

WinMain()
complete function assembled, 761–763
messages, retrieving for program, 758–761
organization of Windows programs and, 769–770
overview of, 751–753
program window, creating, 756–757
program window, initializing, 757–758
program window, specifying, 753–755
structure of Windows programs and, 750

WM_COMMAND, Windows messages, 808
WM_LBUTTONDOWN, Windows messages, 865
WM_LBUTTONUP, Windows messages, 865, 891–892
WM_MOUSEMOVE, Windows messages, 865, 885
WM_MOUSEMOVE, Windows messages, 959–961
WM_PAINT, Windows messages, 848
WM_RBUTTONDOWN, Windows messages, 963
WndProc(),  handling Windows message, 747
Write(), generating debugging output, 732–733
WriteLine(), generating debugging output,

732–733
write-only properties, 390

X
XML serialization, 1078

1356

Windows programming (continued)

25905bindex.qxd:WroxPro  2/20/08  5:57 PM  Page 1356



Get more 
fromWrox.

Available wherever books are sold or visit wrox.com 

978-0-470-18757-9 978-0-470-19137-8 978-0-470-19136-1

G
orroffr

teetG
moom

ommo
rWWr

erreoor
xooxrroorroffr moom rWWr .xooxrro

9-75781-074-0-879 9 -879 879 8-73191-074-0- 8731910740 1-63191-074-0-879

obreverehwelbaliavAAv oc.xorwtisivrodloseraskoo mo

25905badvert.qxd:WroxPro  2/20/08  6:02 PM  Page 1357



Take your library 
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your 
subscription to the Wrox Reference Library. For answers when 
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET 
• C#/C++ 
• Database 
• General 
• Java
• Mac
• Microsoft Office 

• .NET 
• Open Source 
• PHP/MySQL 
• SQL Server 
• Visual Basic 
• Web
• XML 

Find books on

www.wrox.com

25905badvert.qxd:WroxPro  2/20/08  6:02 PM  Page 1358




